
DRISA: A DRAM-based Reconfigurable In-Situ Accelerator
Shuangchen Li1 Dimin Niu2 Krishna T. Malladi2 Hongzhong Zheng2

Bob Brennan2 Yuan Xie1
1University of California, Santa Barbara 2Samsung Semiconductor Inc.

{shuangchenli,yuanxie}@ece.ucsb.edu
{dimin.niu,k.tej,hz.zheng,bob.brennan}@ssi.samsung.com

ABSTRACT
Data movement between the processing units and the memory
in traditional von Neumann architecture is creating the “memory
wall” problem. To bridge the gap, two approaches, the memory-rich
processor (more on-chip memory) and the compute-capable mem-
ory (processing-in-memory) have been studied. However, the �rst
one has strong computing capability but limited memory capac-
ity/bandwidth, whereas the second one is the exact the opposite.

To address the challenge, we propose DRISA, a DRAM-based
Recon�gurable In-Situ Accelerator architecture, to provide both
powerful computing capability and largememory capacity/bandwidth.
DRISA is primarily composed of DRAM memory arrays, in which
every memory bitline can perform bitwise Boolean logic opera-
tions (such as NOR). DRISA can be recon�gured to compute vari-
ous functions with the combination of the functionally complete
Boolean logic operations and the proposed hierarchical internal
data movement designs. We further optimize DRISA to achieve high
performance by simultaneously activating multiple rows and sub-
arrays to provide massive parallelism, unblocking the internal data
movement bottlenecks, and optimizing activation latency and en-
ergy. We explore four design options and present a comprehensive
case study to demonstrate signi�cant acceleration of convolutional
neural networks. The experimental results show that DRISA can
achieve 8.8⇥ speedup and 1.2⇥ better energy e�ciency compared
with ASICs, and 7.7⇥ speedup and 15⇥ better energy e�ciency over
GPUs with integer operations.

CCS CONCEPTS
•Hardware→ Dynamic memory; • Computer systems orga-
nization → Recon�gurable computing; Neural networks;

KEYWORDS
DRAM, Accelerator, Neural Network
ACM Reference format:
Shuangchen Li, Dimin Niu, Krishna T. Malladi, Hongzhong Zheng, Bob
Brennan, Yuan Xie. 2017. DRISA: A DRAM-based Recon�gurable In-Situ
Accelerator. In Proceedings of MICRO-50, Cambridge, MA, USA, October
14–18, 2017, 14 pages.
https://doi.org/10.1145/3123939.3123977

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
MICRO-50, October 14–18, 2017, Cambridge, MA, USA
© 2017 Association for Computing Machinery.
ACM ISBN 978-1-4503-4952-9/17/10. . . $15.00
https://doi.org/10.1145/3123939.3123977

1 INTRODUCTION
The increasing gap between the computational performance of
the processors and the memory has created the “memory wall”
problem [90], in which the data movement between the processing
units and the memory is becoming the bottleneck of the entire
computing system, ranging from cloud servers to end-user devices.
For example, the data transfer between CPUs and o�-chip memory
consumes two orders of magnitude more energy than a �oating
point operation [26], and while technology scaling helps reduce
the total energy, data movement still dominates the total energy
consumption [47].

To bridge this gap between the computing and the memory, ex-
tensive work has been done to explore possible solutions, which
can be classi�ed into two categories: The �rst approach, referred to
as the memory-rich processor, sticks with the computing-centric ar-
chitecture while bringing more memory on-chip. For example, mod-
ern processors integrate up to 128MB embedded DRAM (eDRAM)
based caches [37]. This on-chip memory not only reduces energy-
consuming o�-chip memory accesses, but also provides higher
memory bandwidth, improving system performance. The second
approach, referred to as the compute-capable memory, switches
to the memory-centric processing-in-memory (PIM) architecture.
Lightweight processing units are designed in the logic die of 3D
stackingmemories [67] or in the sameDRAMdie in 2D cases [46, 71]
for near/in-memory computing. This approach signi�cantly reduces
the tra�c between the host and memories, and embraces the large
internal memory bandwidth.

Shidiannao
(ASICs)

BufferedComp
NeuroCube

Dadiannao

This Work

TITAN X
(GPU)

1.E+00

1.E+01

1.E+02

1.E+03

1E+00 1E+01 1E+02 1E+03 1E+04

N
or

m
al

iz
ed

 O
n-

ch
ip

M

em
.C

ap
ac

ity
 p

er
 A

re
a

Normalized Peak Perf. per Area

Compute-capable
Memory (PIM)

Memory-rich
Processor

Figure 1: The on-chip memory capacity and computing ca-
pability of various approaches [3, 22, 46, 53].

However, both approaches have limitations. As shown in Figure 1,
bringing large on-chip memory to the powerful memory-rich pro-
cessor architectures (the lower right corner) boosts the performance,
but the memory capacity is still not enough for data intensive ap-
plications. On the other hand, the PIM approaches (the upper left
corner) e�ectively bond more memory to the computing resources,
but the performance is not as competitive as GPU/ASICs. For exam-
ple, Neurocube achieves 132GOPs [53], while the latest GPU can
reach 44TOPs [3]. Emerging applications, such as deep learning

288

https://doi.org/10.1145/3123939.3123977
https://doi.org/10.1145/3123939.3123977

MICRO-50, October 14–18, 2017, Cambridge, MA, USA S. Li et al.

and bioinformatics (like meta-genome data analysis [21]), are both
compute and memory intensive, with a challenging demand for
both powerful computing and large memory capacity/bandwidth
(the upper right corner in Figure 1), which may not be satis�ed by
either of these approaches.

Designing a novel architecture to achieve the goal in the target
region in Figure 1 is challenging. It is di�cult to keep adding more
memories to processors, since even the high-density eDRAM suf-
fers from a much larger cell size (60F 2�80F 2 [31, 38]) than DRAMs
(6F2). On the other hand, it is also di�cult to improve PIM’s per-
formance. For the 3D-based PIM, the area of the processing unit is
limited by the logic die’s area budget [17]. For the 2D-based PIM,
building complex logics with DRAM process technologies results
in large area and cost, making the approach unviable for the DRAM
industry [18].

The goal of this paper is to build a processing unit that pro-
vides both high computing performance and large memory capac-
ity/bandwidth (the upper right region in Figure 1). To that end, we
present a DRAM-based Recon�gurable In-Situ Accelerator archi-
tecture, DRISA. The accelerator is built using DRAM technology
with the majority of the area consisting of DRAM memory arrays,
and computes with logic on every memory bitline (BL). By apply-
ing the DRAM technology, we achieve the goal of large memory
capacity for the accelerator. Furthermore, DRISA’s in-situ com-
puting architecture eliminates unnecessary o�-chip accesses and
provides ultra-high internal bandwidth. To avoid the large over-
head caused by building logic with DRAM process, DRISA uses
simple and serially-computing BL logic. The BL logic has bitwise
Boolean logic operations (like NOR), which are either performed by
the memory cell itself, or by a few add-on gates. DRISA can be re-
con�gured to compute various functions (like additions) by serially
running the functionally complete Boolean logical operations with
the help of hierarchical internal data movement circuits. Finally, to
achieve high performance with these simple and serially-computing
logic elements, multiple rows, subarrays, and banks are activated
simultaneously to provide massive parallelism. We compare four
di�erent design options, and present a case study of accelerating
the state-of-the-art convolutional neural networks (CNNs). The
contributions of this paper are summarized as follows:
• We propose an accelerator architecture, DRISA, built with DRAM

technology. It provides large on-chip memory and in-situ com-
puting bene�ts. To reduce the overhead of building logic with
DRAM process, we use simple Boolean logic operations for com-
puting but achieve high performance after optimizations.

• A set of circuits and microarchitectures are implemented in
DRISA, including the BL logic design, the recon�gurable scheme,
hierarchical internal data movement circuits, and controllers.
Optimizations for unblocking the internal data movement bottle-
necks and reducing activation latency and energy are presented
to achieve higher performance.

• We use CNN acceleration as a case study to demonstrate the e�ec-
tiveness of our approach, with resource allocation optimizations.
We compare four di�erent DRISA designs and present conclu-
sions that guide e�cient DRISA design. We also compare DRISA
with the state-of-the-art ASIC and GPU solutions for the CNN
case study.

2 BACKGROUND
A DRAM chip contains multiple banks, which are connected with
a global bus. Each bank has many subarrays that share global BLs.
Global decoders decode parts of the addresses to the global word-
lines (WLs) that are connected to di�erent subarrays, which consist
of cell matrices (mats) as the basic units. Every mat has its private,
local WL decoders, drivers, and sense ampli�ers (SAs). A DRAM
cell is constructed with an access transistor and a capacitor (1T1C).
Within one chip, only a single row in a subarray is activated at a
time. The mats in a subarray work in a lock-step manner.
The DRAM fabrication process and the logic fabrication process
are very di�erent and often incompatible [55]. It is di�cult to build
logic devices with a DRAM process, or DRAM with a logic process.
The transistors in a DRAM process are highly optimized for density
and low leakage, at the expense of performance. Moreover, the
DRAM process usually has only three metal layers, but the logic
process often has more than twelve metal layers, meaning that
logic circuits in a DRAM process could su�er from higher inter-
connect overhead. In summary, building complex logic circuits in a
DRAM process is challenging with 22% performance degradation
and 80% area overhead [55], which is the key reason why earlier
PIM research that put the processor and DRAM on the same die had
limited success. On the other hand, building DRAM cells within a
logic process results in embedded DRAM (eDRAM), which is also
ine�cient. eDRAM results in 10x area overhead [31, 64], around
4⇥ more power, and 100⇥ shorter retention time [64], compared
with DRAM.
Deep neural networks are a family of machine learning algo-
rithms inspired by human brain structures [57]. The case study in
this paper focuses on the CNN inference task. There are typically
three types of layers in CNNs: convolutional layers, pooling layers,
and fully connected layers. The convolutional layer is described as
follows,

f

out
i = � (

nin’
j=1

f

in
j ⌦ �i, j + bi), 1  i  nout, (1)

where f

in
j is the j-th input feature map, and f

out
i is the i-th output

feature map, �i, j is the convolution kernel, bi is the bias term, and
nin and nout are the numbers of the input and output feature maps,
respectively. � is the activation function that could be ReLU, clip,
hard tanh, etc. The pooling layer sub-samples the feature maps. The
fully connected layer calculates the dot product between the input
neuron vector and the synapse weight matrix. The output vectors
then go through the activation function. Besides these layers, batch
normalization [45] is applied, which normalizes the data with mean
and variance values collected during training.

3 OVERVIEW
The Key Idea. To implement in-situ computing with large on-
chip memory, we build DRISA with DRAM process technology.
The main challenge is to e�ciently build complex logic functions
within the DRAM process. We solve this problem by only building
simple Boolean logic operations. Figure 3 shows a logical overview
of DRISA. To avoid building complex circuitry in DRAM process
technology, we leverage vast, parallel DRAM internal resources
to increase computational ability by serially cascading on simple

289

DRISA: A DRAM-based Reconfigurable In-Situ Accelerator MICRO-50, October 14–18, 2017, Cambridge, MA, USA

…

…

(a) Chip
Bus/IO

(b) Bank

Global
WL Dec.

…
…

Subarrays Global WL Global BL

(b)

(c)

(c) Mat
Local WL
Dec.

WL
BL

SA

(d)

(d) Cell
Access
Trans.

Capacitor

…

…

(a) Chip
Bus/IO

(b) Bank

Global
WL Dec.

…
…

Subarrays Global WL Global BL

(b)

(c)

(c) Mat
Local WL
Dec.

WL
BL

SA

(d)

(d) Cell
Access
Trans.

Capacitor

(a) Chip (b) Bank

…
… Group

Bank

…
…

gCtrl

Group

cCtrl
gBus bBus …

bC
tr

l

bBuf

Mat…

sC
tr

l

(c) Subarray and mat

Adr

calcAdr

movCtrl

sCtrl
Cell Region for Data

Cell Region for Calc

lDrv

…

… calc-SA
intra/inter-lane SHF

lane-FWD …
Subarry

2

34

55

6

1

Figure 2: DRISA architecture design. (Glossary - cCtrl/gCtrl/bCtrl/sCtrl: chip/group/bank/subarray controller. gBus/bBus:
group/bank bus. bBuf: bank bu�er. lDrv: local driver. SHF: shifter. FWD: forwarding.)

Row operand-1

Row result

Boolean Logic
SHF

Row operand-2

S
A

s
C

el
ls

Multi-
subarray

active

Multi-bank active
General OP
(add)

Boolean
logics

BL-width
vector

Serial

(a) (b) (c)
Figure 3: A logical overview of DRISA. (a) Performing gen-
eral operations through serially running Boolean logic op-
erations. (b) Implementing Boolean logic operations with
SA’s help for each BL. (c) Multi-bank/subarray activation for
more parallelism.

