
Core Fusion: Accommodating Software Diversity in
Chip Multiprocessors

Engin İpek, Meyrem Kırman, Nevin Kırman, and José F. Martı́nez
Computer Systems Laboratory

Cornell University
Ithaca, NY, USA

http://m3.csl.cornell.edu/

ABSTRACT
This paper presents core fusion, a reconfigurable chip mul-
tiprocessor (CMP) architecture where groups of fundamen-
tally independent cores can dynamically morph into a larger
CPU, or they can be used as distinct processing elements,
as needed at run time by applications. Core fusion grace-
fully accommodates software diversity and incremental par-
allelization in CMPs. It provides a single execution model
across all configurations, requires no additional program-
ming effort or specialized compiler support, maintains ISA
compatibility, and leverages mature micro-architecture tech-
nology.

Categories and Subject Descriptors
C.1.3 Computer Systems Organization [Processor Archi-
tectures]: Adaptable Architectures; C.1.4 Computer Sys-
tems Organization [Processor Architectures]: Parallel
Architectures

General Terms
Performance, Design

Keywords
Chip Multiprocessors, Reconfigurable Architectures, Soft-
ware Diversity

1. INTRODUCTION
Chip multiprocessors (CMPs) hold the prospect of trans-

lating Moore’s Law into sustained performance growth by
incorporating more and more cores on the die. In the short
term, on-chip integration of a modest number of relatively
powerful cores may yield high utilization when running mul-
tiple sequential workloads. However, although sequential
codes are likely to remain important, they alone are not suf-
ficient to sustain long-term performance scalability. Conse-
quently, harnessing the full potential of CMPs in the long
term makes the widespread adoption of parallel program-
ming inevitable.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISCA’07, June 9–13, 2007, San Diego, California, USA.
Copyright 2007 ACM 978-1-59593-706-3/07/0006 ...$5.00.

Unfortunately, code parallelization constitutes a tedious,
time-consuming, and error-prone effort. Historically, pro-
grammers have parallelized code incrementally to amortize
programming effort over time. Typically, the most promis-
ing loops or regions in a sequential execution of the program
are identified through profiling. A subset of these regions is
then parallelized. Over time, more effort is spent on the re-
maining code. Already popular programming models (e.g.,
OpenMP [12]) are designed to facilitate incremental paral-
lelization.

As CMPs become ubiquitous, we envision a dynamic and
diverse landscape of software products of very different char-
acteristics and in different stages of development: from purely
sequential, to highly parallel, and everything in between.
Moreover, as a result of incremental parallelization, appli-
cations will exert very different demands on the hardware
across phases of the same run (e.g., sequential vs. highly
parallel code sections within the same program). This di-
versity is fundamentally at odds with most CMP designs,
whose composition is “set in stone” by the time they are
fabricated.

Asymmetric chip multiprocessors (ACMPs) [3, 23, 24]
comprise cores of varying sizes and computational capabil-
ities. The hope is to match the demands of a variety of
sequential and parallel software. Still, the particular die
composition is set at design time. Ultimately, this may con-
stitute a hurdle to high performance. For example, Balakr-
ishnan et al. [3] find that asymmetry generally hurts parallel
application scalability, and renders the applications’ perfor-
mance less predictable, unless relatively sophisticated soft-
ware changes are introduced. Hence, for example, while
an ACMP may deliver increased performance on sequential
codes by placing one large core on the die, it may do so at
the expense of parallel performance or programmability.

Instead, we would like a CMP to provide the flexibility to
dynamically “synthesize” the right composition, based on
software demands. In this paper, we investigate a novel re-
configurable hardware mechanism that we call core fusion.
It is an architectural technique that empowers groups of rel-
atively simple and fundamentally independent CMP cores
with the ability to “fuse” into one large CPU on demand.
We envision a core fusion CMP as a homogeneous substrate
with conventional memory coherence/consistency support
that is optimized for parallel execution, but where groups
of up to four adjacent cores and their i- and d-caches can
be fused at run-time into CPUs that have up to four times
the fetch, issue, and commit width, and up to four times the
i-cache, d-cache, branch predictor, and BTB size.

Core fusion has the potential to provide a number of
highly desirable benefits to CMP design and functionality.
Among them:

• Support for software diversity. CMPs may be config-
ured for fine-grain parallelism (by providing many lean
cores), coarse-grain parallelism (by fusing many cores

186

into fewer, but more powerful CPUs), sequential code
(by executing on one fused group), and different lev-
els of multiprogramming (by providing as many fused
groups as needed, up to capacity). In contrast, for
example, ACMPs are “stuck” with the mix chosen at
design time, which may compromise performance for
parallel codes and/or mismatched multiprogrammed
workloads.

• Support for smoother software evolution. Core fusion
would naturally support incremental parallelization,
by dynamically providing the optimal configuration for
sequential and parallel regions of a particular code,
e.g., one large fused group during sequential regions,
and many small independent cores during parallel re-
gions.

• Single-design solution. A fusion group is essentially
a modular structure comprising four identical cores,
plus the core fusion fabric. Core fusion CMPs can be
designed by tiling as many such groups as desired. In
contrast, for example, ACMPs require the adoption of
at least two processor core designs.

• Optimized for parallel code. Core fusion comprises rel-
atively small and fundamentally independent cores.
This provides good isolation across threads in parallel
runs, both internally (branch predictor, i- and d-TLB,
physical registers, etc.) and at the L1 cache level (i-
and d-cache). The core fusion support allows cores
to work co-operatively when needed (albeit probably
at somewhat lower performance than a large, mono-
lithic processor). In contrast, techniques like simul-
taneous multithreading (SMT) take the opposite ap-
proach: A large wide-issue core that is optimized for
sequential execution, augmented with support for mul-
tiple threads to increase utilization. When executing
parallel applications, cross-thread interference in SMT
designs is an obstacle to high performance. In a soft-
ware landscape where parallel code is expected to be
increasingly more prevalent, a “bottom-up” approach
like core fusion may be preferable. (Moreover, SMT
support can be added to core fusion’s base cores.)

• Design-bug and hard-fault resilience. A design bug or
hard fault in the core fusion hardware need not disable
an entire four-core fusion group, as each core may still
be able to operate independently. Similarly, a hard
fault in one core still allows independent operation of
the three fault-free cores, and even two-way fusion on
the other two cores in the fusion group. Bug/hard
fault isolation may be significantly more challenging in
designs based on large cores. (The mechanisms that
would be needed for detection, isolation, and recovery
are out of the scope of this paper.)

At the same time, providing CMPs with the ability to
“fuse” cores on demand presents significant design chal-
lenges. Among them:

• Core fusion should not increase software complexity
significantly. Specifically, cores should be able to exe-
cute programs co-operatively without changing the ex-
ecution model, and without resorting to custom ISAs
or specialized compiler support. This alone would set
core fusion apart from other proposed reconfigurable
architectures, such as TRIPS [37] or Smart Memo-
ries [28], and from speculative architectures such as
Multiscalar [38]. (Section 6 conducts a review of this
and other related work.)

• Core fusion hardware should work around the funda-
mentally independent nature of the base cores. This
means providing complexity-effective solutions to col-
lective fetch, rename, execution, cache access and com-
mit, by leveraging each core’s existing structures with-

out unduly overprovisioning or significantly restructur-
ing the base cores.

• Dynamic reconfiguration should be efficient, and each
core’s hardware structures should work fundamentally
the same way regardless of the configuration.

This paper presents, for the first time, a detailed descrip-
tion of a complete hardware solution to support adaptive
core fusion in CMPs. In the course of formulating our core
fusion solution, this paper makes the following additional
contributions over prior art:

• A reconfigurable, distributed front-end and instruc-
tion cache organization that can leverage individual
cores’ front-end structures to feed an aggressive fused
back-end, with minimal over-provisioning of individual
front-ends.

• A complexity-effective remote wake-up mechanism that
allows operand communication across cores without re-
quiring additional register file ports, wake-up buses,
bypass paths, or issue queue ports.

• A reconfigurable, distributed load/store queue and data
cache organization that (a) leverages the individual
cores’ data caches and load/store queues in all con-
figurations; (b) does not cause thread interference in
L1 caches when cores run independently; (c) supports
conventional coherence when running parallel code,
generates zero coherence traffic within the fusion group
when running sequential code in fused mode, and re-
quires minimal changes to each core’s CMP subsys-
tem; (d) guarantees correctness without requiring data
cache flushes upon runtime configuration changes; and
(e) enforces memory consistency in both modes.

• A reconfigurable, distributed ROB organization that
can fully leverage individual cores’ ROBs to seamlessly
support fusion, without overprovisioning or unneces-
sarily replicating core ROB structures.

• A quantitative assessment of the incremental paral-
lelization process on CMPs.

Our evaluation pits core fusion against more traditional
CMP architectures, such as fine- and coarse-grain homoge-
neous cores, as well as ACMPs, and shows that core fu-
sion’s flexibility and run-time reconfigurability make it an
attractive CMP architecture to support a diverse, evolving
software landscape.

