
A Logic-In-Memory
Computer

Harold S. Stone

Published in IEEE Transactions on Computers (1970)

Presented by Quentin Adatte

https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=12

Executive Summary
▪ Motivation: Evolution in number of transistors per chip makes room for improvement for

reasonable cost and complexity.

▪ Problem: Pins can only be used in limited quantity to keep cost and complexity reasonable.

▪ Goal: Take advantages of the growing number of transistors in an efficient way to achieve better performance
by designing a new computer satisfying restrictions and limitations of advanced microelectronic technology

▪ Key Idea: Put logic were data are to avoid using more pins for communication

▪ Challenge: Main memory would be too slow

▪ Approach: Logic-in-Cache:
▪ Move part of the computation within caches

▪ Allow to load any bit pattern in cache line to perform parallel operations on these patterns

▪ Key takeaways:
▪ Reduce distance between computational units and cache will result in better performance

▪ Embedded logic in memory can enable a high level of parallelism by increasing the number of computational unit at
reasonable cost and complexity

▪ Enable efficient access to arbitrary bit pattern in main memory will improve performance by giving more flexibility about
which data set can be treated in parallel

2

Outline

Motivation

Problem/Goal

Key Insights/Ideas

Novelty

Mechanism

• Logic-in-Memory Arrays

• Explicit Cache Control

• Data Pattern and Access Pattern Improvements

Takeaways/Conclusion

3

Motivation

Microelectronic industry developed
medium-scale integration (100-
2000 transistors)

Large-scale integration will be
available soon with around ten
times more transistors

Taking advantage of these available
transistors creates a new challenge
for hardware designers

4Image source: https://www.researchgate.net/figure/IntelR-microprocessor-transistor-count-evolution-between-1971-and-2012-For-the-last-40_fig1_323459912

Outline

Motivation

Problem/Goal

Key Insights/Ideas

Novelty

Mechanism

• Logic-in-Memory Arrays

• Explicit Cache Control

• Data Pattern and Access Pattern Improvements

Takeaways/Conclusion

5

Pins are connecting CPU and memory

Limiting the number of pins is limiting
the bandwidth between CPU and
memory

But bounding the number of pins
from above is important because this
contributes a lot to modules
complexity

Problem

6

pins

Image source: https://www.researchgate.net/figure/Typical-computer-chip-design-with-connecting-pins-Color-figure-available-online_fig1_237043679

Taking advantages of the increased number of transistors
efficiently to achieve better performance by designing a new
computer that satisfy restrictions and limitations of advanced
microelectronic technology

Goal

7

Outline

Motivation

Problem/Goal

Key Insights/Ideas

Novelty

Mechanism

• Logic-in-Memory Arrays

• Explicit Cache Control

• Data Pattern and Access Pattern Improvements

Takeaways/Conclusion

8

Put logic near to where data resides to avoid using more pins for
communication between memory and CPU

Key Idea

9

There is a performance gap
between CPU scaling and DRAM
scaling

Embedding logic directly in main
memory is not viable

Challenge

10Image source: https://www.researchgate.net/figure/Processor-Memory-Performance-GapHen96_fig1_3214931

Caches are faster than main
memory due to two reasons

▪ Caches use a faster technology (SRAM)

▪ Caches are smaller

Cellular structure of both memory
and caches enables a lot of
parallelism

Key Insights

11

Enhancing cache’s memory array with logic

Optimising memory system to get as much benefit as possible
from logic-in memory arrays

▪ More precisely, we want to allow as many bit patterns as possible to be
loaded into cache line efficiently

Key Approach

12

Outline

Motivation

Problem/Goal

Key Insights/Ideas

Novelty

Mechanism

• Logic-in-Memory Arrays

• Explicit Cache Control

• Data Pattern and Access Pattern Improvements

Takeaways/Conclusion

13

Earlier research works about logic-in-memory arrays focused more
on circuit level of logic-in-memory arrays

▪ For example, enabling operations like AND or OR to be performed in
memory

In this paper, logic-in-memory arrays are treated at a higher level
of abstraction, namely, at a computer system level. Author wants
to discuss:

▪ Appropriate instructions to exploit logic-in-memory arrays

▪ Modifications in access pattern of main memory

Novelty

14

Outline

Motivation

Problem/Goal

Key Insights/Ideas

Novelty

Mechanism

• Logic-in-Memory Arrays

• Explicit Cache Control

• Data Pattern and Access Pattern Improvements

Takeaways/Conclusion

15

.

.

.

.

.

.

Sector

Block

Word Word Word Word0
.
.
.
.
.
.
.
.
.
15

The cache is a set of
such sector

Each sector is an
independent logic-in-
memory array

We assume that data
pattern in these sectors
is the same as in main
memory

Block

Word Word Word Word

Memory Sector in Baseline System

16

.