Boolean logic. The bitwise Boolean logic operations are imple-
mented in an e�cient manner for each BL. To compute, DRISA �rst
opens two rows, performs logical operations using SAs modi�ed
with logic and shifters, and then writes back to a result row. It
achieves recon�gurability by implementing di�erent sets of func-
tions serially for a desired overall function. However, in order to
increase throughput with multiple DRAM resources, multiple rows,
subarrays, and banks need to be activated simultaneously, leading
to challenges that we describe next.
Challenges and Solutions. Our DRISA architecture exploits mas-
sive DRAM parallelism and achieves large computational through-
put for in-situ recon�gurable computing. However, new design
methodologies are required to achieve high performance. We out-
line the challenges and our contributions to address them:
• Challenge-1:Achieving high performance with the simple and se-
rial logic elements. We target DRISA as an accelerator instead of
as host memory to avoid tight area constraints, and hence we can
optimize it for high performance. DRISA requires simultaneous
activation of multiple subarrays and banks to provide large paral-
lelism and thereby large computational throughput. To solve this,
we propose bank reorganization to enable activating multiple rows
(Section 4.4).
• Challenge-2:Unblocking the internal data movement bottleneck.
Wepropose group/bank bu�ers to isolate localmovements inDRAM
and enable moving multiple data bu�ers in parallel (Section 4.2).
We also reorganize the bank to reduce data collisions on the shared
data bus by designing a hierarchical bus (Section 4.4).
• Challenge-3:Optimizing ACT to reduce its latency and energy.
Activation (ACT) is a basic step for DRISA computing. Directly

adopting a DRAM ACT mechanism results in large latency and
energy overheads. Our bank reorganization makesWLs/BLs shorter
(Section 4.4). We also present split computing and storage array
regions, µ-operations, and local instruction decoding to save latency
and energy on ACT (Section 4.3).

4 DRISA ARCHITECTURE
We show DRISA’s architecture design in Figure 2. It inherits most
aspects of standard DRAM design. However, one more hierarchy,
called a group, is added between the hierarchy of the chip and bank.
Groups are connected with a bus (gBus), and controlled by the
chip-level controllers (cCtrl). Within a bank, bank-level decoders
are modi�ed as controllers (bCtrl). Bank bu�ers (bBuf) are added
to help data movements. In a subarray, a subarray-level controller
(sCtrl) is added. In a mat, the cell array is split into two regions,
for storage and computing, respectively. The SA is modi�ed to
support the computing. Extra hardware to support data movements
is also added. A mat is logically partitioned vertically into lanes,
and each lane is equivalent to an n-bit processing unit. We elaborate
on the design details and justify the design choices in the rest of
this section.

4.1 Microarchitecture for Computing
The basic operating units for the recon�gurable computing are the
Boolean logic operations and the shifters (1 and 2 in Figure 2,
respectively). For the logic part, there are two approaches that can
make DRAMs computing-capable: the 3T1C solution and the 1T1C
solution. Both of these approaches share the same shifter design.
Rs

Rt

Rr

rWL

wBL

rBL
latch

logic
gateSA

...

...

...
...

latches
n-bit

adder
(a) 3T1C (b) 1T1C: AND/OR + logic gate (c)1T1C + adder

1
0
0 1

0
1

0.3 0.6

0 1
<0.5 >0.5

Rs
Rt
Rr

Rs
Rt
Rr

SA
SA SA

wWL

and

Pre-load

orRs
Rt
Rr

Figure 4: Cell structures. (Glossary - Rs/Rt/Rr: Operand
source row s and source row t, result row r.)

• 3T1C-based computing: This design changes standard DRAM
cells to 3T1C and uses cells themselves for computing. Therefore
no other circuits are required. 3T1C cell was used in early DRAM
designs [84]. As shown in Figure 4(a), both WLs and BLs are sepa-
rated as two lines for read and write, respectively. The cell includes
two separated read/write access transistors, and an extra transistor

290

MICRO-50, October 14–18, 2017, Cambridge, MA, USA S. Li et al.

that decouples the capacitor from the read BL. The third transistor
also connects the cell in a NOR style on the read BL. Therefore, the
3T1C cell naturally performs NOR logic (NOR itself is functionally
complete) on BL without any extra design changes.
• 1T1C-based computing: This design keeps the standard DRAM
cells unchanged, but uses extra circuits attached to the SAs for
computing. There are two types of computing. First, it calculates AND
and OR using the method proposed by Seshadri et al. [80] (on the left
part of Figure 4(b)). The result row is pre-stored with 0 (for AND) or
1 (for OR), and three rows are activated simultaneously. Then, after
charge sharing (shown as 0.3 and 0.6 in the �gure), the SA readout is
the logic result, and the result is restored to the result row during the
row closing. Note that this operation will also destroy the operand
rows, so a row copy before the operations is required. However, the
problem is that AND/OR alone are not logically complete. Therefore,
the second types of computing is demanded. DRISA calculates other
logic function like NOT to achieve logical completeness, as shown
in the right part of Figure 4(b). Extra circuits for a latch and logic
gates (to perform one or some of Boolean logic operations) are
added. The operand Row s (Rs) is activated �rst, and the data is
stored in the latch. Then, the operand Row t (Rt) is activated, and
its data, along with the data in the latch, is fed into the logic gate.
The result is then read out or restored to the result row. Taking the
1T1C-based solution to an extreme scenario, we can also design a
n-bit adder circuit for n-bit BLs, as shown in Figure 4(c).

Both of the 3T1C- and 1T1C-based solutions make each BL
computing-capable. This architecture makes in-situ computing pos-
sible, since the memory cell and the BL logic are tightly coupled.
• Circuits for intra-lane SHF: Shifters are required in our archi-
tecture because the bitwise Boolean logic operations only performs
logical operations but not arbitrary data movement. Shifters are
designed for data shu�ing, thereby enabling general-purpose com-
puting. Figure 5(a) shows the shifter circuits that take a 4-bit lane
as an example. The circuits are located at 2 in Figure 2. Figure 5(b)
and (c) show the examples for left shift-2 and right shift-3. The
circuit design is similar to a barrel shifter. For an n-bit lane, we
implement arithmetic 1/(n-1)-bit right shifts. We also implement
1/exp2-bit left shifts. The left shift is either a logical or arithmetic
shift. We design �lling lines that can �ll in 0/1 accordingly. This
design can then perform arbitrary shifts by running serially.

L0

R1

FLwBL
rBL

(a) circuit (c) left SHF-2 (c) right SHF-3R3

L1
L2

L2 R3

Figure 5: The shift (SHF) circuits and examples. (Wires -
Green: Poly. Black/Gray: Metal-1. Blue: Metal-2. Glossary -
Lx/Rx: Left/Right shift x. rBL/wBL: read/write bitline. FL:
Filling line.)

Our shifter design is optimized for common cases. Even though
1-bit left/right shift alone is functionally complete, we design extra
(n-1) bit right shift circuits to cover the common case that makes
the whole lane all-zero/one according to its sign bit. We also design

special exp2-bit left shift circuits to cover the most common shifts in
full adders, making it 11% faster.We do not design special circuits for
every possible shift cases, thus saving 60% shifter circuit area, 84%
shifter latency, and 52% shifter energy, without any performance
degradation for all µ-operations de�ned in Table 1.
• Recon�gurable computing: With the functionally complete
logic and shifters, DRISA can theoretically accomplish any opera-
tions by running serially. In Figure 6, the 3T1C one-cycle NOR logic
is used as an example to show how DRISA supports some frequently
used operations, i.e., selection (SEL), addition (ADD), and multipli-
cation (MUL). We use the notation shown in the upper-left corner
of Figure 6, where the blocks denote rows in DRAMs, white rows
are inputs, blue rows are intermediate terms, and green rows are
outputs. Arrows connect the sources and result of a NOR logic.

Rin-1
Rin-2
Rin-3

Rr-1
Rr-2

Rin-1
Rin-2
Rsel

Rr

Rin-1
Rin-2

G0

P0

Gi

Pi

<<2i

Gi+1

Pi+1

Glast

P0

<<1

Cout
Sum

cy
cl
es

(b) CSA (c) FA(a) SEL

1.initial 2. prefix
tree

3. final
NOR

Figure 6: Building operations with basic Boolean logic oper-
ations.

To calculate SEL, we duplicate the selector 0/1 to a whole row.
Then the SEL is broken down into NOR logic step by step, as shown
in Figure 6(a), which takes 7 cycles and 6 intermediate terms in
total. For adders, we show both a carry-save adder (CSA), which
has three inputs and two outputs without a carry-out, and a full
adder (FA), which has two inputs and one output and a carry-out.
Breaking down the CSA into NOR logics, we get Figure 6(b). The FA
calculation is shown in Figure 6(c). There are three steps: Step one
initializes and generates partial terms P0 and G0. Step two follows
the pre�x tree [68] logics, generates Pi and Gi , and iterates lo�(n)
times for an n-bit adder. During this step, left shifting is required.
Step three �nally generates the sum and the carry-out. For the
MUL, the calculation depends on the multiplier’s bit width. If the
multiplier is binary, the MUL collapses as a XNOR logic. Otherwise,
MUL is calculated by generating partial terms with shifter and SEL
and then sums all these partial terms with both CSA and FA.

1 2 3 4 5 6 7 8
2 4 6 53 75 97 119 141 163
4 4 6 67 89 111 133 155 177
8 4 6 95 117 139 161 183 205

16 4 6 151 173 195 217 239 261

1 2 4 8 16
2‐bit multip 4 6 75 163 339

4 4 6 89 177 353
8 4 6 117 205 381

16 4 6 173 261 437

CSA FA
2 13 17
4 13 24
8 13 31

16 13 38

1

10

100

1000

1 2 4 8 16

C
yc

le
s

n-bit Lane

2-bit multiplier
4
8
16

0

10

20

30

40

2 4 8 16

C
yc

le
s

n-bit Lane

CSA FA

1

10

100

1000

1 2 4 8 16

C
yc

le
s

n-bit per lane

4-bit multiplier
8-bit
16-bit

0

10

20

30

40

2 4 8 16

C
yc

le
s

n-bit per lane

CSA FA

Figure 7: 3T1C computing cycles for ADD andMUL.

Figure 7 (left) shows the cycles to compute CSA and FA. DRISA
favors CSA because as each lane’s bit width increases (x-axis), CSA
retains a constant latency. Figure 7 (right) showsMULwith di�erent
lane counts and multiplier widths, both in bits. For 1-bit and 2-bit
MUL, it takes only 5-6 cycles. However, if the multiplier has more
than 3 bits, it takes hundreds of cycles for computing.

291

DRISA: A DRAM-based Reconfigurable In-Situ Accelerator MICRO-50, October 14–18, 2017, Cambridge, MA, USA

4.2 Microarchitecture for Data Movement
A general purpose processor requires �exible data movement. The
shift circuits mentioned above only cover inter-lane movement. We
design circuits for data movement between lanes in this subsection,
in order to have a functionally complete hierarchical shift solution.
Speci�cally, within the subarrays, we design inter-lane SHF circuits.
Between subarrays, we have improved RowClone [81]. We also have
the lane-FWD circuits, to move data from and to arbitrary lanes.
•Circuits for inter-lane SHF: Inter-lane SHF (2 in Figure 2) shifts
a row from one lane to its adjacent lane. The circuits are shown in
Figure 8(a). The shifter contains ping/pong phases. We choose this
two-step shift because it saves area, since all lanes share the same
shift data wire (the two upper blue wires in Figure 2). Figure 8(b)
and (c) show the example of left shift. If shifting right, ping and odd
are �rst selected for the ping-phase, and then pong and even for the
pong-phase.

(a) circuit (b) Left SHF-ping (c) Left SHF-pong

even
ping
odd
pong

Figure 8: The inter-lane SHF circuits and examples.

• Circuits for lane-FWD: Lane-FWD (3 in Figure 2) supports
random read/write from/to an arbitrary lane. Figure 9(a) shows the
circuit design. Figure 9(b) and (c) show examples of reading Lane-1
and writing Lane-2, respectively.

sel
w/r

data

Lane-1

Lane-2

(a) circuit

Lane-1

Lane-2

(b) read Lane-1 (c) write Lane 2

Lane-1

Lane-2

Figure 9: The lane-FWD circuits and examples

• Enhanced RowClone with bank bu�er: We improve upon the
existing RowClone [81] technique in DRISA. Besides original row-
to-row copy, DRISA can choose either to copy the whole row, or
to repeatedly copy the data from a certain lane. Furthermore, we
add bank bu�ers (4 in Figure 2) in order to tackle Challenge-2
(preventing data movement from becoming the bottleneck). The
limitation of RowClone lies in the shared memory data bus. Al-
though multiple subarrays/banks work simultaneously in DRISA,
the initial RowClone only works with two subarrays at one time
since it utilizes the shared data bus between banks. Bank bu�ers,
which are implemented by registers, isolate intra-bank RowClones
from other banks, so that multiple intra-bank RowClones work in
parallel in di�erent banks.

4.3 Microarchitecture for Controllers
• Instruction design: We abstract an instruction set shown in Ta-
ble 1. The instruction follows the R-format in MIPS [72], which con-
tains the opcode, the address for two (or possibly one or three) input
rows and the output row, and the funct code that describes detailed
controls. DRISA has the basic instructions for Boolean logic opera-
tions and data movement mentioned earlier, as shown in the left

side of Table 1. In addition, there are also µ-operations, including fre-
quently used functions (SEL, ADD, MUL, MAX, etc). Next, bulk data
copy and also compute reductions with addition/maximal/minimal
operators are supported. Finally, a vector-wise inner-product oper-
ation is also supported. Note that instructions like control transfer
are carried out by the host and therefore not included in Table 1.