2. ARCHITECTURE
Core fusion builds on top of a substrate comprising iden-

tical, relatively efficient two-issue out-of-order cores. A bus
connects private L1 i- and d-caches and provides data co-
herence. On-chip L2 cache and memory controller reside
on the other side of this bus. Cores can execute fully in-
dependently if desired. It is also possible to fuse groups of
two or four cores to constitute larger cores. Figure 1 is an
illustrative example of a CMP comprising eight two-issue
cores with core fusion capability. The figure shows an (ar-
bitrarily chosen) asymmetric configuration comprising one
eight-issue, one four-issue, and two two-issue processors.

We now describe in detail the core fusion support. In the
discussion, we assume four-way fusion.

2.1 Front-end
2.1.1 Collective Fetch

A small co-ordinating unit called the fetch management
unit (FMU) facilitates collective fetch. The FMU receives
and re-sends relevant fetch information across cores. The
total latency from a core into the FMU and out to any other
core is two cycles (Section 4).

187

CORE

L1 i-$

L1 d-$

CORE

L1 i-$

L1 d-$

CORE

L1 i-$

L1 d-$

CORE

L1 i-$

L1 d-$

CORE

L1 i-$

L1 d-$

CORE

L1 i-$

L1 d-$

CORE

L1 i-$

L1 d-$

CORE

L1 i-$

L1 d-$

L2 $

CORE CORE CORE CORE

L1 d-$ L1 d-$ L1 d-$ L1 d-$

L1 i-$ L1 i-$ L1 i-$ L1 i-$

L1 d-$ L1 d-$

L1 i-$ L1 i-$

CORE CORE

Figure 1: Conceptual floorplan of an eight-core CMP with

core fusion capability. The figure shows a configuration ex-

ample comprising two independent cores, a two-core fused

group, and a four-core fused group. The figure is not meant

to represent an actual floorplan.

Fetch Mechanism and Instruction Cache
Each core fetches two instructions from its own i-cache ev-
ery cycle, for a total of eight instructions. Fetch is aligned,
with core zero generally responsible for the oldest two in-
structions. On a taken branch (or misprediction recovery),
however, the target may not be aligned with core zero. In
that case, lower-order cores skip fetch, and core-zero-aligned
fetch resumes on the next cycle.

On an i-cache miss, an eight-word block is (a) delivered
to the requesting core if it is operating independently, or
(b) distributed across all four cores in a fused configuration
to permit collective fetch. To support these two options,
we make i-caches reconfigurable along the lines of earlier
works [28]. Each i-cache has enough tags to organize its
data in two-word subblocks. When running independently,
four such subblocks and one tag make up a cache block.
When fused, cache blocks span all four i-caches, with each i-
cache holding one subblock and a replica of the cache block’s
tag. (How to dynamically switch from one i-cache mode to
the other is explained later in Section 3.) Figure 2 shows an
example of i-cache organization in a fusion group.

During collective fetch, it makes sense to replicate the i-
TLB across all cores in a fused configuration. Notice that
this would be accomplished “naturally” as cores miss on
their i-TLBs, however taking multiple i-TLB misses for a
single eight-instruction block is unnecessary, since the FMU
can be used to refill all i-TLBs upon a first i-TLB miss by
a core. The FMU is used to gang-invalidate i-TLB entries.

Branches and Subroutine Calls
Prediction. During collective fetch, each core accesses its
own branch predictor and BTB. Because collective fetch is
aligned, each branch instruction always accesses the same
branch predictor and BTB. Consequently, the effective branch
predictor and BTB capacity is four times as large. To ac-
complish maximum utilization while retaining simplicity, branch
predictor and BTB are indexed as shown in Figure 4 re-
gardless of the configuration. We empirically observe no
loss in prediction accuracy when using this “configuration-
oblivious” indexing scheme. Notice that branch predictor
and BTB entries remain meaningful across configurations
as a result of this indexing scheme.

Each core can handle up to one branch prediction per
cycle. PC redirection (predict-taken, mispredictions) is en-
abled by the FMU. Each cycle, every core that predicts a
taken branch, as well as every core that detects a branch

i-Cache 0

i-Cache 1

i-Cache 2

i-Cache 3

(a) Independent (b) Fused

2-word Subblock

Tag

Figure 2: Illustrative example of four i-caches organized

(a) independently or (b) fused. In independent mode, four

subblocks and one tag within each i-cache constitute a cache

block. In fused mode, a cache block spans four i-caches, each

i-cache being responsible for a subblock and a tag replica.

BTB

B
P

re
d

GHR

RAS

B

Core 0 Core 1 Core 2 Core 3

Figure 3: Example of aligned fetch in fused mode. In the

figure, cores squash overfetched instructions as they receive a

predict-taken notice from Core 2 with a two-cycle delay. The

new target starts at Core 1, and thus Core 0 skips the first

fetch cycle. Notice the banked branch predictor and BTB,

the replicated GHR, and the Core-0-managed RAS.

misprediction, sends the new target PC to the FMU. The
FMU selects the correct PC by giving priority to the oldest
misprediction-redirect PC first, and the youngest branch-
prediction PC last, and sends the selected PC to all fetch
units. Once the transfer of the new PC is complete, cores
use it to fetch from their own i-cache as explained above.

Naturally, on a misprediction, misspeculated instructions
are squashed in all cores. This is also the case for instruc-
tions “overfetched” along the not-taken path on a taken
branch, since the target PC will arrive with a delay of a
few cycles. In Figure 3, Core 2 predicts branch B to be
taken. After two cycles, all cores receive this prediction.
They squash overfetched instructions, and adjust their PC.
In the example, the target lands on Core 1, which makes
Core 0 skip the initial fetch cycle.

Global History. Because each core is responsible for a sub-
set of the branches in the program, having independent and
unco-ordinated history registers on each core may make it
impossible for the branch predictor to learn of their cor-
relation. To avert this situation, the GHR can be sim-
ply replicated across all cores, and updates be co-ordinated
through the FMU. Specifically, upon every branch predic-
tion, each core communicates its prediction–whether taken
or not taken–to the FMU. Additionally, as discussed, the
FMU receives nonspeculative updates from every back-end
upon branch mispredictions. The FMU communicates such
events to each core, which in turn update their GHR. Upon
nonspeculative updates, earlier (checkpointed) GHR con-
tents are recovered on each core. The fix-up mechanism em-
ployed to checkpoint and recover GHR contents can be along

188

Index

Tag (BTB Only)

Byte
t-2

i-1

Figure 4: Configuration-oblivious indexing utilized in

branch prediction and BTB. In the figure, i bits are used

for indexing and t for tagging (tagging only meaningful in

the BTB). Of course, i and t are generally not the same for

branch predictor and BTB. Because of aligned fetch, the two

tag bits sandwiched between index bits match the core num-

ber in the fused configuration.

the lines of the outstanding branch queue (OBQ) mechanism
in the Alpha 21264 microprocessor [21].

Return Address Stack. As the target PC of a subroutine
call is sent to all cores by the FMU (which flags the fact
that it is a subroutine call), core zero pushes the return ad-
dress into its RAS. When a return instruction is encountered
(possibly by a different core from the one that fetched the
subroutine call) and communicated to the FMU, core zero
pops its RAS and communicates the return address back
through the FMU. Notice that, since all RAS operations are
processed by core zero, the effective RAS size does not in-
crease when cores are fused. This is reasonable, however,
as call depth is a program property that is independent of
whether execution is taking place on an independent core or
on a fused configuration.

Handling Fetch Stalls
On a fetch stall by one core (e.g., i-cache miss, i-TLB miss,
fetching two branches), all fetch engines must also stall so
that correct fetch alignment is preserved. To accomplish
this, cores communicate stalls to the FMU, which in turn
informs the other cores. Because of the latency through the
FMU, it is possible that the other cores may overfetch, for
example if (a) on an i-cache or i-TLB miss, one of the other
cores does hit in its i-cache or i-TLB (unlikely in practice,
given how fused cores fetch), or (b) generally in the case
of two back-to-back branches fetched by the same core that
contend for the predictor (itself exceedingly unlikely). For-
tunately, the FMU latency is deterministic: Once all cores
have been informed (including the delinquent core) they all
discard at the same time any overfetched instruction (simi-
larly to the handling of a taken branch before) and resume
fetching in sync from the right PC—as if all fetch engines
had synchronized through a “fetch barrier.”

2.1.2 Collective Decode/Rename
After fetch, each core pre-decodes its instructions inde-

pendently. Subsequently, all instructions in the fetch group
need to be renamed and steered. (As in clustered architec-
tures, steering consumers to the same core as their producers
can improve performance by eliminating communication de-
lays.) Renaming and steering is achieved through a steering
management unit (SMU). The SMU consists of: a global
steering table to track the mapping of architectural registers
to any core; four free-lists for register allocation (one for
each core); four rename maps; and steering/renaming logic
(Figure 5). The steering table and the four rename maps
together allow up to four valid mappings of each architec-
tural register, and enable operands to be replicated across

GLOBAL RENAME MAP

C0

-

P1

P11

P19

-

P33

C1

-

P15

-

P25

-

-

C2

-

P39

P8

-

P4

P3

C3

P18

P0

P16

P5

-

P3

R0

R1

R2

R3

R4

R5

C1

P2

P5

P20

P21

P7

P9

P31

P15

C2C0

P4

P6

P18

P25

P1

P2

P10

P14

C3

FREE LISTS STEERING TABLE

0

1

0

1

0

0

0

1

1

0

1

1

1

1

1

1

0

1

0

1

1

1

0

1

R0

R1

R2

R3

R4

R5

C0 C1 C2 C3

Write Port &
Traverse
XBar Link

 Traverse
XBar Link

 Traverse
XBar Link &
Read Port

Steer Rename
Write Port &

Traverse
XBar Link

 Traverse
XBar Link

 Traverse
XBar Link &
Read Port

RENAME PIPELINE

Figure 5: Rename pipeline (top) and illustrative example

of SMU organization (bottom). R0 has a valid mapping in

core three, whereas R1 has four valid mappings (one in each

core). Only six architectural registers are shown.

multiple cores. Cores still retain their individual renaming
structures, but these are bypassed when cores are fused.

