
Continuous Runahead

Transparent Hardware Acceleration

for Memory Intensive Workloads

ETH Zürich –Computer Architecture Seminar HS 2020

Leandra Maisch

Authors: M. Hashemi, O. Mutlu, Y. N. Patt

Presented at MICRO 2016

Problem Statement

 For various applications we would like to

process large amounts of data

 Frequent memory accesses lead to a lot of wait

time

 Runahead techniques want to reduce this wait

time by prefetching and executing memory

requests during wait time

2

Quick Summary

Continuous Runahead explores a method to

prefetch and execute instructions while a program

is running to generate cache misses and

subsequent memory loads. This leads to fewer

cache misses while a program is executed and

therefore to lower wait times on memory.

3

Overview

 Runahead Execution

 Continuous Runahead

◼ Choosing and Storing Dependence Chains

◼ CRE

 Performance evaluations

 Critic

 Discussion

4

RUNAHEAD EXECUTION

5

Runahead Execution

 What is Runahead Execution?

 Prefetching methods

◼ Stream prefetcher

◼ Global History buffer

 Current Limitations of Runahead Execution

6

Runahead Execution

 Memory accesses can cause full pipeline stalls

 Stalls use around 50% of execution time of a

program

 Runahead uses instruction window to fetch and

execute upcoming instructions

Fewer cache misses

7

Stream Prefetcher

 Defines stream of cache misses by looking at

addresses close in memory

 Looks only in a defined direction

 Prefetches blocks of memory in said direction

More in “Memory Prefetching using Adaptive Stream Detection” by I. Hur and

C.Lin

https://www.cs.utexas.edu/~lin/papers/micro06.pdf

8

https://www.cs.utexas.edu/~lin/papers/micro06.pdf

Global History Buffer

 Holds most recent miss addresses in FIFO order

 Ordered table allows to discard unused data

 Complete picture of cache miss history

 Small sized table

More in “Data Cache Prefetching Using a Global History Buffer” by K. J. Nesbit

and J. E. Smith

https://www.eecg.utoronto.ca/~steffan/carg/readings/ghb.pdf

9

https://www.eecg.utoronto.ca/~steffan/carg/readings/ghb.pdf

Limitations of Prefetching

 Short duration of full-window stall

 Prioritisation of memory accesses

10

CONTINUOUS RUNAHEAD

11

Key Ideas

 Dynamically filter incoming dependence chains

◼ Filter dependence chains generating memory

accesses

 Execute dependence chains in a loop

 Loop executed on the

Continuous Runahead Engine

(CRE)

12

DEFINITIONS

13

Dependence Chain

 Set of dependent

instructions leading

up to a key instruction

 Generated by

backtracking the data

flow

14

Example of a dependence chain:

Computing the address for a memory access

Full-Window Stall

 Instructions are retired in program order

 Long-latency instructions can block pipeline

 Instruction window is filled with incoming

instructions

 Both instruction window is blocked and pipeline

stalled is called full-window stall

15

IMPLEMENTATION

16

Dependence Chain Selection

 Base Policy

◼ Select next memory access in buffer

 PC based Policy

◼ Lists all PCs that caused LLC misses

◼ Dependent on operation which is blocking retirement

 Maximum-Misses Policy

◼ Finds and selects PC causing most cache misses

 Stall Policy

◼ Tracks PCs causing full-window stalls

◼ Selects chain causing most full-window stalls
17

Evaluation of the Policies

 Evaluation of the policies on a single core system using

Runahead

 Using policies tracking most misses gives improved

performance on most workloads

18

Comparisions of the policies

Selecting Instructions

19

 Small amount of instructions cause over 90% of

full window stalls

Instructions causing full window stalls

Only a handful instructions need to be looped to be effective

Continuous Runahead Engine

 Strongly based on an enhanced memory

controller
See paper “Accelerating Dependent Cache Misses with an Enhanced

Memory Controller” by M. Hashemi et al.

http://eimanebrahimi.com/pub/hashemi_isca16.pdf

 Sits on the memory controller to reduce latency

on memory loads

20

http://eimanebrahimi.com/pub/hashemi_isca16.pdf

Architecture of the CRE

 32-uop buffer to hold

full dependence

chains

 32-entry physical

register

 4kB cache with 32-

entry TLB

21

Data path of the CRE

Handling Dependence Chains

 Upon generation TLB sends required load to the

CRE

 TLB misses are sent to core of the CPU to

resolve

 Dependence chains are continuously executed

 The running dependence chain is relaced every

full-window stall

22

PERFORMANCE EVALUATION

23

Simulation Environment

 Execution-driven, cycle-level x86 simulator

 Single core system with

◼ 256-entry reorder buffer

◼ 32KB of instruction/data cache

◼ 1MB LLC

 Combined with

◼ GBH prefetcher

◼ Stream prefetcher

24

RESULTS

25

CRE alone

 34.4% performance gain over the no-prefetching

baseline

 11.9% performance gain over GHB prefetcher

26

Performance comparisons

CRE + GHB Prefetching

 36.4% performance gain over the no-prefetching

baseline

 11.9% performance gain over GHB prefetcher

27

Performance comparisons

Memory Bandwidth Consumption

 Increased memory bandwidth consumption for

stream prefetching and GHB on some

applications

 Overhead drastically reduced with CRE

28

Comparisions on memory bandwidth consumption

CONCLUSION

29

Points to take Home

 Solves limit on runahead distance by

◼ Dynamically identifying critical dependence chains

◼ Executing these in a loop

 Cheap and low-complexity hardware solution

 Significant performance gain on a variety of

workloads

30

CRITIQUE

31

Formal Critique

 Positives

◼ Written in an understandable way

◼ Well structured

 Negatives

◼ Relying heavily on the readers understanding of

specific previous work

32

Positives regarding Content

 New idea on handling the specified problem

 Efficient solution using few additional resources

 Exploring variety of ways to combine previous

solutions with described solution

33

Negatives regarding Content

 Potentially few workloads profiting from this

 Potential negative side effects caused by placing

a CRE on the memory controller not explored

 Solution only for independent cache misses

34

QUESTIONS

35

DISCUSSION

36

Topics

 Alternatives for Implementation

 Could/Should we implement this in general

purpose computers

 Performance on Multicore Systems

 Energy consumption

37

Alternatives for Implementation

 What do we need to be able to

 Is the CRE the only way to implement Continous

Runahead?

◼ Simulations multi threading

◼ Idle cores

38

Performance on Multicore Systems

39