Ba
si
c
In
st
r.

opcode funct

µO
ps

.

opcode funct
Logic (NOR etc) type of logic Calc. (FA etc) N/A
SHF L/R, o�set, �lling Bulk-copy length, stripe
Lane-SHF L/R, o�set R-SUM length
Dup-copy N/A R-MAX/MIN length
Copy bank/group/chip Inner-product length

Table 1: The basic instructions and µ-operations.

•Multi-level controllers: DRISA has four levels of controllers (5
in Figure 2): chip, group, bank, and subarray-level controllers. They
support simultaneous multi-subarray/bank activation for better
parallelism. The �rst two levels (chip/group) of controllers are
essentially decoders, but they can also help with data movement.
The bank-level controllers decode the instructions. They convert
the instructions and µ-operations into addresses, vector lengths, and
control codes, and then send them to the controllers in the active
subarray. The subarray controller consists of address latches, local
decoders, and counters. The address latches are essential for multi-
subarray activation [54]. The counters are used for continuously
updating addresses to local decoders for the bulk-style µ-operations.
• Split array regions: The cell array is split into the data region
and the compute region (6 in Figure 2). They share BLs and SAs, but
have separate decoders in the subarray controllers. This separation
reduces the area and performance overhead while supporting multi-
row activations (required by computing in Section 4.1). A strong
decoder that activates multiple rows in one cycle is costly. On
the other hand, designing a latch for each local WL and serially
decoding for the active rows [60] wastes too much latency and
energy. Instead, in the split array case, the data region that has
most of the cells does not need multi-row activation. The compute
region that stores the intermediate data (blue rows in Figure 6) only
contains a few (typically 16) rows. Designing a strong one-cycle
decoder is much easier.

Without the split regions, a strong one-cycle decoder takes
204.3% area overhead (compared with a normal 256 fan-out de-
coder). On the other hand, the serial solution only takes 4.3% area
overhead, but results in 10.8% peak performance degradation. After
adapting the split cell region idea, we have one-cycle decoding with
only 19.02% area overhead.

4.4 Optimizing Bank Reorganization
We reorganize bank/array inDRISA to optimize for performance and
energy e�ciency. Conventionally in DRAM memories, bank/array
organizations are optimized for memory density. We switch the
optimization objective in DRISA since we are now designing accel-
erators instead of memories.
• Improving the parallelism: We have to improve parallelism to
achieve high performance. It takes DRISA around 30 cycles for
FA. If considering each cycle as tRC, DRISA’s adder runs as slow
as ⇠1MHz. To overcome Challenge-1, we present two techniques:

292

MICRO-50, October 14–18, 2017, Cambridge, MA, USA S. Li et al.

(1) DRISA simultaneously activates multiple subarrays in multiple
banks. To achieve this, each subarray and bank has their inde-
pendent controllers with latches. Previous work [54] shows such
modi�cation incurs ignorable area overhead. The detailed controller
design is shown in Section 4.3. (2) Furthermore, DRISA activates
more rows at one time. We reorganize the banks and subarray by
making the subarray smaller (few number of rows) but with larger
quantity. Therefore, the number of rows/subarrays that can be ac-
tive simultaneously is increased. Later, Figure 11 shows that it costs
58% more area but gains 4⇥ more parallelism. This is worthwhile
when optimizing for performance per area.

However, there are limitations for out parallelism improvements.
First, the power budget is a hard constraint. Second, modernDRAMs
use open-BL architecture, where the SA works with a di�erential
sensingmechanism. It needs an idle adjacent subarray as a reference.
Therefore, adjacent subarrays cannot be activated simultaneously,
i.e., we can at most activate 50% of all the subarrays. Third, more
compute parallelism is not necessarily better, since internal data
movement may become the bottleneck. Section 6.2 shows that the
subarray’s e�ective utilization can be as low as 10%, due to data
blocking.
• Unblocking the data movement bo�leneck: For Challenge-2,
we propose four techniques. (1) We design bank/group bu�ers in
Section 4.2, in order to isolate local movements and parallelizing
them. (2) We reorganize the banks by reducing the number of subar-
rays per bank while increasing the bank quantity. Fewer subarrays
per bank reduces the data conjunctions for intra-bank data move-
ments. (3) We add groups and group bu�ers, so that inter-bank
data movements inside di�erent groups work in parallel. (4) We
propose the bulk-style µ-operations (Section 4.3) to reduce instruc-
tion data movement (and decoding). One µ-operation only requires
one-time data transfer and decoding, and then the local controller
auto-generates bulk instructions.

7 6 5 4 3 2 1
1024 512 256 128 64 32 16

8 16 32 64 128 256 512
2 4 8 16 32 64 128

tStep(ns) 10.5 10.5 9.31 9.3 8.53 8.53 8.02
tClone 49700 12800 3380 1060 384 233 152
eStep(nJ) 0.106 0.106 0.106 0.106 0.106 0.106 0.106
eClone 13 12.9 7.06 7.03 4.12 4.11 2.66
area 53.9 53.9 54 54.2 54.7 56.3 61.7
Latency 15.35359 3.954341 1.044246 0.164335 0.026635 0.013198 0.011095
Efficiency 5.00E‐04 0.00194 0.006781 0.043089 0.243697 0.491817 0.531836
E: 1.935886 1.914062 1.056738 0.741594 0.333173 0.335826 0.268381
memL: 15.40314 3.953778 1.032268 0.16065 0.026886 0.012333 6.75E‐03
memE: 1.907503 1.885825 1.030171 0.693545 0.221553 0.180768 0.116829

576.4349
16 sub 1.48%

512 bank
bank/group 512 256 128 64 32 16
group 1 2 4 8 16 32
Latency 0.038432 0.019219 0.011095 0.010527 0.010527 0.010527
Efficiency 0.153541 0.307031 0.531836 0.560552 0.560552 0.560552
E: 0.268381 0.268381 0.268381 0.268381 0.268381 0.268381
memL: 0.035574 0.016358 0.00675 0.001946 0.000294 2.23E‐05
memE: 0.116829 0.116829 0.116829 0.116829 0.116829 0.116829

3.65083

1T1C‐4Gb‐mixed

0%

20%

40%

60%

5.E-3

5.E-2

1 2 4 8 16

U
til

iz
at

io
n

(%
)

La
te

nc
y

(s
)

Latency
Efficiency0%

10%
20%
30%
40%
50%
60%

1.E-3

1.E-2

1.E-1

1.E+0

1.E+1

1.E+2

10
24 51

2
25

6
12

8 64 32 16

U
til

iz
at

io
n

(%
)

La
te

nc
y

(s
)

Latency
Efficiency

Figure 10: The latency and resource utilization for real ap-
plication (VGG-16 on 1T1C-mixed). Left: Impact of number
of subarrays per bank. Right: Impact of number of groups.

Figure 10 (left) shows that reducing the number of subarrays
per bank from 1024 to 64 achieves 576⇥ better performance with
only 1.5% area overhead. This increase of resource utilization is
the evidence that this performance gain comes from faster data
movements. Figure 10 (right) shows that as the number of groups
increases from 1 to 16, it achieves 3.65⇥ better performance. In
addition, by adapting µ-operations, we achieve another 22.94% and
3.43% reduction on latency and energy, respectively.
• Optimizing ACT latency and energy: Reducing the ACT over-
head is essential in DRISA. In a typical DRAM, a activation cycle
(tRC) takes 46ns [2] and 24.9% of the memory power consump-
tion [96]. Such a long clock period and large energy consumption

are challenging for DRISA, which computes serially with multi-
ple cycles per operation. To tackle this Challenge-3, we propose
three techniques. (1) We reorganize arrays with shorter BLs (fewer
columns) and WLs (fewer rows) [86]. Shorter BLs and WLs result in
smaller RC and hence smaller latency and energy, as well as easier
and faster decoding. (2) We include the extra group hierarchy be-
tween the chip and banks. This makes the bus become hierarchical
and hence more scalable, so that the bus overhead is reduced. (3)
The µ-operations also help; one µ-operation may contain hundreds
of ACT instructions, but it is only transferred on the global bus for
one instance. Average ACT cost is then reduced.

1T1C‐none‐4Gb

8‐
1K
x1

8‐1Kx16K 512‐256x2K 512‐256x2K‐
H

512‐256x2K‐
H

A A B C D
1 ACT 0.165 0.0663 0.0568 0.0568
0 Gbus 0.0007725 0.0119 0.00598 0.00598
Gpredec 2.21E‐07 7.83E‐07 7.83E‐07 7.83E‐07
Gdec 3.15E‐08 2.52E‐07 2.52E‐07 2.52E‐07 66.88%
1 sum 0.16422725 0.054399 0.050819 0.047329 A B
0 bus 0.00086896 0.00698 0.00349 0 0.53% 12.83%
1 BL&SA 0.16305366 0.047088 0.046998 0.046998 99.29% 86.56%
0 Dec 0.00011963 0.00013 0.00013 0.00013 0.07% 0.24%
0 WL 0.000185 0.000201 0.000201 0.000201 0.11% 0.37%

11 tRCD 10.7898 3.29638 3.04946 3.04946
0 Gdec 0.0607 0.0588 0.0588 0.0588
1 Bbus 0.791 1 0.501 0.501
0 bPreDec 0.292 0.189 0.189 0.189
4 bDec 4.1 0.532 0.532 0.532 62.53%
12 sum 11.8121 4.42658 3.93066 3.42966 A B
1 bus 0.791 1 0.501 0 6.70% 22.59%
5 BL&SA 4.8491 2.13458 2.13766 2.13766 41.05% 48.22%
4 Dec 4.392 0.721 0.721 0.721 37.18% 16.29%
2 WL 1.78 0.571 0.571 0.571 15.07% 12.90%

18 area 17.8611345 28.178613 28.4 28.4 57.76%
72 total core 71.7 113
Gdec 2.11E‐05 4.55E‐06
0 GIO 0.000341 1.70E‐04
0 Gcenter 0.248 0.285
0 Gbuf 0.0071 0.000375

ar
ea

 (m
m
2)

4G
En

er
gy
 (n

J)
4 G

La
te
nc
y
(n
s)

0

0.06

0.12

0.18

A B C D

En
er

gy
 (n

J)

bus
BL&SA
Dec
WL

17

20

23

26

29

0

3

6

9

12

A B C D

Ar
ea

 (m
m

2)

La
te

nc
y

(n
s) bus

BL&SA
Dec
WL

Figure 11: Reducing the activation energy and latency (A: 8
banks, 1K-16K subarray; B: 512 banks, 256-2K subarray; C: B
with group (128 banks per group); D: C with local decoding.)

Figure 11 shows the ACT energy and latency for four cases (A
to D) with area results. Case-A is the bank organization in the
original DRAM memory. We observe that the BL dominates both
the latency (41%) and energy (99%) in ACTs. This is the motivation
for our �rst technique that switches to shorter WL/BLs, as shown
by Case-B. 4⇥ shorter BLs and 8⇥ shorter WLs yields 62.5% latency
and 66.9% energy/bit reduction. The downside is 58% larger area.
However, this is acceptable since DRISA is an accelerator optimized
for performance, not a memory optimized for density. Case-C shows
the second technique’s bene�t. By having the group hierarchy, it
reduces the latency and energy spent on the bus by 49.9% and 50%,
respectively. Case-D shows that the third technique is e�ective.
By adapting µ-operations, it further saves 12.7% latency and 6.9%
energy.

4.5 System Integration
We brie�y discuss how to integrate DRISA into the system (de-
tailed software/system support is out of the scope of this paper and
planned as future work). Considering that DRISA is a co-processor
or accelerator instead of a memory, it is integrated in the same
manner as a GPU or FPGA, not a PIM system.

driver

library
ctrl

PCI-e

DIMM
runtime

compiler

API Language

Instr.

User Interface

Figure 12: Integrating DRISA into the System.

For the software component , DRISA follows the same program-
ming model as Automata [27]/GPU/FPGA. DRISA requires a special
programming language or framework, like CUDA for GPU and AP
SDK [6] for Automata. A corresponding compiler is also necessary.
In order to map general purpose program onto DRISA, program-
mers can treat DRISA as a multiple issued vector machine, similar
to programming with AXE/SSE. To make programming easier,
application-speci�c APIs should also be provided to the users. The

293

DRISA: A DRAM-based Reconfigurable In-Situ Accelerator MICRO-50, October 14–18, 2017, Cambridge, MA, USA

DRISA compiler compiles the high-level descriptions into DRISA
instructions, and it works along with the driver and the runtime
engine to o�oad tasks ontoDRISA, transfer data, and controlDRISA
to �nish the task.

For the hardware, both PCIe and DIMM solutions are applica-
ble. PCIe integration (like GPU, FPGA, Automata [27]) provides
su�cient power delivery and well-developed control system. The
DIMM solution (like AC-DIMM [35]) requires DRISA to support a
DDR-like interface but function like an accelerator. This solution
is still within active research. The advantages of the DIMM solu-
tion is simplicity for scaling-out, considering that the number of
DIMM slots is much more than PCIe’s. The downside is that the
power budget for each slot is low, which limits the performance of
every individual DRISA. For both of those solutions, there is an SoC
controller on board, which supports inter-chip communications.