Figure 5 depicts the high level organization of the rename
pipeline. After pre-decode, each core sends up to two in-
structions to the SMU through a set of links. In our evalu-
ation, we assume a three-cycle communication delay to the
SMU over a repeated link (Section 4). Three cycles after
pre-decode, the SMU receives up to two instructions and six
architectural register specifiers (three per instruction) from
each core. After renaming and steering, it uses a second set
of links to dispatch no more than six physical register spec-
ifiers, two program instructions, and two copy instructions
to each core. (Copy instructions have a separate, dedicated
queue in each core (Section 2.2.1).) Restricting the SMU dis-
patch bandwidth in this way keeps the wiring overhead man-
ageable, lowers the number of required rename map ports,
and also helps achieve load balancing. In our evaluation
(Section 5), we accurately model the latency of the eight-
stage rename pipeline when running in fused mode, as well
as the SMU dispatch bandwidth restrictions.

The SMU uses the incoming architectural register speci-
fiers and the steering table to steer up to eight instructions
every pipeline cycle. Each instruction is assigned to one of
the cores via a modified version of dependence based steer-
ing [32] that guarantees that each core is assigned no more
than two instructions. Copy instructions are also created in
this cycle.

In the next cycle, instructions are renamed. Since each
core receives no more than two instructions and two copy
instructions, each rename map has only six read and six
write ports. The steering table requires sixteen read and six-
teen write ports (note that each steering table entry contains
only a single bit, and thus the overhead of multi-porting this
small table is relatively low). If a copy instruction cannot
be sent to a core due to bandwidth restrictions, renaming
stops at the offending instruction that cycle, and starts with
the same instruction next cycle, thereby draining crossbar
links and guaranteeing forward progress.

As in existing microprocessors, at commit time, any in-
struction that renames an architectural register releases the
physical register holding the prior value (now obsolete). This
is accomplished in core fusion easily, by having each ROB
send the register specifiers of committing instructions to the
SMU. Register replicas, on the other hand, can be disposed
of more aggressively, provided there is no pending consumer
instruction in the same core. (Notice that the “true” copy
is readily available in another core.) We employ a well-
known mechanism based on pending consumer counts [29,
30]. Naturally, the counters must be backed up on every
branch prediction. Luckily, in core fusion these are small:
four bits suffice to cover a core’s entire instruction window
(16 entries in our evaluation).

189

ROB 0 ROB 1 ROB 2 ROB 3

Pre-commit Head

Head

2clk

Figure 6: Simplified diagram of core fusion’s distributed

ROB. In the figure, ROB 1’s head instruction pair is not

ready to commit, which is communicated to the other ROBs.

Pre-commit and conventional heads are spaced so that the

message arrives just in time (2 clock cycles in the example).

Upon completion of ROB 1’s head instruction pair, a similar

message is propagated, again arriving just in time to retire

all four head instruction pairs in sync.

2.2 Back-end
Each core’s back-end is essentially quite typical: separate

floating-point and integer issue queues, a physical register
file, functional units, load/store queues, and a ROB. Each
core has a private L1 d-cache. L1 d-caches are connected via
a split-transaction bus and are kept coherent via a MESI-
based protocol. When cores get fused, back-end structures
are co-ordinated to form a large virtual back-end capable
of consuming instructions at a rate of eight instructions per
cycle.

2.2.1 Collective Execution

Operand Crossbar
To support operand communication, a copy-out and a copy-
in queue are added to each core. Copy instructions wait in
the copy-out queue for their operands to become available,
and once issued, they transfer their source operand and des-
tination physical register specifier to a remote core. The
operand crossbar is capable of supporting two copy instruc-
tions per core, per cycle. In addition to copy instructions,
loads use the operand crossbar to deliver values to their
destination register (Section 2.2.2). In our evaluation (Sec-
tion 5), we accurately model latency and contention for the
operand crossbar, and quantify its impact on performance.

Wake-up and Selection
When copy instructions reach the consumer core, they are
placed in a FIFO copy-in queue. Each cycle, the sched-
uler considers the two copy instructions at the head, along
with the instructions in the conventional issue queue. Once
issued, copies wake up their dependent instructions and up-
date the physical register file, just as regular instructions
do.

Reorder Buffer and Commit Support
Fused in-order retirement requires co-ordinating four ROBs
to commit in lockstep up to eight instructions per cycle. In-
structions allocate ROB entries locally at the end of fetch. If
the fetch group contains less than eight instructions, NOPs
are allocated at the appropriate cores to guarantee align-
ment (Section 5.1.1 quantifies the impact that these “ROB
bubbles” have on performance). Of course, on a pipeline
bubble, no ROB entries are allocated.

When commit is not blocked, each core commits two in-
structions from the oldest fetch group every cycle. When
one of the ROBs is blocked, all other cores must also stop

committing on time to ensure that fetch blocks are com-
mitted atomically in order. This is accomplished by ex-
changing stall/resume signals across ROBs. To accommo-
date the inevitable (but deterministic) communication delay,
each ROB is extended with a pre-commit head pointer in ad-
dition to the conventional head and tail pointers (Figure 6).
Instructions always pass through the pre-commit head be-
fore they reach the actual ROB head and commit. Instruc-
tions that are not ready to commit by the time they reach
the pre-commit head stall immediately, and send a “stall”
signal to all other cores. Later, as they become ready, they
move past the pre-commit head, and send a “resume” sig-
nal to the other cores. The number of ROB entries between
the pre-commit head pointer and the actual head pointer
is enough to cover the communication latency across cores.
This guarantees that ROB stall/resume always take effect in
a timely manner, enabling lockstep in-order commit. In our
experiments (Section 5), we set the communication latency
to two cycles, and consequently the actual head is separated
from the pre-commit head by four instruction slots on each
core at all times.

2.2.2 Load/Store Queue Organization
Our scheme for handling loads and stores is conceptually

similar to clustered architectures [4, 10, 19, 26, 41]. How-
ever, while most proposals in clustered architectures choose
a centralized L1 data cache or distribute it based on bank as-
signment, we keep the private nature of L1 caches, requiring
only minimal modifications to the CMP cache subsystem.

Instead, in fused mode, we adopt a banked-by-address
load-store queue (LSQ) implementation. This allows us to
keep data coherent without requiring cache flushes after dy-
namic reconfiguration, and to support elegantly store for-
warding and speculative loads. The core that issues each
load/store to the memory system is determined based on ef-
fective addresses. The two bits that follow the block offset in
the effective address are used as the LSQ bank-ID to select
one of the four cores, and enough index bits to cover the L1
cache are allocated from the remaining bits. The rest of the
effective address and the bank-ID are stored as a tag. Mak-
ing the bank-ID bits part of the tag is important to properly
disambiguate cache lines regardless of the configuration.

Effective addresses for loads and stores are generally not
known at the time they are renamed. This raises a problem,
since at rename time memory operations need to allocate
LSQ entries from the core that will eventually issue them
to the memory system. We attack this problem through
LSQ bank prediction [4, 6]. Upon pre-decoding loads and
stores, each core accesses its bank predictor by using the
lower bits of the load/store PC. Bank predictions are sent
to the SMU, and the SMU steers each load and store to
the predicted core. Each core allocates load queue entries
for the loads it receives. On stores, the SMU also signals
all cores to allocate dummy store queue entries regardless
of the bank prediction. Dummy store queue entries guar-
antee in-order commit for store instructions by reserving
place-holders across all banks for store bank mispredictions.
Upon effective address calculation, remote cores with su-
perfluous store queue dummies are signaled to discard their
entries (recycling these entries requires a collapsing LSQ im-
plementation). If a bank misprediction is detected, the store
is sent to the correct queue. Of course, these messages incur
delays, which we model accurately in our experiments.

In the case of loads, if a bank misprediction is detected,
the load queue entry is recycled (LSQ collapse) and the load
is sent to the correct core. There, it allocates a load queue
entry and resolves its memory dependences locally. Notice
that, as a consequence of bank mispredictions, loads can al-
locate entries in the load queues out of program order. For-
tunately, this is not a problem, because load queue entries
are typically tagged by instruction age. However, there is a
danger of deadlock in cases where the mispredicted load is
older than all other loads in its (correct) bank and the load
queue is full at the time the load arrives at the consumer

190

core. To prevent this situation, loads search the load queue
for older instructions when they cannot allocate entries. If
no such entry is found, a replay trap is taken, and the load
is steered to the right core. Otherwise, the load is buffered
until a free load queue entry becomes available.

Address banking of the LSQ also facilitates load specula-
tion and store forwarding. Since any load instruction is free
of bank mispredictions at the time it issues to the memory
system, loads and stores to the same address are guaranteed
to be processed by the same core.