.

.

.

.

.

Sector

Block

Word Word Word Word0
.
.
.
.
.
.
.
.
.
15

Only entire such
sectors can be loaded
from main memory

Block

Word Word Word Word

Memory Sector

17

Sector addition consists in adding two sectors word-wise

There is one adder per word index

We can process the n words of a sector in parallel

Cost and complexity remains manageable

Sector 2Sector 1Sector 0

Word 0 Word 0 Word 0

Register

Adder

Hardware Description for Sector Add

18

Sector ADD: corresponding words of two sectors are added
together and results is stored in first sector.

Search on Masked Equality: set the tag bit of each word in a
given sector matching a certain pattern

Copy Tag Bit: tag bits of all word in a sector are stored at a
specific location

Instructions for Logic-in-Memory Arrays

19

Tag Bit AND: ANDed two bits of each word in sector and store
results at first bit location. OR, XOR, NOT also possible

Sector Scale: each word in one sector is multiplied by a given
factor. Adding a factor also possible, called sector bias.

Instructions for Logic-in-Memory Arrays

20

Outline

Motivation

Problem/Goal

Key Insights/Ideas

Novelty

Mechanism

• Logic-in-Memory Arrays

• Explicit Cache Control

• Data Pattern and Access Pattern Improvements

Takeaways/Conclusion

21

Observation: programs could inform cache system about which
data set to hold and which to evict, as soon as possible

The idea is to exploit access pattern of programs to learn when a
data set currently in cache system can be evicted and when it
must be held

For example, it will be better to hold it in cache system if it will
be accessed soon during the execution of a program

Explicit Cache Control

22

Do not evict b, it is accessed in the
last loop

a can be evicted, it isn’t accessed
later

b won’t be accessed anymore, so it
can be evicted

Explicit Cache Control

23

Outline

Motivation

Problem/Goal

Key Insights/Ideas

Novelty

Mechanism

• Logic-in-Memory Arrays

• Explicit Cache Control

• Data Pattern and Access Pattern Improvements

Takeaways/Conclusion

24

We assumed until now that data pattern in cache needed to be
the same as pattern in main memory

▪ This means that a word in a cache’s sector is a part of a single row in
main memory

This highly limitates which data set can be treated in parallel
▪ Considering the sector add instruction, only two corresponding word

from two different sectors can be added together

▪ So only part of main memory rows can support parallelism

Data Pattern and Access Pattern Improvements

25

First option is modifying data pattern in main memory
▪ Storing matrices row- and column-major enable storage of column as

words
▪ Columns can now be treated in a highly parallel manner, exactly like

rows

Second option consists in using a non-conventional type of
memory which is able to efficiently access any bit pattern in main
memory

▪ This will allow to store any pattern in sector’s words, enabling more
flexibility about which data set can be treated in parallel

Data Pattern and Access Pattern Improvements

26

Outline

Motivation

Problem/Goal

Key Insights/Ideas

Novelty

Mechanism

• Logic-in-Memory Arrays

• Explicit Cache Control

• Data Pattern and Access Pattern Improvements

Takeaways/Conclusion

27

Logic-in-memory arrays will lead to improvement in performance
at reasonable cost and complexity

▪ A high level of parallelism can be achieved

We can increase the performance by modifying only memory
access pattern

Takeaways

28

▪ Motivation: Evolution in number of transistors per chip makes room for improvement for
reasonable cost and complexity.

▪ Problem: Pins can only be used in limited quantity to keep cost and complexity reasonable.

▪ Goal: Take advantages of the growing number of transistors in an efficient way to achieve better performance
by designing a new computer satisfying restrictions and limitations of advance microelectronic technology

▪ Key Idea: Put logic were data are to avoid using more pins for communication

▪ Challenge: Main memory would be too slow

▪ Approach: Logic-in-Cache:
▪ Move part of the computation within caches

▪ Allow to load any bit pattern in cache line to perform parallel operations on these patterns

▪ Key takeaways:
▪ Reduce distance between computational units and cache will result in better performance

▪ Embedded logic in memory can enable a high level of parallelism by increasing the number of computational unit at
reasonable cost and complexity

▪ Enable efficient access to arbitrary bit pattern in main memory will improve performance by giving more flexibility about
which data set can be treated in parallel

Conclusion

29

▪ Suggests a very promising concept: people implemented it

▪ Easy to understand even after 50 years

▪ Intuitive idea

▪ Different improvements opportunities to get more
performance from logic-in-memory arrays are addressed

▪ Research is still going on

Strengths

30

▪ Does not address potential cache coherency issues caused by
the embedded logic in memory