To scale-out for applications with larger data sets than DRISA’s
memory capacity, DRISA follows the solution of multi-GPUs, which
leaves the partitioning job to programmers or frameworks (like
Torch [9]).

4.6 Discussion
Limitations. DRISA is not suitable for �oating point calculation,
even though it is capable of this functionality. The limitation lies
in the lock-step within a subarray, since all lanes in one subarray
share the same controller. This dramatically hurts the performance
of �oating point operations, because the internal control of �oating
point calculation is data dependent. For example, the shift for signif-
icands alignment is based on the subtraction result of exponential
biases. Therefore, every lane potentially requires a di�erent bit shift,
which is not supported by the lock-step architecture. Instead, a sin-
gle �oating point operation is required to run on a whole subarray
instead of a single lane, massively reducing lane-level parallelism.
Process variation.Multiple experimental studies and patents have
already established the viability of 3T1C and 3 row activation de-
signs in DRAM, even in the presence of manufacturing variations.
In addition, Micron’s Automata has demonstrated the feasibility
of heterogeneous circuits design with DRAM process technology.
Speci�cally for DRISA, we examine the impact of these variations
and general DRAM challenges, since the computed results depends
on the nominal operation of the proposed bitwise logic computa-
tional the DRAM cell level.

The �rst challenge is with variable cell voltage level due to
charge-leak, thereby impacting the charge-sharing operation with
bitline. DRISA is not impacted by this challenge since every bit-
wise logical operation is preceded by a data-copy to the source
and destination rows (Rs, Rt). This naturally constitutes DRAM
restore operation, charging the voltage levels to the cell value and
o�sets any charge leaking that could a�ect cell-sharing operation
with three-rows. In addition, DRISA can tolerate 8ms retention time,
compared with 64ms in commodity DRAM, which makes it even
more robust.

The second challenge relates to variation in the cell-level capaci-
tances that could a�ect the bitwise logical operation due to strong
or weak capacitances. Fortunately, DRISA has a 4-point approach
that ensures strong immunity to these challenges:

• First, process variations’ impact in the context of multi-row acti-
vation in 1T1C-based designs were already examined in detailed
by Buddy-RAM [82]. The impact was shown to be minimal, a�ect-
ing special patterns of cell values with speci�c cell capacitance
strengths. However, even for these cases, measurements show that
the logic function sustains even with ±20% process (40% cell-cell)
variation. For the case of DRISA design, the theoretical limits allow
±33% capacitance variation for a 3 wordline design, but our evalua-
tion places a tighter bound of ±28% to ensure safe margin for sense
ampli�er. DRAM systems today have a process variation much
less than this tolerable ±28% (56% cell to cell). For example, the
capacitance di�erence between two generation is only 10⇠15% [70].
Also, industry inventions on new DRAM capacitance structures
signi�cantly increase the capacitance of DRAM cell and therefore
reduce the impact of variation [70].
• Next, as discussed in Section 4.1, DRISA array structure is fun-
damentally di�erent and is tailored to be an accelerator with 16⇥
smaller array size than commodity DRAM (256-by-2048 v.s. 1024-
by-8096). This results in a proportionately smaller number of cells
sharing the local bit lines which is therefore signi�cantly shorter.
This in turn improves the ratio between local bitline and the cell
capacitances and therefore the sensing ability beyond commodity
DRAM and other existing approaches.
• The impact of process variation can also be handled at the circuit
level. Unlike cost-optimized commodity DRAMs, DRISA can tune
the SA design and spend more area for extra reliability [51]. Also,
in 1T1C, we can also use the logic gates (Figure 4(b) right side) for
pure digital computing, where no multi-row ACT or SA is involved,
immune to process variation.
• Finally, we can apply architecture-level method to avoid defec-
tive modules. For example, DRISA can examine the capacitance
variation during the manufacturing and testing phase. Cells that
are detected to contain more than the acceptable variation will
be masked and instead replaced with spare row and column by
using already prevalent fusing techniques, consistent with existing
DRAM. Since the spare DRAM cells are already implemented in the
state-of-the-art DRAM chips, there is no extra hardware overhead.
With a high threshold, we expect this to produce similar yield as
a normal process. Another way is to apply defect-aware mapping
method similar to ArchSheild [66].

The �nal challenge relates to DRAM yield as a result of co-
existence of logical elements and the DRAM cells. By virtue of
design, these logical components i.e. shifter, are integrated after
the sense ampli�cation stage and do not interfere with the highly-
optimized DRAM cell level, IO lines’ layout. As such, it does not
a�ect DRAM yield either.
DRISA is an accelerator, not host memory.We position DRISA
as an accelerator or co-processor instead of as part of the host mem-
ory, because memory designs are extremely optimized for low-cost,
but our target is to build a high performance accelerator. Con-
ventionally, DRAM is cost sensitive and is unlikely to be changed.
However, by avoiding being a part of the host memory,DRISA’s area
is not the primary optimization priority, and we can trade-o� area
overhead for better performance. As we change the design goal to
high performance, DRISA has greater room to re-design the DRAM

294

MICRO-50, October 14–18, 2017, Cambridge, MA, USA S. Li et al.

arrays and peripheral circuits for high performance parallel compu-
tation. In addition, we treat DRISA’s memory space similar to the
device memory or scratchpad memory on GPU/FPGA/Automata,
which avoids issues in data coherence, data reorganization, and
address translation if using DRISA as host memory.

5 ACCELERATING CNN: A CASE STUDY
In this section, we map CNNs (inference) on DRISA as a case study.
Note that the purpose of the case study is to show the method-
ology of application mapping. DRISA is not limited to only CNN
applications.

5.1 Quantizing CNN for DRISA
NN algorithms are originally based on �oating point calculations.
NN data quantization work [40, 44, 59, 89, 97] helps to tackle the
challenge by quantizing the �oating point activation data and
weight into fewer bits of �xed-point data and then retraining
the NN to reduce the accuracy loss. Furthermore, research stud-
ies have found it is even possible to quantize weights into binary
data [24, 25, 77]. After proper training, BWN [77] (binary weight,
�oating point activation data) shows 0%, 8.5%, and 5.8% top-1 accu-
racy degradations, compared with all �oating point golden models
on AlexNet [56], ResNet-18 [41], and GoogleNet [87], respectively.
Even more aggressively, BNN [24] and XNOR-Net [77] also binarize
the activation data. It shows Top-1 accuracy degradation of 12.4%
and 18.1% on AlexNet and ResNet-18, respectively.

70%

75%

80%

85%

90%

95%

50%

55%

60%

65%

70%

75%

<FP,FP> <1,FP> <1,8> <1,2>

To
p-

5
Ac

cu
ra

cy

To
p-

1
Ac

cu
ra

cy

AlexNet top-1 VGG-16 top-1
AlexNet top-5 VGG-16 top-5

Figure 13: TrainingDRISA-friendly CNN on ImageNet (<x,n>
denotes x-bit weights and n-bit �xed point activation data).

We apply 1-bit weights with 8-bit activations (<1,8>) for DRISA.
This is because DRISA runs faster if one of the multipliers have
1 or 2 bits, while it is insensitive to the other operand (Figure 6).
Therefore, it is not necessary to adopt the extreme BNN/XNOR-Net
quantization cases (both binary weight and activation data). Instead,
we need an eclectic way with binary weights and �xed-point activa-
tion data (between BWN and BNN/XOR-NeT). Speci�cally, we use
binary weights for all layers (including the �rst and last layers), and
use shifter for approximate weight scaling. Figure 13 shows our
training result for AlexNet and VGG-16 [85] on ImageNet [78]. Note
that Figure 13 shows a “worst” case scenario, since we have not
applied �ne tuning for our training. More training epochs, larger
batch sizes, image augmentation [92], better initialization [97], and
better learning rate tuning will e�ectively increase the accuracy.
It has much larger potential since BWN (<1,FP>) [77] has been
reported as 56.8% top-1 accuracy, which sets a upper bound of our
accuracy.

5.2 Resource Allocation
DRISA provides row-to-row operations, which are treated as SIMD
vector instructions (like AVX [5]). In CNN applications, more than

99.9% of the operations can be aggregated as vector operations [61].
For these scalar operations or vector operations that are shorter
than DRISA’s row size, we �ll zeros in any unused slots.

In order to e�ciently utilize DRISA hardware, we need to opti-
mize resource allocations for CNNs. CNNs have lots of inherent
parallelism (e.g., batch, feature map, and pixel-level parallelism),
and so does the DRISA architecture (i.e., group, bank, subarray and
lane-level parallelism). How to e�ectively allocate the hardware
resource to the application is challenging. We follow two design
philosophies: (1) The data movement and computation tasks should
be balanced, in order to achieve the highest e�ciency. (2) Since
DRISA favors CSA compared to FA, we should avoid using FA (Fig-
ure 7).

(a) Output fmap Æ Lanes

...

La
ne

-1
La

ne
-2

La
ne

-n

subarray

bank

Subarray-1
(partial fmaps)

Subarray-2
...

(b) Input fmap Æ Subarrays

Input
fmaps

Subarray-n
(final sum)

Output
fmaps

Input
fmaps
Data-dup

Output
fmaps

Figure 14: The basic resource allocation scheme for lanes
and subarrays.

We design the resource allocation scheme as shown in Figure 14,
following these design philosophies. First, all the input data from
feature maps are duplicated to all the lanes in a subarray (Fig-
ure 14(a)). These lanes work in parallel after weights are preloaded.
The output of each lane is a dependent output feature. The purpose
for this mapping scheme is to make all of the sum reductions hap-
pen in a single lane, so that ine�cient inter-lane SHF and lane-FWD
are eliminated. Second, each subarray takes part of the input feature
maps. These subarrays work in parallel on the partial results, and
an extra subarray sums up the �nal result (Figure 14(b)). Third, for
bank and group level parallelism, we take use of the application’s
parallelism in pixel and batch, i.e., mapping di�erent regions of the
feature map to di�erent banks, and di�erent batches to di�erent
groups.

5.3 Mapping Other Applications to DRISA
DPU is not limited to only CNN applications. DRISA is not limited
to CNN inference accelerations. Data quantization in recursive NN
(RNN) with 2-bit weights [69] is also an ideal case to run on DRISA.
Instead of inference, training is also feasible by quantizing gradient
data with DoReFa-Net [97].

Furthermore, DRISA is not limited to deep learning applications.
DRISA is designed as a SIMD architecture and can be treated as a
vector processor, so a large range of applications can be mapped to
DRISA. Programs bene�t from DRISA the most if they have enough
data parallelism, if they are both compute and memory intensive,
and if they can be mostly computed by integer operations. We are
currently working onmapping emerging bioinformatic applications
(meta-genome data analysis [21]) to DRISA.

6 EXPERIMENTS
In this section, we �rst describe the experiment setup. Then, over-
all performance, energy, and area evaluations are presented. The

295

DRISA: A DRAM-based Reconfigurable In-Situ Accelerator MICRO-50, October 14–18, 2017, Cambridge, MA, USA

evaluation for the CNN acceleration case study is also presented
with comparisons to the state-of-the-art solutions.

6.1 Experiment Setups for DRISA
We evaluate and compare four DRISA designs. The con�gurations
are shown as follows.
3T1C: 8-bit lane, 256 rows and 512 columns per mat, 4 mats (256
rows by 2048 columns, or 256 lanes) per subarray, 16 subarrays per
bank, 64 banks per group; in total 4 groups and 2Gb capacity. 22nm
DRAM process technology and the 3T1C cell size is 30F 2 [49].
1T1C-nor/mixed/adder: 1T1C-based solutions with NOR logic, or
mixed logic gates (including NAND, NOR, XNOR, INV), or adder
circuit attached to SA (see Section 4.1). In total, 8 groups and 4Gb
capacity. The cell size is 6F 2. Rest of the con�gurations are same as
3T1C’s.

In order to evaluate the brand new hardware, two in-house
simulators are developed. First, a circuit-level simulator is built
based on CACTI-3DD [50]. CACTI-3DD is DRAM circuit simula-
tor. It provides DRAM latency, energy, and area parameters, which
are validated with fabrication DRAMs. Based on it, our simulator
modi�es the con�guration �les to re�ect array organization. Then
we add extra circuits described in Section 4 with APIs provided
from CACTI-3DD. The controllers and adders in the 1T1C-adder
solution are synthesized by Design Compiler [4] with an industry
library. The di�erence between the logic process and DRAM
process technologies are capture from parameters in previ-
ous research [55]. Second, a behavioral-level simulator is devel-
oped from scratch, calculating the latency and energyDRISA spends
given a certain task like system-C simulation. It also includes a map-
ping optimization framework for the CNN applications, according
to the design space exploration described in Section 5.2.