Moreover, because fetch is aligned in all cases, we can
easily leverage per-core load wait tables (LWT) [21] along
the lines of the Alpha 21264. At the time a load is fetched,
if the load’s LWT entry bit is set, the load will be forced to
wait until all older stores in its (final) core have executed
(and all older dummy store queue entries in that core have
been dealt with).1

When running parallel applications, memory consistency
must be enforced regardless of the configuration. We as-
sume relaxed consistency models where special primitives
like memory fences (weak consistency) or acquire/release
operations (release consistency) enforce ordering constraints
on ordinary memory operations. Without loss of generality,
we discuss the operation of memory fences below. Acquire
and release operations are handled similarly.

For the correct functioning of synchronization primitives
in fused mode, fences must be made visible to all load/store
queues. We achieve this by dispatching these operations
to all the queues, but having only the copy in the correct
queue perform the actual synchronization operation. The
fence is considered complete once each one of the local fences
completes locally and all memory operations preceding each
fence commit. Local fence completion is signaled to all cores
through a one-bit interface in the portion of the operand
crossbar that connects the load-store queues.

3. DYNAMIC RECONFIGURATION
Our discussion thus far explains the operation of the cores

in a static fashion. This alone may improve performance sig-
nificantly, by choosing the CMP configuration most suitable
for a particular workload. However, support for dynamic re-
configuration to respond to software changes (e.g., dynamic
multiprogrammed environments or serial/parallel regions in
a partially parallelized application) can greatly improve ver-
satility, and thus performance.

In general, we envision run-time reconfiguration enabled
through a simple application interface. The application re-
quests core fusion/split actions through a pair of FUSE and
SPLIT ISA instructions, respectively. In most cases, these
requests can be readily encapsulated in conventional paral-
lelizing macros or directives. FUSE and SPLIT instructions
are executed conditionally by hardware, based on the value
of an OS-visible control register that indicates which cores
within a fusion group are eligible for fusion. To enable core
fusion, the OS allocates either two or four of the cores in
a fusion group to the application when the application is
context-switched in, and annotates the group’s control reg-
ister. If, at the time of a FUSE request, fusion is not possible
(e.g., in cases where another application is running on the

1
We prefer LWT’s simplicity over a store set predictor solution [9, 14].

Nevertheless, load speculation in core fusion can also be implemented
using store set predictors [14], with a few changes that we briefly
outline here: (1) The predictor’s smaller table (the LFST [14]) resides
in the SMU; the significantly larger [14] per-core SSITs are effectively
“merged,” simply by virtue of aligned fetch. (2) Memory operations
predicted dependent on a store are initially steered to the same core
as that store, overriding the bank predictor. To accomplish this,
LFST entries provide the bank ID to which the predicted-dependent
instruction should be steered. (3) On a bank misprediction by a
store, the LFST entry’s bank ID (assuming it still contains the store’s
inum [14]) is updated appropriately. A few cycles after sending the
update to the LFST (to allow for loads in flight from the SMU to
arrive), the store “liberates” any memory operation that was flagged
as dependent and steered to the same core.

Two-issue Processor Parameters
Frequency 4.0 GHz

Fetch/issue/commit 2/2/2
Int/FP/AGU/Br Units 1/1/1/1

Int/FP Multipliers 1/1
Int/FP issue queues 16/16

Copy-In/Copy-Out queues 16/16
ROB entries 48

Int/FP registers 32+40 / 32+40 (Arch.+Ren.)
Ld/St queue entries 12/12

Bank predictor 2048 entries
Max. br. pred. rate 1 taken/cycle
Max. unresolved br. 12

Br. penalty 7 cycles min. (14 when fused)
Br. predictor Alpha 21264
RAS entries 32
BTB size 512 entries, 8-way

iL1/dL1 size 16 kB
iL1/dL1 block size 32B/32B
iL1/dL1 round-trip 2/3 cycles (uncontended)

iL1/dL1 ports 1 / 2
iL1/dL1 MSHR entries 8
iL1/dL1 associativity DM/4-way
Coherence protocol MESI

Memory Disambiguation Perfect
Consistency model Release consistency

Table 1: Two-issue Processor Parameters.

Shared Memory Subsystem
System bus transfer rate 32GB/s

Shared L2 4MB, 64B block size
Shared L2 associativity 8-way

Shared L2 banks 16
L2 MSHR entries 16/bank

L2 round-trip 32 cycles (uncontended)
Memory access latency 328 cycles (uncontended)

Table 2: Parameters of the shared memory subsystem.

other cores), the request is simply ignored. This is possi-
ble because core fusion provides the same execution model
regardless of the configuration.

We now explain FUSE and SPLIT operations in the con-
text of alternating serial/parallel regions of a partially par-
allelized application that follows a fork/join model (typical
of OpenMP). Other uses of these or other primitives (pos-
sibly involving OS scheduling decisions) are left for future
work.

FUSE operation. After completion of a parallel region,
the application may request cores to be fused to execute the
upcoming sequential region. (Cores need not get fused on
every parallel-to-sequential region boundary: if the sequen-
tial region is not long enough to amortize the cost of fusion,
execution can continue without reconfiguration on one of
the small cores.) If fusion is not allowed at this time, the
FUSE instruction is turned into a NOP, and execution con-
tinues uninterrupted. Otherwise, all instructions following
the FUSE instruction are flushed; the i-caches are flushed;
the FMU, SMU, and the i-caches are reconfigured; and the
rename map on the core that commits the FUSE instruc-
tion is transferred to the SMU. Data caches do not need
any special actions to be taken upon reconfigurations: the
coherence protocol naturally ensures correctness across con-
figuration changes. Finally, the FMU signals the i-caches to
start fetching in fused mode from the instruction that fol-
lows the FUSE instruction in program order.

SPLIT operation. The application advises the fused group
of an upcoming parallel region using a SPLIT instruction.
When the SPLIT instruction commits, in-flight instructions
are allowed to drain, and enough copy instructions are gener-
ated to gather the architectural state into core zero’s physi-
cal register file. When the transfer is complete, the FMU and
SMU are reconfigured, and core zero starts fetching from the
instruction that follows the SPLIT in program order. The
other cores remain available to the application (although the
OS may re-allocate them at any time after this point).

191

CMP Configuration Composition (Cores)
CoreFusion 8x2-issue
FineGrain-2i 9x2-issue

CoarseGrain-4i 4x4-issue
CoarseGrain-6i 2x6-issue
Asymmetric-4i 1x4-issue + 6x2-issue
Asymmetric-6i 1x6-issue + 4x2-issue

Table 3: Composition of the evaluated CMP architectures.

4. EXPERIMENTAL SETUP
4.1 Architecture

We evaluate the performance potential of core fusion by
comparing it against five static homogeneous and asymmet-
ric CMP architectures. As building blocks for these systems,
we use two-, four-, and six-issue out-of-order cores. Table 1
shows the microarchitectural configuration of the two-issue
cores in our experiments. Four- and six-issue cores have
two and three times the amount of resources as each one
of the two-issue cores, respectively, except that first level
caches, branch predictor, and BTB are four times as large
in the six-issue core (the sizes of these structures are typ-
ically powers of two). Across different configurations, we
always maintain the same parameters for the shared por-
tion of the memory subsystem (system bus and lower levels
of the memory hierarchy). All configurations are clocked
at the same speed. We model wake-up and selection delays
in the two-issue core to be one cycle each, and extrapolate
delays for four- and six-issue cores to be 2-2 and 3-2, re-
spectively, using trends presented in the literature [32]. Our
experiments are conducted using a detailed, heavily mod-
ified version of the SESC [35] simulator. Contention and
latency are modeled at all levels. In fused mode, this in-
cludes two-cycle wire delays for cross-core communication
across fetch, operand and commit wiring, the additional la-
tency due to the eight-stage rename pipeline, and contention
for SMU dispatch ports. (We explain later how we derive
cross-core communication latencies.) For dynamic reconfig-
uration, we model a 400-cycle reconfiguration overhead in
addition to draining the pipelines.

Since we explore an inherently area-constrained design
space, choosing the right number of large and small cores
requires estimating their relative areas. Prior work [24, 23,
31, 32] shows that the area overheads of key microarchi-
tectural resources scale superlinearly with respect to issue
width in monolithic cores. Burns et al. [8] estimate the area
requirements of out-of-order processors by inspecting layout
from the MIPS R10000 and from custom layout blocks, find-
ing that four- and six-issue cores require roughly 1.9 and 3.5
times the area of a two-issue core, respectively, even when
assuming clustered register files, issue queues, and rename
maps, which greatly reduce the area penalty of implement-
ing large SRAM arrays.2 Recall also that our six-issue base-
line’s first level caches and branch predictor are four times as
large as those of a two-issue core. Consequently, we model
the area requirements of our four- and six-issue baselines to
be two and four times higher than a two-issue core, respec-
tively.3

We estimate the area overhead of core fusion additions
conservatively, assuming that no logic is laid out under the
metal layer for cross-core wiring. Specifically, we use the
wiring area estimation methodology described in [25], as-
suming a 65nm technology and Metal-4 wiring with a 280nm
wire pitch [17]. Accordingly, we find the area for fetch wiring
(92 bits/link) to be 0.32mm2, the area for rename wiring

2
Note that, when all resources are scaled linearly, monolithic register

files grow as O(w3), where w is the issue width. This is due to the
increase in the number of bit lines and word lines per SRAM cell,
times the increase in physical register count.
3
We also experimented with an eight-issue clustered core (optimisti-

cally assumed to be area-equivalent to the six-issue core), but found
its performance to be inferior. Consequently, we chose the six-issue
monolithic core as our baseline.