▪ Does not address energy efficiency aspect of logic-in-memory
arrays
▪ Less data needs to be transmitted to CPU for computation, and this

could save energy

▪ Absence of analytical model for measuring performance in
future research works

Weaknesses

31

2019: "Processing-in-Memory: A Workload-Driven Perspective“

2019: "Processing Data Where It Makes Sense: Enabling In-Memory
Computation“

2020: "NATSA: A Near-Data Processing Accelerator for Time Series
Analysis"

2020: "NERO: A Near High-Bandwidth Memory Stencil Accelerator for
Weather Prediction Modeling"

Research is still going on

32

https://people.inf.ethz.ch/omutlu/pub/processing-in-memory_workload-driven-perspective_IBMjrd19.pdf
https://people.inf.ethz.ch/omutlu/pub/ProcessingDataWhereItMakesSense_micpro19-invited.pdf
https://people.inf.ethz.ch/omutlu/pub/NATSA_time-series-analysis-near-data_iccd20.pdf
https://people.inf.ethz.ch/omutlu/pub/NERO-near-memory-stencil-acceleration-for-weather_fpl20.pdf

Discussion

33

Research is still active about logic-in-memory arrays or PIM
(Processing In Memory)

Nowadays, different mechanisms have been investigated:

▪ RowClone: move data in main memory with low latency, low
bandwidth utilization and with only small changes around DRAM

▪ Ambit: perform bitwise operations on large vector directly in DRAM
using the majority function

▪ Gather-Scatter DRAM: improve performance for random memory
access pattern by remapping parts of each cache line onto multiple
chips. We can then access these parts efficiently and concurrently

Discussion: Research Continues (1)

34

To learn more:
RowClone: https://people.inf.ethz.ch/omutlu/pub/rowclone_micro13.pdf

Ambit: https://people.inf.ethz.ch/omutlu/pub/ambit-bulk-bitwise-dram_micro17.pdf

Gather-Scatter DRAM: https://people.inf.ethz.ch/omutlu/pub/GSDRAM-gather-scatter-
dram_micro15.pdf

These ideas give remarkable improvement in performance

What needs to be done for a wide adoption of PIM ?

Discussion: Research Continues (2)

35

https://people.inf.ethz.ch/omutlu/pub/rowclone_micro13.pdf
https://people.inf.ethz.ch/omutlu/pub/ambit-bulk-bitwise-dram_micro17.pdf
https://people.inf.ethz.ch/omutlu/pub/GSDRAM-gather-scatter-dram_micro15.pdf

Many key questions need(ed) to be investigated:
▪ Which function (e.g sorting or matrix multiplication) could be

appropriate to be computed with PIM, keeping in mind that we want to
avoid intensive communication between PIM and CPU ?
▪ Hint: is it better to have intense computation with easy to communicate results

(e.g dot product) ? Or simple computation with more complex to communicate
results (e.g. vector add) ?

▪ How could we reduce the number of exchanged coherence messages
between PIM and CPU ?
▪ Hint: Speculative access to memory and batching
▪ LazyPIM: https://people.inf.ethz.ch/omutlu/pub/LazyPIM-coherence-for-

processing-in-memory_ieee-cal16.pdf

Discussion: Allow Wide Adoption of PIM

36

https://people.inf.ethz.ch/omutlu/pub/LazyPIM-coherence-for-processing-in-memory_ieee-cal16.pdf

Can you think about other questions ?

Discussion: Allow Wide Adoption of PIM

37

In the paper, it is suggested to place logic in the cache hierarchy,
because main memory would be too slow

Do you think it could be a good idea to place logic in main
memory ? What could be any advantages in comparison to put
logic in cache ?

▪ Hint: trade-off between reachable level of parallelism and/or energy
efficiency and access speed to data

Can you think of any other location than caches or main memory
?

Discussion: Computation Where Data Resides

38

Programmers could improve cache replacement policy by
explicitly give information to caches

What are advantages/disadvantages of relying on programmers
in this case ? In general ?

What else could programmers tell ?

Discussion: Explicit Cache Control

39

Problem with pins is that they are taking much space

At the same time, they are required to ensure communication
between memory and CPU

How could we ensure high bandwidth between memory and CPU
while not too much increasing complexity ?

▪ Use an additional dimension → 3D stacking

Discussion: 3D Stacking

40

Discussion: 3D Stacking

41Image source: https://community.cadence.com/cadence_blogs_8/b/ip/posts/what-s-new-with-hybrid-memory-cube-hmc

DRAM layers are stacked
vertically

TSVs ensure very high-
bandwidth between different
layers

A logic layer exploits this high-
bandwidth by being places
below the different layers

Thank You for Listening and Participating
☺

42