6.2 Evaluation for DRISA Solutions
Table 2 shows the area comparison of the fourDRISA con�gurations.
First, we observe that even though the memory density of 3T1C
is half as much as others, 3T1C only takes 17.6% more area than
1T1C-nor, due to the large cell footprint of the latter. Second, 1T1C-
adder takes the largest area, due to the more complex logic circuit
(adders) that are embedded. Third,DRISA is almost half as dense as a
normal 8Gb DRAMmemory. However,DRISA is not a cost sensitive
memory design. Although it is not as dense as amemory, it very area
e�cient as an accelerator. Later experiment shows DRISA o�ers the
highest performance per area among all kinds of accelerators. Note
that though a larger chip with higher performance is feasible, the
die size impacts the chip cost. DRISA thus has a similar die size to
commercial DRAM memories in this paper. For a fair comparison,
the following results are normalized by area.
Solution 3T1C 1T1C-nor 1T1C-mixed 1T1C-adder DRAM-8Gb

Area (mm2) 64.58 54.90 65.22 90.91 60.44

Table 2: The area comparison of DRISA solutions, including
an 8Gb DRAMmemory as a reference.

Figure 15 shows the area breakdown. First, we observe that the
breakdown of 3T1C is similar to that of a DRAM memory, where
cells and analog IO circuits dominate (79%). The add-on shifters,
controllers, bu�ers, and bus circuits constitute a smaller fraction
(less than 5%) in area. Second, the add-on NOR and latch circuits in

1T1C-nor take 24% of the area, almost as much as the memory cell
themselves. This is because of the ine�cient implementation of
logic circuits with DRAM process technologies. Third, the add-on
adder circuits in 1T1C-adder takes 51% of the total area, resulting
in 66% more area than 1T1C-nor. Again, this result supports the ob-
servation that DRAM process technologies are not suitable to
build complex logic circuits, with design complexities even
for simple adders.

IO overhead
31%

lDrv
5%SA

6%
SHF
1%

Cell
48%

3T1C

IO
15%

bBus
5%
lDrv
12%SA

10%SHF
5%

ALU
24%

Cell
23%

1T1C-nor
IO
9%bBus

6%
lDrv
7%
SA
6%SHF

3%
ALU
51%

Cell
14%

1T1C-adder

Figure 15: The area breakdown of three DRISA solutions.

(nJ) 3T1C‐2Gb‐
basic

1T1C‐4Gb‐
not‐basic

1T1C‐4Gb‐
nor‐basic

1T1C‐4Gb‐
xnor‐basic

1T1C‐4Gb‐
mixed‐

eGInstr 0.011358 0.009271 0.009319 0.009875 0.011047
gBus 0.004967 43.73% 0.002778 29.97% 0.002774 29.77% 0.00273 27.65% 0.00266
gPredec 7.83E‐07 0.01% 1.77E‐06 0.02% 1.77E‐06 0.02% 1.77E‐06 0.02% 1.77E‐06
gDec 2.52E‐07 0.00% 2.52E‐07 0.00% 2.52E‐07 0.00% 2.52E‐07 0.00% 2.52E‐07
bBus 0.006341 55.83% 0.006441 69.47% 0.006493 69.68% 0.007093 71.83% 0.008335
bPredec 2.41E‐05 0.21% 2.41E‐05 0.26% 2.41E‐05 0.26% 2.41E‐05 0.24% 2.41E‐05
bDec 0.000271 2.39% 0.00013 1.40% 0.00013 1.40% 0.00013 1.32% 0.00013

0 0 0 0 0
eStep 0.188071 0.105348 0.105454 0.106086 0.105454
Dec 0.000271 0.14% 0.00013 0.12% 0.00013 0.12% 0.00013 0.12% 0.00013
Precharge 0.001533 0.82% 0.001498 1.42% 0.001498 1.42% 0.001498 1.41% 0.001498
Drv 0.00119 0.63% 0.000201 0.19% 0.000201 0.19% 0.000201 0.19% 0.000201
BL 0.088002 46.79% 0.042549 40.39% 0.042549 40.35% 0.042549 40.11% 0.042549
SA 0.002074 1.10% 0.004471 4.24% 0.004471 4.24% 0.004471 4.21% 0.004471
Write 0.088002 46.79% 0.042549 40.39% 0.042549 40.35% 0.042549 40.11% 0.042549
Reset 0 0.00% 0 0.00% 0 0.00% 0 0.00% 0
SHF 0.006998 3.72% 0.013846 13.14% 0.013846 13.13% 0.013846 13.05% 0.013846
ALU 0 0.00% 0.000105 0.10% 0.000211 0.20% 0.000842 0.79% 0.000211

0 0 0 0 0
eDec 0.003 0.003 0.003 0.003 0.003

0 0 0 0 0
eClone 2.1498 2.32913 2.33835 2.44342 2.66092
eRAS 0.014065 0.65% 0.013591 0.58% 0.013696 0.59% 0.014896 0.61% 0.01738
eCAS 0.01632 0.76% 0.015074 0.65% 0.015183 0.65% 0.016428 0.67% 0.018985
tr 1.94035 90.26% 2.21237 94.99% 2.22137 95.00% 2.324 95.11% 2.53646
eRP 0.179071 8.33% 0.088094 3.78% 0.088094 3.77% 0.088094 3.61% 0.088094

3T1C 1T4Gb‐inv 1T1C‐NOR 1T4Gb‐xno 1T1C‐mixed1T1C‐add
eGInstr 0.01136 0.00927 0.00932 0.00988 0.01105 0.01549
eStep 0.18807 0.10535 0.10545 0.10609 0.10545 0.10525
eClone 2.1498 2.32913 2.33835 2.44342 2.66092 3.46401

0.5

1.5

2.5

3.5

4.5

0.1

0.15

0.2

0.25

eC
lo

ne
 (n

J)

eS
te

p
(n

J)

eStep eClone

0

50

100

150

200

250

0

5

10

15

20

tC
lo

ne
 (n

s)

tS
te

p
(n

s)

tStep tClone

Figure 16: The latency and energy comparison among four
DRISA solutions.

Figure 16 shows the latency (tStep) and energy (eStep) for a basic
computing step (including opening operand rows, computing, clos-
ing operand rows, and writing back to result row). It also shows
the latency (tClone) and energy (eClone) to copy one row across
subarrays in the same bank. First, we observe that 3T1C takes 112%
more computing latency and 79% more computing energy, due to
the longer BLs/WLs and larger cells. Second, the data movement la-
tency/energy are dominated by the latency/energy on wires. Hence,
designs with larger areas result in larger latency/energy. Third, a
latency breakdown shows that the logics’ latency takes less than 1%
in all DRISA cases, except for 1T1C-adder which spends 10% latency
on the adder.

basic Boolean logXNOR CSA FA
3T1C 1 5 13 31
1T1C‐NOR 2 9 22 73
1T1C‐mixed 2 2 10 36
1T1C‐add 2 2 2 2

XNOR CSA FA
0

20

40

60

80
cy

cl
es

3T1C
1T1C-NOR
1T1C-mixed
1T1C-add

0

1

2

3

basic Boolean logic

C
yc

le
s

Figure 17: Cycles for frequently used operations.

Figure 17 shows the cycle count for frequently used operations.
It shows that 1T1C-nor is the slowest since for AND/OR the system
requires copy-on-operation, which takes 3 more cycles per logic.
1T1C-mixed appears to be better since every logic operation is based
on the add-on logic gates. However, it still needs 2 cycles for each
Boolean logic operation. 1T1C-adder is clearly the fastest design.

296

MICRO-50, October 14–18, 2017, Cambridge, MA, USA S. Li et al.

In later sections, we will show e�ective performance of these
four solutions for more comprehensive comparisons before we draw
the conclusion in Section 7.

6.3 The CNN Case Study Results
We compare DRISA with the state-of-the-art solutions in the CNN
inference acceleration case study.
• Baseline setup:We also compare with state-of-art accelerating
platforms for the CNN application. They are described as follows.

ASIC: This is a DaDianNao-like [22] ASIC design but optimized
for binary weight CNN with 8-bit activation data. There are two
versions with either 8x8 tiles (33MB eDRAM) or 16x16 tiles (129MB
eDRAM). An advanced on-chip data reuse scheme as in ShiDian-
Nao [28] is adopted. The design is synthesized with Design Com-
piler [4] and scaled to 22nm. The eDRAM and SRAM are calculated
from CACTI [65]. An in-house behaviorial-level simulator is built
to evaluate the performance and energy given a certain CNN task.

GPU: We use two TITAN X (Pascal) [3]. Each GPU has 3584
CUDA cores running at 1.5GHz (11TFLOPs peak performance).
GPU-FP is achieved by running Torch 7 [9] with cuDNN [7] us-
ing �oating point data. We measure the power consumption with
NVIDIA’s system management interface [8]. The results are conser-
vatively scaled by 50% to exclude the power cost by cooling, voltage
regulators, etc. We then aggressively scale the GPU-FP result by
⇥4 for the quantized CNN1, since it claims ⇥4 peak performance
running with 8-bit integers instead of �oating point data.

In the case study, we consider four CNN applications (includ-
ing both convolution layers and fully connected layers): 8-layer
AlexNet [56], 16-layer VGG-16, 19-layer VGG-19 [85], and 152-layer
ResNet-152 [41]. Note that as another advantage, DRISA does not
have refresh overhead. Even in the most complex CNN case, one
iteration of the task is done within 8ms, which means every row
have already been read and restored at least once within 64ms.
•Performance evaluation: Figure 18 shows the peak performance
(w/ and w/o normalization by area) for all the solutions (We assume
DRISA has the same power budget as GPUs). It shows that the best
DRISA is still 54% slower than GPU-INT. Note that DRISA’s area
is ⇠14% of GPUs, larger sized DRISA with more active subarrays
provides higher performance. Therefore, area-normalized results
(performance per area) turns to be a fairer performance metric.
With this metric, DRISA (1T1C-adder) outperforms ASIC and GPU
by 1.9⇥ and 12.7⇥, respectively. Note that peak performance is
only part of the picture, and the resource utilization shown later is
another key factor.

Figure 19 shows the on-chip memory capacity and bandwidth
(bu�er bandwidth for ASIC and register �le bandwidth for GPU
are counted). First, it shows that DRISA has 387⇥ more memory
capacity and 54⇥ more bandwidth than GPU and 6.8⇥ and 15⇥
more than ASIC solutions. This is because of the in-situ comput-
ing architecture. The majority of DRISA is DRAM cells for large
capacity, and multiple subarrays are activated simultaneously for
large bandwidth. Second, 3T1C and 1T1C-adder have lower capacity
and bandwidth density among DRISA solutions, due to the large
cell size and large add-on circuit overheads.
1No framework supports �xed point CNN on GPU yet, and the real scale ratio should be less than
⇥4 due to the unperfect utilization.

1E+00

1E+01

1E+02

1E-02

1E-01

1E+00

Pe
ak

 P
er

f.
(T

op
s)

Pe
ak

 P
er

f.
pe

r a
re

a
(T

op
s/

m
m

2)

Figure 18: The peak performance (w/ and w/o normalization
by area) comparison.

1E-02

1E-01

1E+00

1E+01

1E-01

1E+00

1E+01

1E+02

Ba
nd

w
id

th
 p

er
 a

re
a

(T
B/

s/
m

m
2)

C
ap

ci
ty

 p
er

 a
re

a
(M

b/
m

m
2)

Figure 19: The on-chip memory capacity and peak on-chip
bandwidth comparison (normalized by area).

Figure 20 shows the performance (frames per second) results on
CNN applications with a batch size of 1/8/64, which are normalized
with area. It shows that DRISA is 8.7⇥ and 7.7⇥ faster than the ASIC
and GPU solutions, respectively. It also shows a �ipped result:
1T1C-adder with higher peak performance (Figure 18) is 12.4%
slower than 1T1C-mixed. This is because the computing and data
movement costs are not balanced in 1T1C-adder. Even though the
computing is fast, the data movement turns out to be the bottleneck.
For the same reason, an ASIC with more tiles is not necessarily
better.

1E-02

1E-01

1E+00

1E+01

1E+02

1 8 64 1 8 64 1 8 64 1 8 64

AlexNet vgg-16 vgg-19 resnet-152 GM

Pe
rf/

Ar
ea

 (f
r./

s/
m

m
2)

3T1C 1T1C-nor 1T1C-mixed 1T1C-adder
Asic-64 Asic-256 GPU-FP GPU-INT

Figure 20: The performance comparison (normalized by
area).

0%
20%
40%
60%
80%

100%
120%

1 8 64 1 8 64 1 8 64 1 8 64

AlexNet vgg-16 vgg-19 resnet-152 GM

M
em

or
y

Bo
ttl

en
ec

k
R

at
io

3T1C 1T1C-nor 1T1C-mixed
1T1C-adder Asic-64 Asic-256

Figure 21: The memory bottleneck ratio (when computing
has to wait for data).

297

DRISA: A DRAM-based Reconfigurable In-Situ Accelerator MICRO-50, October 14–18, 2017, Cambridge, MA, USA

Figure 21 shows the fraction of time when either on-chip or
o�-chip data movement blocks computing (data from GPU is not
achievable). It explains why DRISA performs better: First, we
observe DRISA (except for 1T1C-adder) only spends ⇠10% time on
memory access while others spend more than 90% time waiting for
the loading data either from o�-chip memory or on-chip caches2.
The low memory bottleneck ratio is then transferred as a high
resource utilization in Figure 22, which bene�ts from the in-situ
computing architecture. Second, although both 1T1C-adder and
ASICs have more than 90% memory bottleneck ratio, 1T1C-adder
is still 7.8⇥ faster than ASICs (Figure 20). This is because DRISA’s
superiority also stems from its massive parallelism, not only its
merging of computing and memory resources.