Data Mining Description Problem size
BSOM Self-organizing map 2,048 rec., 100 epochs
BLAST Protein matching 12.3k sequences

KMEANS K-means clustering 18k pts., 18 attributes
SCALPARC Decision Tree 125k pts., 32 attributes

FIMI Itemset Mining 1M trans., 1.3% support
SPEC OpenMP

SWIM-OMP Shallow water model MinneSpec-Large
EQUAKE-OMP Earthquake model MinneSpec-Large
NAS OpenMP

MG Multigrid Solver Class A
CG Conjugate Gradient Class A

Splash2
BARNES Evolution of galaxies 16k particles

FMM N-body problem 16k particles
RAYTRACE 3D ray tracing car

Table 4: Simulated parallel applications and their input
sizes.

(250 bits/link) to be 0.99mm2, and the area for the operand
crossbar (80 bits / link) to be 1.90mm2. The area of the
commit wiring is negligible, as it is two bits wide. This
yields a total area overhead of 3.21mm2 for fusing a group
of four cores, or 6.42mm2 for our eight-core CMP. Using
CACTI 3.2, we also estimate the total area overhead of the
SMU, the extra i-cache tags, copy-in/copy-out queues, and
bank predictors (four bank predictors, one per core) to be
0.48, 0.25, 0.15, and 0.23mm2 per fusion group, respectively,
for a total of 2.22mm2 for the entire chip. Adding these to
the wiring estimates, we find the total area overhead of core
fusion to be 8.64mm2. Even for a relatively small, non-
reticle-limited, 200mm2 die that devotes half of the area to
the implementation of the cores, this overhead represents
a little over two thirds of the area of one core. Hence, we
conservatively assume the area overhead to be equal to one
core.

We estimate the latency of our cross-core wiring additions
conservatively, assuming that cores are laid out in a worst-
case organization that maximizes cross-core communication
delays. We assume that each group of four cores in our
eight-core CMP must communicate over a distance equal to
one half of the chip edge length. Assuming a 65nm technol-
ogy, a 4GHz clock, and 50ps/mm Metal-4 wire delay [17], we
find that it is possible to propagate signals over a distance
of 5mm in one cycle. Even for a relatively large, reticle-
limited, 400mm2 die with a worst-case floorplan, this repre-
sents a two-cycle cross-core communication latency. While
these delays are likely to be lower for a carefully organized
floorplan [25] or for smaller dice, we conservatively model
fetch, operand, and commit communication latencies to be
equal to two cycles, and due to its wider links, we set the
latency of the rename communication to three cycles (which
makes the rename pipeline add up to eight cycles).

Table 3 details the number and type of cores used in
our studies for all architectures we model. Our core-fusion-
enabled CMP consists of eight two-issue cores. Two groups
of four cores can each be fused to synthesize two large cores
on demand. For our coarse-grain CMP baselines, we experi-
ment with a CMP consisting of two six-issue cores (CoarseGrain-
6i) and another coarse-grain CMP consisting of four four-
issue cores (CoarseGrain-4i). We also model an asymmetric
CMP with one six-issue and four two-issue cores (Asymmetric-
6i), and another asymmetric CMP with one four-issue and
six two-issue cores (Asymmetric-4i). Finally, we model a
fine-grain CMP with nine two-issue cores (FineGrain-2i).
The ninth core is added to compensate for any optimism in
the area estimates for six- and four-issue cores, and for the
area overhead of core fusion. We have verified that all the
parallel applications in the paper use this ninth core effec-
tively.

4.2 Applications
We evaluate our proposal by conducting simulations on

parallel, evolving parallel, and sequential workloads. Our

192

bzip2 crafty gcc mcf parser perlbmk twolf vortex vpr g−mean
1

1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9

2

 S
pe

ed
up

 O
ve

r
T

w
o−

is
su

e

2.224
Two−isue
Four−issue
CoreFusion
Six−issue

applu apsi art equake mesa mgrid swim wupwise g−mean
1

1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9

2

 S
pe

ed
up

 O
ve

r
T

w
o−

is
su

e

Two−isue
Four−issue
CoreFusion
Six−issue

Figure 7: Speedup over FineGrain-2i when executing SPECINT (left) and SPECFP (right) benchmarks.

parallel workloads represent a mix of scalable scientific ap-
plications (three applications from the Splash-2 suite [39],
two applications from the SPEC OpenMP suite [2], plus
two parallel NAS benchmarks), and five parallelized data
mining applications [1, 27, 34]. The input sets we use are
listed in Table 4.

Our sequential workloads comprise nine integer and eight
floating point applications from the SPEC2000 suite [20].
We use the MinneSpec reduced input sets [22]. In all cases,
we skip the initialization parts and then simulate the appli-
cations to completion.4

We derive our evolving workloads from existing applica-
tions by following a methodology that aims at mimicking an
actual incremental parallelization process. Specifically, we
use Swim-OMP and Equake-OMP from the SPEC OpenMP
suite, and MG from the OpenMP version of the NAS bench-
marks to synthesize our evolving workloads. These applica-
tions contain multiple parallel regions that exploit loop-level
parallelism [2]. We emulate the incremental parallelization
process by gradually transforming sequential regions into
parallel regions, obtaining more mature versions of the code
at each turn. To do this, we first run each application in
single-threaded mode and profile the run times of all re-
gions in the program. We then create an initial version of
the application by turning on the parallelization for the most
significant region while keeping all other regions sequential.
We repeat this process until we reach the fully parallelized
version, turning on the parallelization of the next significant
region at each step along the process.

5. EVALUATION

5.1 Sequential Application Performance
Figure 7 shows speedups with respect to FineGrain-2i

on SPEC 2000 applications. As expected, the results in-
dicate that wide-issue cores have significant performance
advantages on sequential codes. Configurations with a six-
issue monolithic core obtain average speedups of 73% and
47% on floating-point and integer benchmarks, respectively.
(Speedups on floating-point benchmarks are typically higher
due to higher levels of ILP present in these applications.)
Configurations that employ a four-issue core observe aver-
age speedups of 35% and 27% on floating-point and integer-
benchmarks, respectively. Core fusion improves performance
over the fine-grain CMP by up to 81% on floating-point ap-
plications, with an average of 50%. On integer applications,
up to 79% speedup improvements are obtained, with an av-
erage speedup of 30%.

In summary, when running sequential applications, the
monolithic six-issue core performs best, and is followed by
CoreFusion’s fused core. FineGrain-2i is the worst architec-
ture for this class of workloads. While core fusion enjoys a
high core count to extract TLP, it can aggressively exploit
ILP on single-threaded applications by adopting a fused con-
figuration.

4
Our simulation infrastructure currently does not support the other

SPEC benchmarks.

5.1.1 Performance Analysis
In this section, we analyze and quantify the performance

overhead of cross-core communication delays. We also in-
vestigate the efficacy of our distributed ROB and LSQ im-
plementations.

Distributed Fetch. Our fused front-end communicates
taken branches across the FMU. Consequently, while a mono-
lithic core could redirect fetch in the cycle following a predicted-
taken branch, core fusion takes two additional cycles. Fig-
ure 8 shows the speedups obtained when the fused front-
end is idealized by setting the FMU communication latency
to zero. The performance impact of the FMU delay is
less than 3% on all benchmarks except vpr, indicating that
there is significant slack between the fused front- and back-
ends. Figure 9 illustrates this point by showing a break-
down of front-end activity for realistic (R) and idealized (I)
FMU delays, as well as our six-issue monolithic baseline (6i).
On memory-intensive floating-point applications, the fused
front-end spends 33-92% of its time waiting for the back-end
to catch up, and 10% of its time stalling for FMU communi-
cation on average. On integer codes, 10-29% of the front-end
time is spent stalling for FMU communication, but remov-
ing this delay does not necessarily help performance: once
the FMU delay is removed, the idealized front-end simply
spends a commensurately higher portion of its total time
waiting for the fused back-end. Overall, performance is rel-
atively insensitive to the FMU delay.

SMU and the Rename Pipeline. Figure 8 shows the
speedups obtained when pipeline depth and the SMU are
idealized (by reducing the eight-stage rename pipe to a sin-
gle stage, and allowing the SMU to dispatch an arbitrary
number of instructions to each core, respectively). Depend-
ing on the application, the longer rename pipeline results in
performance losses under 5%, with an average of less than
1%. While fusion increases the branch misprediction penalty
from seven to fourteen cycles, both the branch predictor
and the BTB are four times as large in fused mode, de-
creasing misprediction rates and lowering sensitivity to pipe
depth. The performance impact of restricted SMU band-
width is more pronounced, and ranges from 0-7%, with an
average of 3%. However, considering the wiring overheads
involved, and the impact on the two-issue base cores, these
performance improvements do not warrant an implementa-
tion with higher dispatch bandwidth.

Operand Crossbar. Figure 8 shows the speedups achieved
by an idealized operand crossbar with zero-cycle latency.
Unlike communication delays incurred in the front-end of the
machine, the latency of the operand crossbar affects perfor-
mance noticably, resulting in up to 18% performance losses,
with averages of 13% and 9% on integer and floating point
applications, respectively. Sensitivity is higher on integer
codes compared to floating-point codes: the latter are typ-
ically characterized by high levels of ILP, which helps hide
the latency of operand communication by executing instruc-
tions from different dependence chains.

