Continuous Runahead

Transparent Hardware Acceleration
for Memory Intensive Workloads

Authors: M. Hashemi, O. Mutlu, Y. N. Patt
Presented at MICRO 2016

ETH Zlrich —Computer Architecture Seminar HS 2020
Leandra Maisch

Problem Statement

~or various applications we would like to
process large amounts of data

~requent memory accesses lead to a lot of wait
time
Runahead technigues want to reduce this wait

time by prefetching and executing memory
requests during wait time

Quick Summary

Continuous Runahead explores a method to
prefetch and execute instructions while a program
IS running to generate cache misses and
subsequent memory loads. This leads to fewer
cache misses while a program is executed and
therefore to lower wait times on memory.

Overview

Runahead Execution

Continuous Runahead

= Choosing and Storing Dependence Chains
m CRE

Performance evaluations
Critic
Discussion

RUNAHEAD EXECUTION

Runahead Execution

What iIs Runahead Execution?

Prefetching methods
= Stream prefetcher
= Global History buffer

Current Limitations of Runahead Execution

Runahead Execution

Memory accesses can cause full pipeline stalls
Stalls use around 50% of execution time of a
program

Runahead uses instruction window to fetch and
execute upcoming instructions

=) Fewer cache misses

Stream Prefetcher

Defines stream of cache misses by looking at
addresses close in memory

Looks only in a defined direction
Prefetches blocks of memory in said direction

More in “Memory Prefetching using Adaptive Stream Detection” by |. Hur and
C.Lin

https://www.cs.utexas.edu/~lin/papers/micro06.pdf

https://www.cs.utexas.edu/~lin/papers/micro06.pdf

Global History Buffer

Holds most recent miss addresses in FIFO order
Ordered table allows to discard unused data
Complete picture of cache miss history

Small sized table

More in “Data Cache Prefetching Using a Global History Buffer” by K. J. Nesbit
and J. E. Smith

https://www.eecqg.utoronto.ca/~steffan/carg/readings/ghb.pdf

https://www.eecg.utoronto.ca/~steffan/carg/readings/ghb.pdf

Limitations of Prefetching

Short duration of full-window stall
Prioritisation of memory accesses

CONTINUOUS RUNAHEAD

Key ldeas

Dynamically filter incoming dependence chains

= Filter dependence chains generating memory
accesses

Execute dependence chains in a loop

Loop executed on the
Continuous Runahead Engine
(CRE)

12

DEFINITIONS

Dependence Chalin

Set of dependent
Instructions leading
up to a key instruction

Generated by
backtracking the data
flow

ADDR5 +1->R3

N

SHIFT R3 -> R4 »| ADD R4 + R3 ->R2

/

SHIFT RZ -> R1

Example of a dependence chain:
Computing the address for a memory access

14

Full-Window Stall

nstructions are retired in program order
_ong-latency instructions can block pipeline

nstruction window is filled with incoming
Instructions

Both instruction window Is blocked and pipeline
stalled is called full-window stall

15

IMPLEMENTATION

Dependence Chain Selection

Base Policy
= Select next memory access in buffer

PC based Policy

= Lists all PCs that caused LLC misses

= Dependent on operation which is blocking retirement
Maximum-Misses Policy

= Finds and selects PC causing most cache misses

Stall Policy
m Tracks PCs causing full-window stalls
m Selects chain causing most full-window stalls

17

Evaluation of the Policies

Evaluation of the policies on a single core system using
Runahead

Using policies tracking most misses gives improved
performance on most workloads

100—
€
g 80
o 60
>
e
a 40
E
o 20
a
© 0
eyt ¢ 9 & U ¥ £ § § E %5 2
= o = c
E § 2 3 £ E 5 £ z = 2 E §
o — cC o o 2 =
£ f9 3 o
o
3 Original Runahead Buffer Policy [PC
[Maximum |

Comparisions of the policies

Selecting Instructions

Small amount of instructions cause over 90% of
full window stalls

. 000— — o
O
o
2 800
g
& 600
£
‘s 400
3
EZOO
5
Z 0
o + w 0 o U x x w o £ %Y =
[[T} Q C ®© -]
o - £ o o 3 =
S w2
5]
[EER All Full Window Stalls = [

Instructions causing full window stalls

|:> Only a handful instructions need to be looped to be effective

19

Continuous Runahead Engine

Strongly based on an enhanced memory
controller

See paper “Accelerating Dependent Cache Misses with an Enhanced
Memory Controller” by M. Hashemi et al.
http://eimanebrahimi.com/pub/hashemi_iscal6.pdf