0%

20%

40%

60%

80%

1 8 64 1 8 64 1 8 64 1 8 64

AlexNet vgg-16 vgg-19 resnet-152 GM

Ef
fic
ie
nc
y

3T1C 1T1C-nor 1T1C-mixed 1T1C-adder
Asic-64 Asic-256 GPU-FP GPU-INT

Figure 22: The resource utilization e�ciency.

Figure 22 shows the resource utilization (in regard to the peak
performance), which strengthens the conclusions drawn from Fig-
ure 21. DRISA (except for 1T1C-adder) has an average of 45% uti-
lization. The utilization is lower than 50% because it spends at least
half of the resources on the data movement, while others are lower
than 20%.
• Energy Evaluation: Figure 23 shows the area-normalized en-
ergy e�ciency (frames per Joule, higher is better) comparison. First,
we observe that GPUs are still the most energy-hungry solutions3.
Second, DRISA is even 1.4⇥ better than ASICs, thanks to the e�-
cient in-situ computing architecture. In addition, DRAM process
technologies have less leakage compared with the logic process, es-
pecially when considering memory cell’s leakage(DRAM retention
time is 64ms while eDRAM is ⇠100µs [64]). Third, 3T1C is 1.94⇥
better than 1T1C-adder, because the logic implemented by DRAM
process technologies hurts the energy e�ciency.

1E-04

1E-03

1E-02

1E-01

1E+00

1 8 64 1 8 64 1 8 64 1 8 64

AlexNet vgg-16 vgg-19 resnet-152 GM

En
er

gy
 E

ffi
ci

en
cy

/A
re

a
(fr

./J
/m

m
2)

3T1C 1T1C-nor 1T1C-mixed 1T1C-adder
Asic-64 Asic-256 GPU-FP GPU-INT

Figure 23: The energy e�ciency comparison (normalized by
area).

Figure 24 shows the percentage of energy spent on memory,
which explains why DRISA has better energy e�ciency. First,

2The large percentage is not surprising since the computing and memory access are pipelined, and
the computing latency is usually hidden by the data movement.
3We conservatively take 50% of total GPU board power as that actually spent on the GPU chip and
GDDR memories.

we observe that DRISA (except for 1T1C-adder) spends 45% en-
ergy on memory, 1.15⇥ smaller than others, thanks to the in-situ
computing architecture. Second, 1T1C-adder spends 92% energy
on memory, due to the ine�cient DRAM-implemented logics and
longer wires induced by the large area overhead.

0%
20%
40%
60%
80%

100%
120%

1 8 64 1 8 64 1 8 64 1 8 64

AlexNet vgg-16 vgg-19 resnet-152 GM

M
em

or
y

En
er

gy
 R

at
io

3T1C 1T1C-nor 1T1C-mixed
1T1C-adder Asic-64 Asic-256

Figure 24: The data movement energy ratio.

1E+00

1E+01

1E+02

1E+03

1 8 64 1 8 64 1 8 64 1 8 64

AlexNet vgg-16 vgg-19 resnet-152 GM
Po

w
er

 (W
)

3T1C 1T1C-nor 1T1C-mixed 1T1C-adder
Asic-64 Asic-256 GPU-FP GPU-INT

Figure 25: The power comparison.Figure 25 shows the power consumption. It shows that even
though DRISA-based solutions activate multiple rows simultane-
ously, the power consumption is still within the power budget and
54% lower than GPUs. This is due to the power budget-aware active
subarray number controlling, as described in Section 4.4. We also
evaluated the power density with the Hotspot tool [43]. The core
temperature is well under DRAM’s 85�C constraint, and existing
cooling solutions are su�cient [94]. In addition, when integrating
DRISA with PCIe like the case of GPUs, the power delivery is not a
problem. When integrating with DIMM, DRISA needs to shut down
parts of the activate subarrays in order to stay within DIMM’s
power budget.
• Cost Analysis: Besides the performance and energy bene�ts,
DRISA can also potentially o�er lower cost. Not only does DRISA
have high area e�ciency, but also three more reasons contribute
to lower cost. First, a DRAM process has only 3 to 4 metal lay-
ers [91], while GPUs or ASICs with logic processes usually have
more than 10 layers. Second, DRISA has fewer pins since it does not
require connections to large external memories. This could result
in a reduction in packaging cost. Combining these two factors, an
industry cost analysis tool [1] shows that DRISA can be ⇠6⇥ more
cost e�cient (normalized by area) than GPUs. Third, it has fewer
requirements for extra memory chips (like GDDR5), since DRISA
itself is a memory.

7 DISCUSSION: WHICH DRISA IS BETTER
1T1C-adder is the least e�ective design. Though 1T1C-adder has
the best (3.84⇥ better) peak performance, its e�ective performance
is 11% lower than others because its resource utilization is 77%
lower. It is also 40% less energy e�cient. In addition, it requires
the largest area with 51% overhead to build adders, which becomes
more di�cult to manufacture. 1T1C-adder’s problems lie in (1)
large energy/area overhead of building logics with DRAM process

298

MICRO-50, October 14–18, 2017, Cambridge, MA, USA S. Li et al.

technologies and (2) unbalanced computing and data movement
capability (data movement is costly due to longer wires caused by
area overhead). As a conclusion, building too large logic with
DRAM process technologies is not feasible.

On the opposite end of the spectrum from the 1T1C-adder, 3T1C
has minimal extra logic circuits built in the DRAM process tech-
nologies. However, it is also not the most e�ective design. Though
it has 5.7% better energy e�ciency, it su�ers from 68% lower e�ec-
tive performance. For the area, it is 49% less dense. 3T1C’s problem
is its large cell size. As a conclusion, it shows that only relying
onmemory cells for computing is not feasible, either, due to
signi�cant performance loss, though it brings the best energy
e�ciency.

1T1C-nor/mixed stand somewhere between 1T1C-adder and 3T1C
and prove to be the best designs. They add a few logics in DRAM
process technologies but not in excess. 1T1C-mixed is 4.7% faster
than 1T1C-nor due to its �exibility to build logics, while 1T1C-nor’s
energy e�ciency is 16% better due to more memory cell based
computing.

8 RELATEDWORK
• Processing-in-Memory Architectures: On one hand, there is
plenty of recent work on PIM [10, 12, 16, 18, 20, 30, 32, 34, 36, 42,
46, 52, 53, 67, 73, 73, 75, 76, 88, 93, 95] that built lightweight proces-
sors, recon�gurable or application-speci�c logics in the logic die of
HMC [74] or HBM [58]. For example, Active Memory Cube [67] is
a representative design with HMC. DRISA is di�erent from them
in that it does not rely on 3D stacking. On the other hand, earlier
PIM work has integrated logics directly in the 2D DRAM die. For
example, IRAM [71] has put scalar processors in the DRAM die.
These work has been criticized for the di�culty of integrating com-
plex logic with DRAM technology. 1T1C-adder shows that even
including simple adders in DRAM process technologies induces
large overhead and low e�ective performance. DRISA is di�erent
since its logic circuits are simple Boolean logic operations, which
are easy to build with DRAM technologies. Recently, this approach
has been revisited. Bu�ered Comparator [11, 46]) pairs lightweight
comparator with DRAMs. DRISA is di�erent since it grants every
BL computing capabilities to achieve high performance. As a sum-
mary, PIM sticks with a main memory position that is optimized
for memory density; however, DRISA is a processor/accelerator
optimized for performance e�ciency.
• Revolutionary DRAM Designs: Recent research has evolved
DRAM memory by adding additional functional capability [79].
Automata [27] has implemented a recon�gurable processor with a
DRAMprocess. It computes with counters and �nite-state machines,
but DRISA computes with Boolean logic operations from BLs. Au-
tomata stores programmed states in the DRAM while streaming in
the data, but DRISA is in-situ computing with all of the data stored
within. Rowclone [81] has supported in-DRAM row-to-row copy
with minor modi�cation on existing DRAMs. Seshadri et al. [80, 82]
has explored fast bulk bitwise operations in DRAMs. Compared
with this work, DRISA has following new contributions. (1) DRISA
supports more operations, e.g., NOR, shifting, and data movement,
so that general purpose computing like addition is supported. (2)
DRISA is a recon�gurable accelerator architecture, instead of a

commodity DRAM design like BuddyRAM. Therefore, several op-
timizations, such as array reorganizations (Section 4.4) are pro-
posed. Consequently, DRISA o�ers higher area/energy e�ciency
than prior architectures, including GPUs and ASICs. (3) DRISA pro-
vides a complete DRAM based processing architecture/solution and
supports a larger range of applications (DNN/bio-informatics etc),
rather than only for bitwise operations. DRAF [33] has proposed a
DRAM-based FPGA, where DRAM cells are used as look-up tables.
However, DRISA uses DRAM cells to store data.
• In-situ Computing Accelerators: Mikamonu [13–15] has pro-
posed to compute with the NOR logic provided by the 3T1C DRAM
cell or NVMs. However, their proposal does not have data move-
ment mechanisms. Therefore, complex functions (like full adders)
are not supported. Some work [19, 23, 35] has relied on emerg-
ing NVMs for computing, but DRISA takes use of the mature and
cost-e�ective DRAM process technologies.
• Neural Network Accelerators: Lots of designs that accelerate
NN applications with various platforms (ASIC, GPU, FPGA) [22,
39, 48, 83, 92] have been proposed. TrueNorth [29, 62, 63] com-
putes with on-chip SRAM-based crossbars and counters. However,
DRISA uses DRAM technologies and computes with recon�gurable
Boolean logic operations. DaDianNao [22] has 36MB of on-chip
memories, but DRISA has 512MB. EIE [39] is another design bene-
�ting from data quantization. DRISA also adopts data quantization,
but further stores all the intermediary data on-chip. NeuroCube [53]
is a PIM architecture for NNs. Though its memory capacity is large,
its performance is low (Figure 1). Most importantly, unlike all of
these NN accelerating work, DRISA is a general-purpose recon�g-
urable processor. We just use NN acceleration as an application
example.

9 CONCLUSION
To address the “memorywall” challenge, we propose a DRAM-based
PIM design with simple Boolean logic operations to enable in-situ
computing inside DRAM. To overcome the challenges induced by
building accelerators with DRAM process technologies, we use
simple Boolean logic operations to compute complex functions
by running serially. The Boolean logic operations are provided
either by the BLs themselves or by extra circuits added to the SAs.
We compare four di�erent DRISA designs and conclude that 1T1C-
nor/mixed are the best choices. We then present a case study where
we evaluate CNN applications on DRISA. With the bene�t of in-
situ computing, DRISA shows 8.8⇥ speedup and 1.2⇥ better energy
e�ciency when compared with ASICs, and 7.7⇥ speedup and 15⇥
better energy e�ciency than GPUs.

10 ACKNOWLEDGE
The authors would like to thank the anonymous reviewers and all
members in SEAL lab, especially Peng Gu and Dylan Stow, for help-
ing to improve this work. This work was funded by Samsung Semi-
conductor Inc, NSF 1719160, DoE DE-SC0013553 with disclaimer at
http://seal.ece.ucsb.edu/doe/.

REFERENCES
[1] 2015. IC Cost and Price Model, Revision 1506, IC Knowledge LLC. (2015).

http://www.icknowledge.com/

299

http://www.icknowledge.com/

DRISA: A DRAM-based Reconfigurable In-Situ Accelerator MICRO-50, October 14–18, 2017, Cambridge, MA, USA

[2] 2016. 8Gb B-die DDR4 SDRAM. (2016). http://www.samsung.com/semiconductor/
global/�le/product/2016/06/DS_K4A8G085WB-B_Rev1_61-0.pdf

[3] 2016. NVIDIA TITAN X (pascal). (2016). http://www.geforce.com/hardware/
10series/titan-x-pascal

[4] 2017. Design Compiler, Synopsys Inc. (2017).
[5] 2017. Intel Instruction Set Architecture Extensions. (2017). https://software.intel.

com/en-us/intel-isa-extensions
[6] 2017. Micron Automata Processor. (2017). https://www.micronautomata.com/
[7] 2017. NVIDIA cuDNN. (2017). https://developer.nvidia.com/cudnn
[8] 2017. NVIDIA System Management Interface. (2017). https://developer.nvidia.

com/nvidia-system-management-interface
[9] 2017. Torch 7. (2017). http://torch.ch/
[10] Junwhan Ahn, Sungpack Hong, Sungjoo Yoo, Onur Mutlu, and Kiyoung Choi.

2015. A scalable processing-in-memory accelerator for parallel graph processing.
In International Symposium on Computer Architecture (ISCA). ACM Press, New
York, New York, USA, 105–117.

[11] Junwhan Ahn, Sungjoo Yoo, and Kiyoung Choi. 2016. AIM: Energy-E�cient
Aggregation Inside the Memory Hierarchy. ACM Transactions on Architecture
and Code Optimization 13, 4 (oct 2016), 1–24.

