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Problem Statement

~or various applications we would like to
process large amounts of data

~requent memory accesses lead to a lot of wait
time
Runahead technigues want to reduce this wait

time by prefetching and executing memory
requests during wait time




Quick Summary

Continuous Runahead explores a method to
prefetch and execute instructions while a program
IS running to generate cache misses and
subsequent memory loads. This leads to fewer
cache misses while a program is executed and
therefore to lower wait times on memory.
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RUNAHEAD EXECUTION




Runahead Execution

What iIs Runahead Execution?

Prefetching methods
= Stream prefetcher
= Global History buffer

Current Limitations of Runahead Execution




Runahead Execution

Memory accesses can cause full pipeline stalls
Stalls use around 50% of execution time of a
program

Runahead uses instruction window to fetch and
execute upcoming instructions

=) Fewer cache misses




Stream Prefetcher

Defines stream of cache misses by looking at
addresses close in memory

Looks only in a defined direction
Prefetches blocks of memory in said direction

More in “Memory Prefetching using Adaptive Stream Detection” by |. Hur and
C.Lin

https://www.cs.utexas.edu/~lin/papers/micro06.pdf



https://www.cs.utexas.edu/~lin/papers/micro06.pdf

Global History Buffer

Holds most recent miss addresses in FIFO order
Ordered table allows to discard unused data
Complete picture of cache miss history

Small sized table

More in “Data Cache Prefetching Using a Global History Buffer” by K. J. Nesbit
and J. E. Smith

https://www.eecqg.utoronto.ca/~steffan/carg/readings/ghb.pdf



https://www.eecg.utoronto.ca/~steffan/carg/readings/ghb.pdf

Limitations of Prefetching

Short duration of full-window stall
Prioritisation of memory accesses




CONTINUOUS RUNAHEAD




Key ldeas

Dynamically filter incoming dependence chains

= Filter dependence chains generating memory
accesses

Execute dependence chains in a loop

Loop executed on the
Continuous Runahead Engine
(CRE)
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DEFINITIONS




Dependence Chalin

Set of dependent
Instructions leading
up to a key instruction

Generated by
backtracking the data
flow

ADDR5 +1->R3

N

SHIFT R3 -> R4 »| ADD R4 + R3 ->R2

/

SHIFT RZ -> R1

Example of a dependence chain:
Computing the address for a memory access

14



Full-Window Stall

nstructions are retired in program order
_ong-latency instructions can block pipeline

nstruction window is filled with incoming
Instructions

Both instruction window Is blocked and pipeline
stalled is called full-window stall
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IMPLEMENTATION




Dependence Chain Selection

Base Policy
= Select next memory access in buffer

PC based Policy

= Lists all PCs that caused LLC misses

= Dependent on operation which is blocking retirement
Maximum-Misses Policy

= Finds and selects PC causing most cache misses

Stall Policy
m Tracks PCs causing full-window stalls
m Selects chain causing most full-window stalls
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Evaluation of the Policies

Evaluation of the policies on a single core system using
Runahead

Using policies tracking most misses gives improved
performance on most workloads
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Selecting Instructions

Small amount of instructions cause over 90% of
full window stalls
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Continuous Runahead Engine

Strongly based on an enhanced memory
controller

See paper “Accelerating Dependent Cache Misses with an Enhanced
Memory Controller” by M. Hashemi et al.
http://eimanebrahimi.com/pub/hashemi_iscal6.pdf

Sits on the memory controller to reduce latency
on memory loads
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http://eimanebrahimi.com/pub/hashemi_isca16.pdf

Architecture of the CRE

32-uop buffer to hold
full dependence
chains

32-entry physical
register

4kB cache with 32-
entry TLB
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Memory Controller

Data path of the CRE
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Handling Dependence Chains

Upon generation TLB sends required load to the
CRE

TLB misses are sent to core of the CPU to
resolve

Dependence chains are continuously executed

The running dependence chain is relaced every
full-window stall
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PERFORMANCE EVALUATION




Simulation Environment

Execution-driven, cycle-level x86 simulator

Single core system with
= 256-entry reorder buffer

m 32KB of instruction/data cache
m IMB LLC

Combined with
= GBH prefetcher
= Stream prefetcher
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RESULTS




CRE alone

34.4% performance gain over the no-prefetching
baseline
11.9% performance gain over GHB prefetcher
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CRE + GHB Prefetching

36.4% performance gain over the no-prefetching
baseline

11.9% performance gain over GHB prefetcher

€ 120

e

m
o
o

% IPC Improve
B OO0 ©
o O O

nr

20 H
0 |
=
3 5 £ = o = W £ v o =
E § 2 § ¢ & E 5 £ 2 = =2 h
S © o = c o) % = =
o

3 Runahead Buffer + Stall Policy [ CRE [ Stream

3 GHB [ Stream+CRE I GHB+CRE

Performance comparisons

27




Memory Bandwidth Consumption

Increased memory bandwidth consumption for
stream prefetching and GHB on some
applications

Overhead drastically reduced with CRE
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CONCLUSION




Points to take Home

Solves limit on runahead distance by
= Dynamically identifying critical dependence chains
= Executing these in a loop

Cheap and low-complexity hardware solution

Significant performance gain on a variety of
workloads
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CRITIQUE




Formal Critique

Positives
= Written in an understandable way
= Well structured

Negatives

= Relying heavily on the readers understanding of
specific previous work
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Positives regarding Content

New idea on handling the specified problem
Efficient solution using few additional resources

Exploring variety of ways to combine previous
solutions with described solution
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Negatives regarding Content

Potentially few workloads profiting from this

Potential negative side effects caused by placing
a CRE on the memory controller not explored

Solution only for independent cache misses
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QUESTIONS




DISCUSSION




Topics

Alternatives for Implementation

Could/Should we implement this in general
purpose computers

Performance on Multicore Systems
Energy consumption
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Alternatives for Implementation

What do we need to be able to

Is the CRE the only way to implement Continous
Runahead?

= Simulations multi threading

= |dle cores
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Performance on Multicore Systems
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Figure 17: Heterogeneous workload performance.
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Figure 18: Homogeneous workload performance.
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