Distributed ROB and LSQ. Inevitably, core fusion’s dis-
tributed ROB and LSQ organizations suffer from inefficien-

193

bzip2 crafty gcc mcf parser perlbmk twolf vortex vpr g−mean
0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

 S
pe

ed
up

 O
ve

r
C

or
eF

us
io

n

CoreFusion
CF−Ideal FMU
CF−Ideal Pipe Depth
CF−Ideal Dispatch BW
CF−Ideal Operand Xbar
CF−Centralized ROB&LSQ

applu apsi art equake mesa mgrid swim wupwise g−mean
0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

 S
pe

ed
up

 O
ve

r
C

or
eF

us
io

n

1.455CoreFusion
CF−Ideal FMU
CF−Ideal Pipe Depth
CF−Ideal Dispatch BW
CF−Ideal Operand Xbar
CF−Centralized ROB&LSQ

Figure 8: Speedups obtained when the FMU latency, rename pipeline depth, SMU dispatch bandwidth, operand
crossbar delay, or the distributed ROB/LSQ are idealized.

6i R I 6i R I 6i R I 6i R I 6i R I 6i R I 6i R I 6i R I 6i R I
0

10
20
30
40
50
60
70
80
90

100

 F
et

ch
 C

yc
le

s
(%

)

bzip2 crafty gcc mcf parser perlbmk twolf vortex vpr

Pipeline stall Wrong path FMU stall True fetch

6i R I 6i R I 6i R I 6i R I 6i R I 6i R I 6i R I 6i R I
0

10
20
30
40
50
60
70
80
90

100

 F
et

ch
 C

yc
le

s
(%

)

applu apsi art equake mesa mgrid swim wupwise

Pipeline stall Wrong path FMU stall True fetch

Figure 9: Distribution of fetch cycles on SPECINT (left) and SPECFP (right) benchmarks. 6i, R, and I denote
our six-issue monolithic baseline, a realistic fused front-end with a two-cycle FMU delay, and an idealized fused
front-end with no FMU delay, respectively.

art/equake art/swim art/twolf equake/bzip2 mcf/bzip2 swim/equake swim/parser twolf/bzip2 twolf/parser g−mean

1
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9

2

2.1

 S
pe

ed
up

 O
ve

r
F

in
eG

ra
in
−

2i

FineGrain−2i Asymmetric−4i Asymmetric−6i CoarseGrain−4i CoreFusion CoarseGrain−6i

Figure 10: Speedup over FineGrain-2i when executing
two sequential applications simultaneously.

cies that would be absent from a monolithic implementation
(e.g., NOP insertion for aligned ROB allocation, and dummy
entry allocation in the LSQ). Figure 8 show that eliminating
these inefficiencies improves performance by 7 and 23% over
core fusion on integer and floating point codes, respectively.
Along with the latency of the operand communication, this
reduction in effective LSQ and ROB sizes has the highest
impact on core fusion’s performance.

5.1.2 Desktop Workload Performance
One potential shortcoming of ACMP designs is that they

may not accommodate well more sequential codes than the
number of large cores on the die. For example: In a desktop
environment, Asymmetric-4i and -6i will readily accommo-
date one sequential program on the large core. However, if
the desktop runs two such programs, Asymmetric-4i and -6i
will necessarily have to allocate a weak core to one of the
programs. In contrast, CoreFusion will be able to synthesize
two large cores to accommodate both programs in this en-
vironment. (In environments with a relatively large number
of concurrent programs, we expect the relative performance
of the different CMP designs to be along the lines of the
results for parallel software (Section 5.2)).

We would like to assess how Asymmetric-4i and -6i would
stack up against CoreFusion’s hardware flexibility in this
environment. Intuitively, we expect Asymmetric-6i to per-
form competitively, since the monolithic 6-issue core gen-
erally outperforms CoreFusion’s largest core configuration
(Section 5.1).

We derive our desktop workloads from the SPEC2000
suite [20]. We classify applications as high- and low-ILP

benchmarks based on how much speedup they obtain in go-
ing from a two-issue core to four- and six-issue cores. We
then use these classifications to guide our workload construc-
tion process. We set the degree of multiprogramming to two
applications, and we form a total of nine workloads with
different ILP characteristics: high-ILP workloads, low-ILP
workloads, and mixed (both high and low ILP) workloads.
We conduct preliminary experiments using a static oracle
scheduler, as well as a published dynamic scheduler [24],
and find the static scheduler to perform equally well or bet-
ter for all our desktop workloads. Thus, we use the oracle
scheduler in our evaluation.

Figure 10 shows the results. Once again, CoreFusion is
closest in performance to the optimum static CMP config-
uration for this type of workload (CoarseGrain-6i). And
indeed, Asymmetric-6i’s performance is closely behind Core-
Fusion’s. We will see shortly, however, that CoreFusion
significantly outperforms Asymmetric-6i in the experiments
with parallel and evolving software (Section 5.2 and 5.3,
respectively). This is indicative of CoreFusion’s overall su-
perior flexibility across a diverse set of workload environ-
ments. Finally, the results for Asymmetric-4i indicate that
the ACMP is clearly inferior to CoreFusion’s ability to syn-
thesize two large eight-issue cores to accommodate both pro-
grams.

5.2 Parallel Application Performance
Figure 11 compares the performance of core fusion against

our baseline CMP configurations on parallel workloads. Re-
sults are normalized to the performance of single-threaded
runs on FineGrain-2i. As expected, on scalable parallel ap-
plications, maximizing the number of cores leads to signifi-
cant performance improvements. The fine-grain CMP per-
forms best on this class of applications due to its higher
number of cores that allows it to aggressively harness TLP.
FineGrain-2i is followed closely by CoreFusion, which has
one fewer core due to its area overheads. Coarse-grain and
asymmetric designs sacrifice parallel application performance
significantly to improve single-thread performance. These
architectures are forced to trade off TLP for ILP by their
static nature, while CoreFusion aims to synthesize the right
ILP/TLP balance based on workload needs.

194

barnes fmm raytrace equake swim cg mg blast bsom fimi kmeans scalparc g−mean
1

2

3

4

5

6

7

8

9

10

 S
pe

ed
up

 O
ve

r
F

in
eG

ra
in
−

2i

CoarseGrain−6i CoarseGrain−4i Asymmetric−6i Asymmetric−4i CoreFusion FineGrain−2i

Figure 11: Speedup over single-thread run on
FineGrain-2i when executing parallel applications.

5.3 Evolving Application Performance
Figure 12 compares the performance of all six CMP con-

figurations on our evolving workloads. Each graph shows
the speedups obtained by each architecture as applications
evolve from sequential (stage zero) to highly parallel (last
stage). Results are normalized to a sequential run of the
application on FineGrain-2i. When running on the asym-
metric CMPs, we schedule the master thread on the large
core so that sequential regions are sped up. Parallel regions
are executed on all cores.5 We evaluate our proposal by ap-
plying dynamic core fusion to fuse/split cores when running
sequential/parallel regions, respectively.

When applications are not parallelized (stage zero), ex-
ploiting ILP is crucial to obtaining high performance. As
a result, coarse-grain CMPs, asymmetric CMPs and Core-
Fusion all enjoy speedups over the fine-grain CMP. In this
regime, performance is strictly a function of the largest core
on the chip. CoreFusion outperforms all but the six-issue
configurations, due to its ability to exploit high levels of
ILP.

In the intermediate stages, significant portions of the ap-
plications are still sequential, and exploiting ILP is still
crucial for getting optimum performance. Asymmetric-6i’s
monolithic core marginally outperforms CoreFusion’s fused
core, but as a result of dynamic fusion and fission, CoreFu-
sion enjoys a higher core count on parallel regions, thereby
exploiting higher levels of TLP. Asymmetric-4i has two more
cores than Asymmetric-6i, but the application does not yet
support enough TLP to cover the performance hit with re-
spect to Asymmetric-6i’s six-issue core on sequential regions.
Because of the scarcity of TLP in this evolutionary stage,
FineGrain-2i performs worst among all architectures.

Eventually, enough effort is expended in parallelization
to convert each program into a highly parallel application.
In MG, performance is determined strictly by core count.
FineGrain-2i obtains the best speedup (6.7), followed im-
mediately by CoreFusion (6.5). Architectures that invest
in ILP (Asymmetric-6i and CoarseGrain-6i) take a signifi-
cant performance hit (speedups of 4.5 and 2.7, respectively).
In Swim-OMP and Equake-OMP, CoreFusion still performs
the best, followed closely by the fine-grain CMP. This is be-
cause these applications, even at this parallelization stage,
have sequential regions, on which CoreFusion outperforms
FineGrain-2i through dynamic fusion. Note, however, that
statically allocating a large core to obtain speedup on these
regions does not pay off, as evidenced by the lower perfor-
mance of Asymmetric-4i and -6i compared to CoreFusion.
Attempting to exploit ILP in these regions is worthwhile
only if it does not adversely affect the exploitation of TLP.