[12] Junwhan Ahn, Sungjoo Yoo, Onur Mutlu, and Kiyoung Choi. 2015. PIM-enabled
Instructions: A Low-overhead, Locality-aware Processing-in-memory Architec-
ture. In International Symposium on Computer Architecture (ISCA). ACM, 336–348.

[13] A. Akerib, O. AGAM, E. Ehrman, and M. Meyassed. 2014. Using storage cells to
perform computation. (dec 2014). US Patent 8,908,465.

[14] Avidan Akerib and Eli Ehrman. 2014. In-memory computational device. (nov
2014). US Patent App. 14/555,638.

[15] A. Akerib and E. Ehrman. 2015. Non-volatile in-memory computing device. (may
2015). US Patent App. 14/588,419.

[16] Berkin Akin, Franz Franchetti, and James C Hoe. 2015. Data Reorganization
in Memory Using 3D-stacked DRAM. In International Symposium on Computer
Architecture (ISCA). ACM, 131–143.

[17] Hadi Asghari-Moghaddam, Young Hoon Son, Jung Ho Ahn, and Nam Sung Kim.
2016. Chameleon: Versatile and practical near-DRAM acceleration architecture
for large memory systems. In International Symposium on Microarchitecture
(MICRO)]. ACM, 1–13.

[18] Rajeev Balasubramonian, Jichuan Chang, Troy Manning, Jaime H Moreno,
Richard Murphy, Ravi Nair, and Steven Swanson. 2014. Near-Data Processing:
Insights from a MICRO-46 Workshop. In Micro, IEEE, Vol. 34. IEEE, 36–42.

[19] Mahdi Nazm Bojnordi and Engin Ipek. 2016. Memristive Boltzmann machine:
A hardware accelerator for combinatorial optimization and deep learning. In
International Symposium on High Performance Computer Architecture (HPCA).
IEEE, 1–13.

[20] Amirali Boroumand, Saugata Ghose, Brandon Lucia, Kevin Hsieh, Krishna Mal-
ladi, Hongzhong Zheng, and Onur Mutlu. 2016. LazyPIM: An E�cient Cache
Coherence Mechanism for Processing-in-Memory. Computer Architecture Letters
(2016), 1–1.

[21] Kevin Chen and Lior Pachter. 2005. Bioinformatics for whole-genome shotgun
sequencing of microbial communities. PLoS Comput Biol 1, 2 (2005), e24.

[22] Yunji Chen, Tao Luo, Shaoli Liu, Shijin Zhang, Liqiang He, Jia Wang, Ling Li,
Tianshi Chen, Zhiwei Xu, Ninghui Sun, and Olivier Temam. 2014. DaDianNao:
A Machine-Learning Supercomputer. In International Symposium on Microarchi-
tecture (MICRO). IEEE, 609–622.

[23] Ping Chi, Shuangchen Li, Cong Xu, Tao Zhang, Jishen Zhao, Yongpan Liu, Yu
Wang, and Yuan Xie. 2016. PRIME: a novel processing-in-memory architecture
for neural network computation in ReRAM-based main memory. In international
Symposium on Computer Architecture (ISCA), Vol. 44. 27–39.

[24] Matthieu Courbariaux and Yoshua Bengio. 2016. BinaryNet: Training Deep
Neural Networks with Weights and Activations Constrained to +1 or -1. arXiv:
1602.02830 (2016).

[25] Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David. 2015. BinaryCon-
nect: Training Deep Neural Networks with binary weights during propagations.
arXiv: 1511.00363 (2015).

[26] Bill Dally. 2015. The Path to Exascale. http://images.nvidia.com/events/sc15/
pdfs/SC5102-path-exascale-computing.pdf. (2015).

[27] Paul Dlugosch, Dave Brown, Paul Glendenning, Michael Leventhal, and Harold
Noyes. 2014. An e�cient and scalable semiconductor architecture for parallel
automata processing. In Parallel and Distributed Systems, IEEE Transactions on.
IEEE, 99.

[28] Zidong Du, Robert Fasthuber, Tianshi Chen, Paolo Ienne, Ling Li, Tao Luo,
Xiaobing Feng, Yunji Chen, and Olivier Temam. 2015. ShiDianNao: shifting
vision processing closer to the sensor. In International Symposium on Computer
Architecture (ISCA). ACM Press, New York, New York, USA, 92–104.

[29] Steve K. Esser, Alexander Andreopoulos, Rathinakumar Appuswamy, Pallab
Datta, Davis Barch, Arnon Amir, John Arthur, Andrew Cassidy, Myron Flickner,
Paul Merolla, Shyamal Chandra, Nicola Basilico, Stefano Carpin, Tom Zimmer-
man, Frank Zee, Rodrigo Alvarez-Icaza, Je�rey A. Kusnitz, Theodore M. Wong,
William P. Risk, Emmett McQuinn, Tapan K. Nayak, Raghavendra Singh, and

Dharmendra S. Modha. 2013. Cognitive computing systems: Algorithms and ap-
plications for networks of neurosynaptic cores. In International Joint Conference
on Neural Networks (IJCNN). IEEE, 1–10.

[30] A Farmahini-Farahani, Jung Ho Ahn, K Morrow, and Nam Sung Kim. 2015. NDA:
Near-DRAM acceleration architecture leveraging commodity DRAM devices and
standard memory modules. In International Symposium on High Performance
Computer Architecture (HPCA). 283–295.

[31] G. Fredeman, D. W. Plass, A. Mathews, J. Viraraghavan, K. Reyer, T. J. Knips, T.
Miller, E. L. Gerhard, D. Kannambadi, C. Paone, D. Lee, D. J. Rainey, M. Sperling,
M. Whalen, S. Burns, R. R. Tummuru, H. Ho, A. Cestero, N. Arnold, B. A. Khan,
T. Kirihata, and S. S. Iyer. 2016. A 14 nm 1.1 Mb Embedded DRAM Macro With 1
ns Access. IEEE Journal of Solid-State Circuits 51, 1 (jan 2016), 230–239.

[32] Mingyu Gao, Grant Ayers, and Christos Kozyrakis. 2015. Practical Near-Data
Processing for In-memory Analytics Frameworks. Parallel Archit. Compil. Tech.
(PACT), 2015 IEEE Int. Conf. (2015), 113–124.

[33] Mingyu Gao, Christina Delimitrou, Dimin Niu, Krishna T. Malladi, Hongzhong
Zheng, Bob Brennan, and Christos Kozyrakis. 2016. DRAF: A Low-Power DRAM-
Based Recon�gurable Acceleration Fabric. In International Symposium on Com-
puter Architecture (ISCA). IEEE, 506–518.

[34] Mingyu Gao and Christos Kozyrakis. 2016. HRL: E�cient and �exible recon-
�gurable logic for near-data processing. In International Symposium on High
Performance Computer Architecture (HPCA). IEEE, 126–137.

[35] Qing Guo, Xiaochen Guo, Ravi Patel, Engin Ipek, and Eby G Friedman. 2013.
AC-DIMM: associative computing with STT-MRAM. In nternational Symposium
on Computer Architecture (ISCA). ACM, 189–200.

[36] Qi Guo, Tze-Meng Low, Nikolaos Alachiotis, Berkin Akin, Larry Pileggi, James C.
Hoe, and Franz Franchetti. 2015. Enabling portable energy e�ciency with mem-
ory accelerated library. In International Symposium on Microarchitecture (MICRO).
ACM Press, New York, New York, USA, 750–761.

[37] Linley Gwennap. 2015. Skylake speedshifts to next gear. Microprocessor Report
29, 9 (2015), 6–10.

[38] Fatih Hamzaoglu, Umut Arslan, Nabhendra Bisnik, Swaroop Ghosh, Manoj B.
Lal, Nick Lindert, Mesut Meterelliyoz, Randy B. Osborne, Joodong Park, Shigeki
Tomishima, Yih Wang, and Kevin Zhang. 2014. 13.1 A 1Gb 2GHz embedded
DRAM in 22nm tri-gate CMOS technology. In International Solid-State Circuits
Conference Digest of Technical Papers (ISSCC). IEEE, 230–231.

[39] Song Han, Xingyu Liu, Huizi Mao, Jing Pu, Ardavan Pedram, Mark A. Horowitz,
and William J. Dally. 2016. EIE: E�cient Inference Engine on Compressed Deep
Neural Network. In International Symposium on Computer Architecture (ISCA).
IEEE, 243–254.

[40] Song Han, Huizi Mao, and William J. Dally. 2015. Deep Compression: Compress-
ing Deep Neural Network with Pruning, Trained Quantization and Hu�man
Coding. arXiv: 1510.00149 (2015).

[41] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2015. Deep Residual
Learning for Image Recognition. arXiv: 1512.03385 (2015).

[42] Byungchul Hong, Gwangsun Kim, Jung Ho Ahn, Yongkee Kwon, Hongsik Kim,
and John Kim. 2016. Accelerating Linked-list Traversal Through Near-Data
Processing. In International Conference on Parallel Architectures and Compilation
(PACT). ACM Press, New York, New York, USA, 113–124.

[43] Wei Huang, S. Ghosh, S. Velusamy, K. Sankaranarayanan, K. Skadron, and M.R.
Stan. 2006. HotSpot: a compact thermal modeling methodology for early-stage
VLSI design. IEEE ransactions on Very Large Scale Integration (VLSI) Systems 14, 5
(2006), 501–513.

[44] Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, and Yoshua
Bengio. 2016. Quantized Neural Networks: Training Neural Networks with Low
Precision Weights and Activations. arXiv: 1609.07061 (2016).

[45] Sergey Io�e and Christian Szegedy. 2015. Batch Normalization: Accelerating
Deep Network Training by Reducing Internal Covariate Shift. arXiv: 1502.03167
(2015).

[46] J. Lee and J. H. Ahn and K. Choi. 2016. Bu�ered compares: Excavating the
hidden parallelism inside DRAM architectures with lightweight logic. In Design,
Automation Test in Europe Conference Exhibition (DATE). 1243–1248.

[47] Jan Van Lunteren. 2016. Programmable Near-Memory Acceleration on ConTutto.
In OpenPower Summit.

[48] Y. Ji, Y. Zhang, S. Li, P. Chi, C. Jiang, P. Qu, Y. Xie, andW. Chen. 2016. NEUTRAMS:
Neural network transformation and co-design under neuromorphic hardware
constraints. In Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO). 1–13.

[49] Sung-Mo Kang and Yusuf Leblebici. 2003. CMOS digital integrated circuits. Tata
McGraw-Hill Education.

[50] Ke Chen, Sheng Li, Naveen Muralimanohar, Jung Ho Ahn, Jay B Brockman, and
Norman P Jouppi. 2012. CACTI-3DD: Architecture-level modeling for 3D die-
stacked DRAM main memory. In Design, Automation & Test in Europe Conference
& Exhibition (DATE). EDA Consortium, IEEE, 33–38.

[51] Brent Keeth, R. Jacob Baker, Brian Johnson, and Feng Lin. 2007. DRAM Circuit
Design: Fundamental and High-Speed Topics (2nd ed.). Wiley-IEEE Press.

[52] Saugata Ghose Kevin Hsieh, Samira Khan, Nandita Vijaykumar, Kevin K. Chang,
Amirali Boroumand and Onur Mutlu. 2016. Accelerating Pointer Chasing in

300

http://www.samsung.com/semiconductor/global/file/product/2016/06/DS_K4A8G085WB-B_Rev1_61-0.pdf
http://www.samsung.com/semiconductor/global/file/product/2016/06/DS_K4A8G085WB-B_Rev1_61-0.pdf
http://www.geforce.com/hardware/10series/titan-x-pascal
http://www.geforce.com/hardware/10series/titan-x-pascal
https://software.intel.com/en-us/intel-isa-extensions
https://software.intel.com/en-us/intel-isa-extensions
https://www.micronautomata.com/
https://developer.nvidia.com/cudnn
https://developer.nvidia.com/nvidia-system-management-interface
https://developer.nvidia.com/nvidia-system-management-interface
http://torch.ch/
http://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf
http://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf

MICRO-50, October 14–18, 2017, Cambridge, MA, USA S. Li et al.

3D-Stacked Memory: Challenges, Mechanisms, Evaluation. In International Con-
ference on Computer Design (ICCD).

[53] Duckhwan Kim, Jaeha Kung, Sek Chai, Sudhakar Yalamanchili, and Saibal
Mukhopadhyay. 2016. Neurocube: A Programmable Digital Neuromorphic Archi-
tecture with High-Density 3D Memory. In International Symposium on Computer
Architecture (ISCA). IEEE, 380–392.

[54] Yoongu Kim, Vivek Seshadri, Donghyuk Lee, Jamie Liu, and Onur Mutlu. 2012. A
Case for Exploiting Subarray-level Parallelism (SALP) in DRAM. In International
Symposium on Computer Architecture (ISCA). IEEE Computer Society, 368–379.

[55] Ytong-Bin Kim and Tom W. Chen. 1999. Assessing merged DRAM/Logic tech-
nology. Integration, the VLSI Journal 27, 2 (1999), 179–194.