Sits on the memory controller to reduce latency
on memory loads

20

http://eimanebrahimi.com/pub/hashemi_isca16.pdf

Architecture of the CRE

32-uop buffer to hold
full dependence
chains

32-entry physical
register

4kB cache with 32-
entry TLB

aaaaaaaa

Con

aaaaaaaa

Physical | ____ Result Data

Reservation

ttttttt

Memory Controller

Data path of the CRE

21

Handling Dependence Chains

Upon generation TLB sends required load to the
CRE

TLB misses are sent to core of the CPU to
resolve

Dependence chains are continuously executed

The running dependence chain is relaced every
full-window stall

22

PERFORMANCE EVALUATION

Simulation Environment

Execution-driven, cycle-level x86 simulator

Single core system with
= 256-entry reorder buffer

m 32KB of instruction/data cache
m IMB LLC

Combined with
= GBH prefetcher
= Stream prefetcher

24

RESULTS

CRE alone

34.4% performance gain over the no-prefetching
baseline
11.9% performance gain over GHB prefetcher

c 120
]
€ 100
]
>
o
_
5 gl
. |
9]
- |
R H i
0 | |
a un n] o U x x N o £ v =z
3 s £ = o = U c ¥ o g <
E € % ¢ ¢ § E s £ 3z = 2 E &
S (© o = c o =% = =
% (&) E [} wn ko) ()]
o
[Runahead Buffer + Stall Policy [CRE [Stream
== GHB [Stream+CRE I GHB+CRE

Performance comparisons

CRE + GHB Prefetching

36.4% performance gain over the no-prefetching
baseline

11.9% performance gain over GHB prefetcher

€ 120

e

m
o
o

% IPC Improve
B OO0 ©
o O O

nr

20 H
0 |
=
3 5 £ = o = W £ v o =
E § 2 § ¢ & E 5 £ 2 = =2 h
S © o = c o) % = =
o

3 Runahead Buffer + Stall Policy [CRE [Stream

3 GHB [Stream+CRE I GHB+CRE

Performance comparisons

27

Memory Bandwidth Consumption

Increased memory bandwidth consumption for
stream prefetching and GHB on some
applications

Overhead drastically reduced with CRE

2.

c
5
'§2.0
©
G 1.5
& 1.
o
810
©
€05
(@]
=
0.0
mmmmmm O x x w ©° £ 5 =2
> = = o = W c ¢ o9 Y <
E 2 2§ % &£ FE 4 £ 5 2 2 £ §
38 o - & 8Q3 =
8 £ ” 2
o

|- CRE [Stream [GHB|

Comparisions on memory bandwidth consumption

28

CONCLUSION

Points to take Home

Solves limit on runahead distance by
= Dynamically identifying critical dependence chains
= Executing these in a loop

Cheap and low-complexity hardware solution

Significant performance gain on a variety of
workloads

30

CRITIQUE

Formal Critique

Positives
= Written in an understandable way
= Well structured

Negatives

= Relying heavily on the readers understanding of
specific previous work

32

Positives regarding Content

New idea on handling the specified problem
Efficient solution using few additional resources

Exploring variety of ways to combine previous
solutions with described solution

33

Negatives regarding Content

Potentially few workloads profiting from this

Potential negative side effects caused by placing
a CRE on the memory controller not explored

Solution only for independent cache misses

34

QUESTIONS

DISCUSSION

Topics

Alternatives for Implementation

Could/Should we implement this in general
purpose computers

Performance on Multicore Systems
Energy consumption

37

Alternatives for Implementation

What do we need to be able to

Is the CRE the only way to implement Continous
Runahead?

= Simulations multi threading

= |dle cores

38

Performance on Multicore Systems

Juswanoadwy
dnpaads pajyblom %

[Stream+CRE HEE GHB+CRE|

= GHB

[Stream

|- CRE

H;[ﬂi

il

INVIWO
1Ppwxy
JWqIxy
{oaiixy
{sanemMgxy
{xuiydsxy
1xa|dosxy
1PNWXE
J{ddisuwoxty
12lIsaIXy
1swabxy
1HMXE
{sn1esxy

1dwsnazxy

160
140

Figure 17: Heterogeneous workload performance.

o
(V]
L]

3

o oo
0 O <

100
20
0
-20

uawanoaduwij

dnpaads paiybiam %

@O Stream+CRE I GHB+CRE|

I GHB

[Stream

|mmm CcrE

Figure 18: Homogeneous workload performance.

39