In summary, performance differences between the best
and the worst architectures at any parallelization stage are
high, and moreover, the best architecture at one end of the
evolutionary spectrum performs worst at the other end. As
applications evolve through the incremental parallelization
process, performance improves on all applications. Through-
out this evolution, CoreFusion is the only architecture that

5
We also experimented with running parallel regions on small cores

only, but found that the results were inferior.

consistently performs the best or rides close to the best con-
figuration. While all static architectures get “stuck” at some
(different) point along the incremental parallelization pro-
cess, core fusion adapts to the changing demands of the
evolving application and obtains significantly higher over-
all performance.

6. RELATED WORK
6.1 Reconfigurable Architectures

Smart memories [28] is a reconfigurable architecture ca-
pable of merging in-order RISC cores to form a VLIW ma-
chine. The two configurations are not ISA-compatible, and
the VLIW configuration requires specialized compiler sup-
port. In contrast, core fusion merges out-of-order cores while
remaining transparent to the ISA, and it does not require
specialized compiler support. Voltron [40] is a multicore ar-
chitecture that can exploit hybrid forms of parallelism by
organizing its cores as a wide VLIW machine. Voltron’s
VLIW configuration relies on specialized compiler support.

TRIPS [37] is a pioneer reconfigurable computing paradigm
that aims to meet the demands of a diverse set of applica-
tions by splitting ultra-large cores. TRIPS and core fusion
represent two very different visions toward achieving a sim-
ilar goal. In particular, TRIPS opts to implement a custom
ISA and microarchitecture, and relies heavily on compiler
support for scheduling instructions to extract ILP. Core fu-
sion, on the other hand, favors leveraging mature microar-
chitecture technology and existing ISAs, and does not re-
quire specialized compiler support.

6.2 Clustered Architectures
Core fusion borrows from some of the mechanisms devel-

oped in the context of clustered architectures [4, 5, 7, 10,
11, 13, 18, 32, 41]. Our proposal is closest to the recent
thrust in clustered multithreaded processors (CMT) [15, 16,
26]. In this section, we give an overview of the designs that
are most relevant to our work, and highlight the limitations
that preclude these earlier proposals from supporting work-
load diversity effectively. Table 5 provides an outline of our
discussion.

El-Moursy et al. [16] consider several alternatives for par-
titioning multithreaded processors. Among them, the clos-
est one to our proposal is a CMP that comprises multi-
ple clustered multithreaded cores (CMP-CMT). The authors
evaluate this design with both shared and private L1 data
cache banks, finding that restricting the sharing of banks is
critical for obtaining high performance with multiple inde-
pendent threads. However, the memory system is not re-
configurable; in particular, there is no mechanism for merg-
ing independent cache banks when running sequential code.
Consequently, sequential regions/applications can exploit only
a fraction of the L1 data cache and load/store queues on a
given core. Similarly, each thread is assigned its own ROB,
and these ROBs cannot be merged. Finally, neither coher-
ence nor memory consistency issues are considered.

Latorre et al. [26] propose a CMT design with multiple
front- and back-ends, where the number of back-ends as-
signed to each front-end can be changed at runtime. Each
front-end can fetch from only a single thread, and front-ends
cannot be merged or reconfigured. When running a single
thread, only one of these front-ends is active. As a result,
each front-end has to be large enough to support multiple
(potentially all) back-ends, and this replication results in sig-
nificant area overheads (each front-end supports four-wide
fetch, has a 512-entry ROB, a 32k-entry branch predictor,
a 1k-entry i-TLB and a trace cache with 32k micro-ops).
Stores allocate entries on all back-ends, and these entries
are not recycled. This requires the store queue in each back-
end to be large enough to accommodate all of the thread’s
uncommitted stores.

Collins et al. [15] explore four alternatives for cluster-
ing SMT processors. Among them, the most relevant to

195

stage0 stage1 stage2 stage3
1

2

3

4

5

6

7
 S

pe
ed

up
 O

ve
r

S
ta

ge
 Z

er
o

R
un

 o
n

F
in

eG
ra

in
2i

Evolving Application Performance (MG)

FineGrain 2i
Core Fusion
CoarseGrain 4i
CoarseGrain 6i
Asymmetric 4i
Asymmetric 6i

stage0 stage1 stage2 stage3 stage4
1

2

3

4

5

6

7

8

9

 S
pe

ed
up

 O
ve

r
S

ta
ge

 Z
er

o
R

un
 o

n
F

in
eG

ra
in

2i

Evolving Application Performance (SWIM OMP)

FineGrain 2i
Core Fusion
CoarseGrain 4i
CoarseGrain 6i
Asymmetric 4i
Asymmetric 6i

stage0 stage1 stage2 stage3
1

2

3

4

5

 S
pe

ed
up

 O
ve

r
S

ta
ge

 Z
er

o
R

un
 o

n
F

in
eG

ra
in

2i

Evolving Application Performance (EQUAKE OMP)

FineGrain 2i
Core Fusion
CoarseGrain 4i
CoarseGrain 6i
Asymmetric 4i
Asymmetric 6i

Figure 12: Speedup over stage zero run on FineGrain-2i.

Performance Potential Throughput Modularity Reconfigurability
Architecture Sequential Parallel Potential FE BE Caches FE BE Caches

Collins et al. [15] Low High High Yes1 Yes No No No No
El-Moursy et al. [16] (Shared Banks) High Low Low Partial1 Yes Yes No Yes No
El-Moursy et al. [16] (Private Banks) Low Not Supported High Partial1 Yes Yes No Yes No
Latorre et al. [26] (Fewer, large FEs) High Low Low Partial1 Yes Yes No Yes Yes
Latorre et al. [26] (More, small FEs) Low High High Yes1 Yes Yes No Yes Yes

Parcerisa [33] High Not Supported Not Supported Yes2 Yes No No Yes No
Core Fusion High High High Yes Yes Yes Yes Yes Yes

1Modules cannot collectively support one thread
2Modules do not support more than one thread

Table 5: Comparison to recent proposals for clustered processors. FE and BE stand for front- and back-end,
respectively.

our work is a processor with clustered front-ends, execution
units, and register files. Each front-end is capable of fetch-
ing from multiple threads, but the front-ends are not recon-
figurable, and multiple front-ends cannot be merged when
running a single thread. As the authors explain, the reduced
fetch/rename bandwidth of each front-end can severely af-
fect single-thread performance. There is no direct commu-
nication between the register files, and sequential codes can
utilize only a single cluster’s register file at any point in time.

Parcerisa [33] partitions the front-end of a conventional
clustered architecture to improve clock frequency. The front-
end is designed to fetch from a single thread: parallel, evolv-
ing, or multiprogrammed workloads are not discussed and
reconfiguration is not considered. The branch predictor is
interleaved on high-order bits, which may result in under-
utilized space. Mechanisms for keeping consistent global
history across different branch predictor banks are not dis-
cussed.

Chaparro et al. [13] distribute the rename map and the
ROB to obtain temperature reductions. Fetch and steering
are centralized. Their distributed ROB expands each entry
with a pointer to the ROB entry (possibly remote) of the
next dynamic instruction in program order. Committing in-
volves pointer chasing across multiple ROBs. In core fusion,
we also fully distribute our ROB, but without requiring ex-
pensive pointer chasing mechanisms across cores.

6.3 Other Related Work
Trace Processors [36] overcome the complexity limitations

of monolithic processors by distributing instructions to pro-
cessing units at the granularity of traces. The goal is the
complexity-effective exploitation of ILP in sequential ap-
plications. Other types of workloads (e.g., parallel codes)
are not supported. MultiScalar processors [38] rely on com-
piler support to exploit ILP with distributed processing el-
ements. The involvement of the compiler is prevalent in
this approach (e.g., for register communication, task extrac-
tion, and marking potential successors of a task). On the
contrary, core fusion does not require specialized compiler
support. Neither multiscalar nor trace processors address
the issue of accommodating software diversity in CMPs or
facilitating incremental software parallelization, which is a
key focus of our work.

7. CONCLUSIONS
In this paper, we have introduced a novel reconfigurable

CMP architecture that we call core fusion, which allows rel-
atively simple CMP cores to dynamically fuse into larger,
more powerful processors. The goal is to accommodate
software diversity gracefully, and to dynamically adapt to
changing demands by workloads. We have presented a com-
plete hardware solution to support core fusion. In particu-
lar, we have described complexity-effective solutions for col-
lective fetch, rename, execution, cache access, and commit,
that respect the fundamentally independent nature of the
base cores. The result is a flexible CMP architecture that
can adapt to a diverse collection of software, and that re-
wards incremental parallelization with higher performance
along the development curve. It does so without requiring
higher software complexity, a customized ISA, or specialized
compiler support.

Through detailed simulations, we have identified and quan-
tified the degree to which core fusion’s major components
impact performance. Specifically, we have observed that
the cross-core operand communication cost and core fusion’s
ROB/LSQ allocation inefficiencies have the most impact on
performance. We have also pitted core fusion against several
static CMP designs, and confirmed that core fusion’s versa-
tility across a diverse software spectrum makes it a promis-
ing design approach for future CMPs.

ACKNOWLEDGMENTS
This work was funded in part by NSF awards CCF-0429922,
CNS-0509404, CAREER Award CCF-0545995, and an IBM
Faculty Award. Meyrem Kırman and Nevin Kırman were
supported in part by two Intel graduate fellowships.