[56] Alex Krizhevsky, Ilya Sutskever, and Geo�rey E Hinton. 2012. ImageNet Clas-
si�cation with Deep Convolutional Neural Networks. In Advances in Neural
Information Processing Systems, F Pereira, C J C Burges, L Bottou, and K Q Wein-
berger (Eds.). Curran Associates, Inc., 1097–1105.

[57] Yann LeCun, Yoshua Bengio, and Geo�rey Hinton. 2015. Deep learning. Nature
521, 7553 (2015), 436–444.

[58] Dong Uk Lee, Kyung Whan Kim, Kwan Weon Kim, Hongjung Kim, Ju Young
Kim, Young Jun Park, Jae Hwan Kim, Dae Suk Kim, Heat Bit Park, Jin Wook
Shin, Jang Hwan Cho, Ki Hun Kwon, Min Jeong Kim, Jaejin Lee, Kun Woo Park,
Byongtae Chung, and Sungjoo Hong. 2014. A 1.2V 8Gb 8-channel 128GB/s
high-bandwidth memory (HBM) stacked DRAM with e�ective microbump I/O
test methods using 29nm process and TSV. In International Solid-State Circuits
Conference Digest of Technical Papers (ISSCC). 432–433.

[59] Fengfu Li and Bin Liu. 2016. Ternary Weight Networks. arXiv: 1605.04711 (2016).
[60] Shuangchen Li, Cong Xu, Qiaosha Zou, Jishen Zhao, Yu Lu, and Yuan Xie. 2016.

Pinatubo: A processing-in-memory architecture for bulk bitwise operations in
emerging non-volatile memories. In Design Automation Conference (DAC). ACM
Press, New York, New York, USA, 1–6.

[61] Shaoli Liu, Zidong Du, Jinhua Tao, Dong Han, Tao Luo, Yuan Xie, Yunji Chen,
and Tianshi Chen. 2016. Cambricon: An Instruction Set Architecture for Neural
Networks. In International Symposium on Computer Architecture (ISCA). IEEE,
393–405.

[62] Paul Merolla, John Arthur, Filipp Akopyan, Nabil Imam, Rajit Manohar, and
Dharmendra S. Modha. 2011. A digital neurosynaptic core using embedded
crossbar memory with 45pJ per spike in 45nm. In Custom Integrated Circuits
Conference (CICC). IEEE, 1–4.

[63] Paul A Merolla, John V Arthur, Rodrigo Alvarez-Icaza, Andrew S Cassidy, Jun
Sawada, Filipp Akopyan, Bryan L Jackson, Nabil Imam, Chen Guo, Yutaka Naka-
mura, Bernard Brezzo, Ivan Vo, Steven K Esser, Rathinakumar Appuswamy,
Brian Taba, Arnon Amir, Myron D Flickner, William P Risk, Rajit Manohar, and
Dharmendra S Modha. 2014. A million spiking-neuron integrated circuit with a
scalable communication network and interface. Science 345, 6197 (2014), 668–673.

[64] Mu-Tien Chang, P. Rosenfeld, Shih-Lien Lu, and B. Jacob. 2013. Technology
comparison for large last-level caches (L3Cs): Low-leakage SRAM, low write-
energy STT-RAM, and refresh-optimized eDRAM. In International Symposium
on High Performance Computer Architecture (HPCA). IEEE, 143–154.

[65] Norman P Muralimanohar, Naveen and Balasubramonian, Rajeev and Jouppi.
2009. CACTI 6.0: A tool to model large caches. HP Lab. (2009), 22–31.

[66] Prashant J. Nair, Dae-Hyun Kim, and Moinuddin K. Qureshi. 2013. ArchShield:
architectural framework for assisting DRAM scaling by tolerating high error
rates. In International Symposium on Computer Architecture. ACM Press, New
York, New York, USA, 72–83.

[67] R Nair, S F Antao, C Bertolli, P Bose, J R Brunheroto, T Chen, C Cher, C H A
Costa, J Evangelinos, B M Fleischer, T W Fox, D S Gallo, L Grinberg, J A Gunnels,
A C Jacob, P Jacob, H M Jacobson, T Karkhanis, C Kim, J H Moreno, J K O’Brien,
M Ohmacht, Y Park, D A Prener, B S Rosenburg, K D Ryu, O Sallenave, M J
Serrano, P D M Siegl, K Sugavanam, and Z Sura. 2015. Active Memory Cube: A
processing-in-memory architecture for exascale systems. IBM Journal of Research
and Development 59, 2/3 (mar 2015), 17:1–17:14.

[68] David Harris Neil Weste. 2006. CMOS VLSI Design: A Circuits And Systems
Perspective, 3/E. Pearson.

[69] Joachim Ott, Zhouhan Lin, Ying Zhang, Shih-Chii Liu, and Yoshua Bengio. 2016.
Recurrent Neural Networks With Limited Numerical Precision. arXiv: 1608.06902
(2016).

[70] J. M. Park, Y. S. Hwang, S. W. Kim, S. Y. Han, J. S. Park, J. Kim, J. W. Seo, B. S.
Kim, S. H. Shin, C. H. Cho, S. W. Nam, H. S. Hong, K. P. Lee, G. Y. Jin, and E. S.
Jung. 2015. 20nm DRAM: A new beginning of another revolution. In 2015 IEEE
International Electron Devices Meeting (IEDM). 26.5.1–26.5.4.

[71] David Patterson, Thomas Anderson, Neal Cardwell, Richard Fromm, Kimberly
Keeton, Christoforos Kozyrakis, Randi Thomas, and Katherine Yelick. 1997. A
case for intelligent RAM. Micro, IEEE 17, 2 (1997), 34–44.

[72] David A Patterson and John L Hennessy. 2013. Computer organization and design:
the hardware/software interface. Newnes.

[73] A. Pattnaik, X. Tang, A. Jog, O. Kayiran, A. K. Mishra, M. T. Kandemir, O. Mutlu,
and C. R. Das. 2016. Scheduling techniques for GPU architectures with processing-
in-memory capabilities. In International Conference on Parallel Architecture and
Compilation Techniques (PACT). 31–44.

[74] J Thomas Pawlowski. 2011. Hybrid memory cube (HMC). In Hot Chips, Vol. 23.
[75] Seth H. Pugsley, Je�rey Jestes, Rajeev Balasubramonian, Vijayalakshmi Srini-

vasan, Alper Buyuktosunoglu, Al Davis, and Feifei Li. 2014. Comparing Imple-
mentations of Near-Data Computing with In-Memory MapReduce Workloads.
In Micro, IEEE, Vol. 34. IEEE, 44–52.

[76] Seth H Pugsley, Je�rey Jestes, Huihui Zhang, Rajeev Balasubramonian, Vijayalak-
shmi Srinivasan, A Buyuktosunoglu, A Davis, and F Li. 2014. NDC: Analyzing
the Impact of 3D-Stacked Memory+ Logic Devices on MapReduce Workloads.
In International Symposium on Performance Analysis of Systems and Software
(ISPASS).

[77] Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and Ali Farhadi. 2016.
XNOR-Net: ImageNet Classi�cation Using Binary Convolutional Neural Net-
works. arXiv: 1603.05279 (2016).

[78] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, SeanMa,
ZhihengHuang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C.
Berg, and Li Fei-Fei. 2015. ImageNet Large Scale Visual Recognition Challenge.
International Journal of Computer Vision (IJCV) 115, 3 (2015), 211–252.

[79] Vivek Seshadri. 2016. Simple DRAM and Virtual Memory Abstractions to Enable
Highly E�cient Memory Systems. arXiv: 1605.06483 (2016).

[80] V Seshadri, K Hsieh, A Boroumand, D Lee, M A Kozuch, O Mutlu, P B Gibbons,
and T C Mowry. 2015. Fast Bulk Bitwise AND and OR in DRAM. Computer
Architecture Letters PP, 99 (2015), 1.

[81] Vivek Seshadri, Michael A. Kozuch, Todd C. Mowry, Yoongu Kim, Chris Fallin,
Donghyuk Lee, Rachata Ausavarungnirun, Gennady Pekhimenko, Yixin Luo,
Onur Mutlu, and Phillip B. Gibbons. 2013. RowClone: fast and energy-e�cient
in-DRAM bulk data copy and initialization. In International Symposium on Mi-
croarchitecture (MICRO). ACM Press, New York, New York, USA, 185–197.

[82] Vivek Seshadri, Donghyuk Lee, Thomas Mullins, Hasan Hassan, Amirali
Boroumand, Jeremie Kim,Michael A. Kozuch, OnurMutlu, Phillip B. Gibbons, and
Todd C. Mowry. 2016. Buddy-RAM: Improving the Performance and E�ciency
of Bulk Bitwise Operations Using DRAM. arXiv: 1611.09988 (2016).

[83] Hardik Sharma, Jongse Park, Divya Mahajan, Emmanuel Amaro, Joon Kyung
Kim, Chenkai Shao, Asit Mishra, and Hadi Esmaeilzadeh. 2016. From High-Level
Deep Neural Models to FPGAs. In International Symposium on Microarchitecture
(MICRO). IEEE.

[84] George Sideris. 1973. INTEL 1103-MOS memory taht de�ed cores. ELECTRONICS
46, 9 (1973), 108–113.

[85] Karen Simonyan and Andrew Zisserman. 2014. Very Deep Convolutional Net-
works for Large-Scale Image Recognition. arXiv: 1409.1556 (2014).

[86] Young Hoon Son, O. Seongil, Yuhwan Ro, Jae W. Lee, and Jung Ho Ahn. 2013.
Reducing memory access latency with asymmetric DRAM bank organizations.
International Symposium on Computer Architecture (ISCA) 41, 3 (jul 2013), 380.

[87] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott E. Reed,
Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabi-
novich. 2014. Going Deeper with Convolutions. arXiv: 1409.4842 (2014).

[88] Pedro Trancoso. 2015. Moving to Memoryland: In-memory Computation for
Existing Applications. In International Conference on Computing Frontiers. ACM,
32:1—-32:6.

[89] G. Venkatesh, E. Nurvitadhi, and D. Marr. 2016. Accelerating Deep Convolutional
Networks using low-precision and sparsity. arXiv: 1610.00324 (2016).

[90] Oreste Villa, Daniel R. Johnson, Mike Oconnor, Evgeny Bolotin, David Nellans,
Justin Luitjens, Nikolai Sakharnykh, Peng Wang, Paulius Micikevicius, Anthony
Scudiero, Stephen W. Keckler, and William J. Dally. 2014. Scaling the Power Wall:
A Path to Exascale. In International Conference for High Performance Computing,
Networking, Storage and Analysis (SC). IEEE, 830–841.

[91] Thomas Vogelsang. 2010. Understanding the Energy Consumption of Dynamic
Random Access Memories. In International Symposium on Microarchitecture (MI-
CRO). IEEE, 363–374.

[92] RenWu, Shengen Yan, Yi Shan, Qingqing Dang, and Gang Sun. 2015. Deep Image:
Scaling up Image Recognition. arXiv: 1501.02876 (2015).

[93] Mahmut Kandemir Mustafa Karakoy Xulong Tang, Orhan Kislal. 2018. Data
Movement Aware Computation Partitioning. In International Symposium on
Microarchitecture (MICRO).

[94] Yasuko Eckert Nuwan Jayasena and Gabriel Loh. 2014. Thermal Feasibility of
Die-Stacked Processing in Memory. In WoNDP: 2nd Workshop on Near-Data
Processing, International Symposium on Microarchitecture. IEEE.

[95] Dongping Zhang, Nuwan Jayasena, Alexander Lyashevsky, Joseph L Greathouse,
Lifan Xu, and Michael Ignatowski. 2014. TOP-PIM: Throughput-oriented
Programmable Processing in Memory. In International Symposium on High-
performance Parallel and Distributed Computing. ACM, 85–98.

[96] Tao Zhang, Ke Chen, Cong Xu, Guangyu Sun, Tao Wang, and Yuan Xie. 2014.
Half-DRAM: A high-bandwidth and low-power DRAM architecture from the
rethinking of �ne-grained activation. In International Symposium on Computer
Architecture (ISCA). 349–360.

[97] Shuchang Zhou, Zekun Ni, Xinyu Zhou, He Wen, Yuxin Wu, and Yuheng Zou.
2016. DoReFa-Net: Training Low Bitwidth Convolutional Neural Networks with
Low Bitwidth Gradients. arXiv: 1606.06160 (2016).

301

	Abstract (6)
	1 Introduction (6)
	2 Background (2)
	3 Overview
	4 DRISA Architecture
	4.1 Microarchitecture for Computing
	4.2 Microarchitecture for Data Movement
	4.3 Microarchitecture for Controllers
	4.4 Optimizing Bank Reorganization
	4.5 System Integration
	4.6 Discussion

	5 Accelerating CNN: A Case Study
	5.1 Quantizing CNN for DRISA
	5.2 Resource Allocation
	5.3 Mapping Other Applications to DRISA

	6 Experiments
	6.1 Experiment Setups for DRISA
	6.2 Evaluation for DRISA Solutions
	6.3 The CNN Case Study Results

	7 Discussion: Which DRISA is Better
	8 Related Work
	9 Conclusion
	10 Acknowledge
	References (6)

