Aérgia: Exploiting Packet Latency Slack in On-Chip Networks

ISCA 2010

Reetuparna Das § Onur Mutlu† Thomas Moscibroda‡ Chita R. Das §

§ Pennsylvania State University †Carnegie Mellon University ‡Microsoft Research

Presented by Olivier Becker

Reetuparna Das, Onur Mutlu, Thomas Moscibroda, Chita R. Das, "Aérgia: Exploiting Packet Latency Slack in On-Chip Networks" presented at the <u>37th Annual ACM IEEE International Symposium on Computer</u> <u>Architecture 2010</u> (ISCA 2010), Saint-Malo, France, June 2010. [slides.pptx]

Aérgia: Exploiting Packet Latency Slack in On-Chip Networks

Reetuparna Das Pennsylvania State University rdas@cse.psu.edu Onur Mutlu
Carnegie Mellon University
onur@cmu.edu

Thomas Moscibroda

Microsoft Research
moscitho@microsoft.com

Chita R. Das
Pennsylvania State University
das@cse.psu.edu

Executive Summary

- Problem: Treating all packets equally during scheduling will lead to performance loss
- Goal: Improving overall system performance by accelerating performance-critical packets
- Key Idea: Utilize packet slack to priortize critical packets
- Key Mechanism: "Predicting" packet latency & priortizing packets with low slack
- Results:
 - Overall system throughput improved by 10.3%
 - Network fairness improved by 30.8%

Background, Problem & Goal

System-on-Chip

Scalability

Busses do not scale well!

Network-on-Chip

NoC Routers

NoC Packet Scheduling

NoC Packet Scheduling

NoC Packet Scheduling

- Current policies:
 - Round robin scheduling
 - Age-based scheduling
- Treat packets from different programs equally
- Treat packets from the same program equally

Different packets can have different effects on system performance!

Memory Level Parallelism (MLP)

Memory Level Parallelism (MLP)

- Due to MLP:
 - □ Packet Latency ≠ Network Stall Time
 - Different packets can have different criticality

In our Example: Criticality () > Criticality () > Criticality ()

Improving overall system performance by accelerating performance critical packets

Novelty

Previous Approaches

Goal:

Improving overall system performance by accelerating performance critical packets

Previous Approach:

Prioritize <u>all</u> packets of certain applications

"Coarse-grained"

New Approach:

Prioritize packets based on their latency

"fine-grained"

Key Approach and Ideas

Slack Intuitively

 The number of cycles a packet can be delayed without affecting application performance is called "Slack"

Key Insight: Accelerating critical Packets

Instruction Window (Core A)

Instruction Window (Core B)

Packet	Latency	Slack
A-0	13 hops	0 hops
B-1	3 hops	10 hops

Priortizing B-1 leads to performance loss!

Diversity of Slack

Packet slack varies between different applications!

Diversity of Slack

Packet slack varies within the same application!

Mechanisms & Implementation

Estimating Slack

```
Slack(Packet_i) = \max_{k} Latency(Packet_{k \forall k=0 \ to \ Number of Predecessors}) - Latency(Packet_i)
```

Predicting packet latency is very difficult!

3 Causes of Latency

How to avoid Starvation? Batching!

- Problem: Slack-based prioritization might lead to starvation!
- We divide time in intervals of N cycles
- Packets inserted during the same interval are part of the same batch
- Packets of older batches are prioritzed over packets from newer batches

Connecting the dots

Packet header with Aérgia priority structure:

Methodology & Major Results

Experimental Setup

- 64-core system
 - 2 GHz processor
 - 128-entry instruction window
 - □ 32KB private L1 and 1MB per core shared L2 caches
 - □ 4 GB DRAM, 4 on-chip DRAM controllers
- Network-on-Chip model
 - □ 8x8 mesh
 - □ Each node has a router, processor, private L1 cache and shared L2 cache bank
- 35 different applications, 56 different combinations

Experimental Setup

- Age (Baseline)
 - Treats all packets equally
- Application-Aware Prioritization Mechanism (STC) [Lee et al., ISCA 2008]
 - Priortizes all packets of non-intensive application
- Global Synchronized Frames (GSF) [Das et al., MICRO 2009]
 - Guarantees minimum bandwidth and network delay to all applications

"blind"

"coarse-grained"

"coarse-grained"

Results: System Speedup

■Base ■GSF ■STC Aergia ■STC+Aergia

- STC: 8.9% improvement
- Aérgia: 10.3% improvement
- Aérgia+STC: 16.1% improvement

Results: Network Unfairness

- Aérgia: ~1.5X improvement
- Aérgia+STC: ~1.3X improvement

$$NetSlowdown_i = \frac{NST_i^{shared}}{NST_i^{alone}} \,, \quad Unfairness = \max_i NetSlowdown_i$$

Summary

Summary

- Problem: Treating all packets equally during scheduling will lead to performance loss
- Goal: Improving overall system performance by accelerating performance-critical packets
- Key Idea: Utilize packet slack to priortize critical packets
- Key Mechanism: "Predicting" packet latency & priortizing packets with low slack
- Results:
 - Overall system throughput improved by 10.3%
 - Network fairness improved by 30.8%

Strengths

Strenghts

- New approach to a problem that will likely become more significant over time
- Only slightly increases the header size
- Potential for further research
 - MemScale: Active Low-Power Modes for Main Memory, ASPLOS 2010
- Intuitive idea
- Well-writen, well-structured and easy-to-understand paper

Weaknesses

Weaknesses

- Mechanism may not work effectively if workload utilizes small/no MLP
- (Does not consider the affect of different batch sizes)
- (Evaluation is done solely in simulation)
- (Are these the best workloads to evaluate?)

Takeaways

Key Takeaways

- Novel method to schedule packets on NoCs
- Simple idea
- Potential for further research
- Well written and easy-to-understand paper

Thoughts and Ideas

Thoughts & Ideas

- Can we improve Aérgia?
 - <u>"Network-on-Chip Packet Prioritisation based on Instantaneous Slack Awareness"</u>, INDIN 2015
- How can we utilize Aérgia to protect us from malicious attacks such as Denial-os-Service attacks?
 - "Real-time Detection and Localization of DoS Attacks in NoC based SoCs", DATE 2019
- Can we use slack-based routing on bufferless On-Chip Networks?
 - "CHIPPER: A Low-complexity Bufferless Deflection Router", HPCA 2011

Discussion

Discussion Starters

- Thoughts on Aérgia?
- Thoughts on the previous ideas?
- Will the problem become more important in the future?
- Will Aérgia become more important in the future?

Backup Slides

Slack-Unaware vs Slack-Aware

Analysis of Miss Predictors

Figure 12: Analysis of L2 miss predictors: (a) error with parameters, (b) error with cache size, (c) effect of perfect prediction

L2 Hit/Miss Predictors

- How to predict L2 hit or miss at core?
 - Global Branch Predictor based L2 Miss Predictor
 - Use Pattern History Table and 2-bit saturating counters
 - Threshold based L2 Miss Predictor
 - If #L2 misses in "M" misses >= "T" threshold then next load is a L2 miss.