8. REFERENCES
[1] S. Altschul, W. Gish, W. Miller, E. Myers, and D. Lipman.

Basic local alignment search tool. Journal of Molecular
Biology, pages 403–410, 1990.

[2] V. Aslot and R. Eigenmann. Quantitative performance
analysis of the SPEC OMPM2001 benchmarks. Scientific
Programming, 11(2):105–124, 2003.

[3] S. Balakrishnan, R. Rajwar, M. Upton, and K. Lai. The
impact of performance asymmetry in emerging multicore
architectures. In Intl. Symp. on Computer Architecture, pages
506–517, Madison, Wisconsin, June 2005.

196

[4] R. Balasubramonian, S. Dwarkadas, and D. H. Albonesi.
Dynamically managing the communication-parallelism trade-off
in future clustered processors. In Intl. Symp. on Computer
Architecture, pages 275–287, San Diego, CA, June 2003.

[5] A. Baniasadi and A. Moshovos. Instruction distribution
heuristics for quad-cluster, dynamically-scheduled, superscalar
processors. In Intl. Symp. on Microarchitecture, pages
337–347, Monterey, CA, December 2000.

[6] M. Bekerman, S. Jourdan, R. Ronen, G. Kirshenboim,
L. Rappoport, A. Yoaz, and U. Weiser. Correlated
load-address predictors. In Intl. Symp. on Computer
Architecture, pages 54–63, Atlanta, GA, May 1999.

[7] R. Bhargava and L. K. John. Improving dynamic cluster
assignment for clustered trace cache processors. In Intl. Symp.
on Computer Architecture, pages 264–274, San Diego, CA,
June 2003.

[8] J. Burns and J.-L. Gaudiot. Area and system clock effects on
SMT/CMP processors. In Intl. Conf. on Parallel
Architectures and Compilation Techniques, page 211,
Barcelona, Spain, September 2001.

[9] B. Calder and G. Reinman. A comparative survey of load
speculation architectures. Journal of Instruction-Level
Parallelism, 2, May 2000.

[10] R. Canal, J.-M. Parcerisa, and A. González. A cost-effective
clustered architecture. In Intl. Conf. on Parallel Architectures
and Compilation Techniques, pages 160–168, Newport Beach,
CA, October 1999.

[11] R. Canal, J.-M. Parcerisa, and A. González. Dynamic cluster
assignment mechanisms. In Intl. Symp. on High-Performance
Computer Architecture, pages 132–142, Toulouse, France,
January 2000.

[12] R. Chandra, L. Dagum, D. Kohr, D. Maydan, J. McDonald,
and R. Menon. Parallel Programming in OpenMP. Morgan
Kaufmann, San Francisco, CA, 2001.

[13] P. Chaparro, G. Magklis, J. González, and A. González.
Distributing the frontend for temperature reduction. In Intl.
Symp. on High-Performance Computer Architecture, pages
61–70, San Francisco, CA, February 2005.

[14] G. Chrysos and J. Emer. Memory dependence prediction using
store sets. In Intl. Symp. on Computer Architecture, pages
142–153, Barcelona, Spain, June–July 1998.

[15] J. D. Collins and D. M. Tullsen. Clustered multithreaded
architectures - pursuing both ipc and cycle time. In Intl.
Parallel and Distributed Processing Symp., Santa Fe, New
Mexico, April 2004.

[16] A. E.-Moursy, R. Garg, D. H. Albonesi, and S. Dwarkadas.
Partitioning multi-threaded processors with a large number of
threads. In Intl. Symp. on Performance Analysis of Systems
and Software, pages 112–123, Austin, TX, March 2005.

[17] P. Bai et al. A 65nm logic technology featuring 35nm gate
length, enhanced channel strain, 8 cu interconnect layers,
low-k ILD and 0.57μm2 SRAM cell. In IEEE Intl. Electron
Devices Meeting, Washington, DC, December 2005.

[18] K. I. Farkas, P. Chow, N. P. Jouppi, and Z. Vranesic. The
Multicluster architecture: Reducing cycle time through
partitioning. In Intl. Symp. on Microarchitecture, pages
149–159, Research Triangle Park, NC, December 1997.

[19] J. González, F. Latorre, and A. González. Cache organizations
for clustered microarchitectures. In Workshop on Memory
Performance Issues, pages 46–55, Munich, Germany, June
2004.

[20] J. L. Henning. SPEC CPU2000: Measuring CPU performance
in the new millennium. IEEE Computer, 33(7):28–35, July
2000.

[21] R. E. Kessler. The Alpha 21264 microprocessor. IEEE Micro,
9(2):24–36, March 1999.

[22] A. KleinOsowski and D. Lilja. MinneSPEC: A new SPEC
benchmark workload for simulation-based computer
architecture research. Computer Architecture Letters, 1, June
2002.

[23] R. Kumar, K. I. Farkas, N. P. Jouppi, P. Ranganathan, and
D. M. Tullsen. Single-ISA heterogeneous multi-core
architectures: The potential for processor power reduction. In
Intl. Symp. on Microarchitecture, pages 81–92, San Diego,
CA, December 2003.

[24] R. Kumar, D. M. Tullsen, P. Ranganathan, N. P. Jouppi, and
K. I. Farkas. Single-ISA heterogeneous multi-core architectures
for multithreaded workload performance. In Intl. Symp. on
Computer Architecture, pages 64–75, München, Germany,
June 2004.

[25] R. Kumar, V. Zyuban, and D. M. Tullsen. Interconnections in
multi-core architectures: Understanding mechanisms,
overheads and scaling. In Intl. Symp. on Computer
Architecture, pages 408–419, Madison, Wisconsin, June 2005.

[26] F. Latorre, J. González, and A. González. Back-end
assignment schemes for clustered multithreaded processors. In
Intl. Conf. on Supercomputing, pages 316–325, Malo, France,
June–July 2004.

[27] R. Lawrence, G. Almasi, and H. Rushmeier. A scalable parallel
algorithm for self-organizing maps with applications to sparse
data mining problems. Technical report, IBM, January 1998.

[28] K. Mai, T. Paaske, N. Jayasena, R. Ho, W. J. Dally, and
M. Horowitz. Smart Memories: a modular reconfigurable
architecture. In Intl. Symp. on Computer Architecture, pages
161–171, Vancouver, Canada, June 2000.

[29] J. F. Mart́ınez, J. Renau, M. C. Huang, M. Prvulovic, and
J. Torrellas. Cherry: Checkpointed early resource recycling in
out-of-order microprocessors. In Intl. Symp. on
Microarchitecture, Istanbul, Turkey, November 2002.

[30] M. Moudgill, K. Pingali, and S. Vassiliadis. Register renaming
and dynamic speculation: An alternative approach. In Intl.
Symp. on Microarchitecture, pages 202–213, Austin, TX,
December 1993.

[31] K. Olukotun, B. A. Nayfeh, L. Hammond, K. Wilson, and
K. Chang. The case for a single-chip multiprocessor. In Intl.
Conf. on Architectural Support for Programming Languages
and Operating Systems, pages 2–11, Cambridge, MA, October
1996.

[32] S. Palacharla, N. P. Jouppi, and J. E. Smith.
Complexity-effective superscalar processors. In Intl. Symp. on
Computer Architecture, pages 206–218, Denver, CO, June
1997.

[33] J.-M. Parcesira. Design of Clustered Superscalar
Microarchitectures. Ph.D. dissertation, Univ. Politècnica de
Catalunya, April 2004.

[34] J. Pisharath, Y. Liu, W.-K. Liao, A. Choudhary, G. Memik,
and J. Parhi. NU-MineBench 2.0. Technical Report
CUCIS-2005-08-01, Center for Ultra-Scale Computing and
Information Security, Northwestern University, August 2005.

[35] J. Renau, B. Fraguela, J. Tuck, W. Liu, M. Prvulovic, L. Ceze,
S. Sarangi, P. Sack, K. Strauss, and P. Montesinos.
http://sesc.sourceforge.net.

[36] E. Rotenberg, Q. Jacobson, Y. Sazeides, and J. E. Smith.
Trace processors. In Intl. Symp. on Microarchitecture, pages
138–148, Research Triangle Park, NC, December 1997.

[37] K. Sankaralingam, R. Nagarajan, H. Liu, C. Kim, J. Huh,
D. Burger, S. W. Keckler, and C. R. Moore. Exploiting ILP,
TLP, and DLP with the polymorphous TRIPS architecture. In
Intl. Symp. on Computer Architecture, pages 422–433, San
Diego, CA, June 2003.

[38] G. S. Sohi, S. E. Breach, and T. N. Vijaykumar. Multiscalar
processors. In Intl. Symp. on Computer Architecture, pages
414–425, Santa Margherita Ligure, Italy, June 1995.

[39] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta.
The SPLASH-2 programs: Characterization and
methodological considerations. In Intl. Symp. on Computer
Architecture, pages 24–36, Santa Margherita Ligure, Italy,
June 1995.

[40] H. Zhong, S. A. Lieberman, and S. A. Mahlke. Extending
multicore architectures to exploit hybrid parallelism in
single-thread applications. In Intl. Symp. on
High-Performance Computer Architecture, Phoenix, Arizona,
February 2007.

[41] V. V. Zyuban and P. M. Kogge. Inherently lower-power
high-performance superscalar architectures. IEEE
Transactions on Computers, 50(3):268–285, March 2001.

197

