Seminar in

Computer Architecture
Meeting 4: PAR-BS Memory Scheduler

Prof. Onur Mutlu

ETH Zlrich
Fall 2020
8 October 2020

More on PAR-BS

= Onur Mutlu and Thomas Moscibroda,
"Parallelism-Aware Batch Scheduling: Enhancing both
Performance and Fairness of Shared DRAM Systems"
Proceedings of the 35th International Symposium on Computer
Architecture (ISCA), pages 63-74, Beijing, China, June 2008.
[Summary] [Slides (ppt)]
One of the 12 computer architecture papers of 2008
selected as Top Picks by IEEE Micro.

Parallelism-Aware Batch Scheduling:
Enhancing both Performance and Fairness of Shared DRAM Systems

Onur Mutlu Thomas Moscibroda
Microsoft Research

{onur,moscitho } @microsoft.com

https://people.inf.ethz.ch/omutlu/pub/parbs_isca08.pdf
http://isca2008.cs.princeton.edu/
https://people.inf.ethz.ch/omutlu/pub/parbs_isca08-summary.pdf
https://people.inf.ethz.ch/omutlu/pub/mutlu_isca08_talk.ppt

We Will Do This Ditterently

I will give a “conference talk”

You can ask questions and analyze what I described

Parallelism-Aware Batch Scheduling

Enhancing both Performance and Fairness

of Shared DRAM Systems

Onur Mutlu and Thomas Moscibroda
Computer Architecture Group
Microsoft Research

Outline

Background and Goal

Motivation
o Destruction of Intra-thread DRAM Bank Parallelism

Parallelism-Aware Batch Scheduling

o Batching
o Within-batch Scheduling

System Software Support
Evaluation
Summary

The DRAM System

Columns

——————————————————————————

[}

BANK 1 BANK 2 BANK 3

SMOY

||||||

T I I I

Row Buffer
l l l 1DRAM Bus
FR-FCFS policy l
1) Row-hit first DRAM CONTROLLER
2) Oldest first

Multi-Core Systems

/ \ Multi-Core

CORE 0| |CORE 1| |CORE 2| |CORE 3 Chip

threads’ requests
interfere

\/ \ Shared DRAM

\ DRAM MEMORY CONTROLLER / Memory System

DRAM | DRAM | |DRAM DRAM
\ Bank O| |Bank 1| |[Bank 2 Bank 7 /

Inter-thread Interference in the DRAM System

Threads delay each other by causing resource contention:
o Bank, bus, row-buffer conflicts [MICRO 2007]

Threads can also destroy each other’s DRAM bank parallelism
o Otherwise parallel requests can become serialized

Existing DRAM schedulers are unaware of this interference

They simply aim to maximize DRAM throughput
o Thread-unaware and thread-unfair
o No intent to service each thread’s requests in parallel
o FR-FCFS policy: 1) row-hit first, 2) oldest first

Unfairly prioritizes threads with high row-buffer locality

Consequences of Inter-Thread Interference in DRAM

DRAM s the only shared resource 7.74

High priority

4.72

— Memc Low priority :e hog

Cores make
very slow

libquantum hmmer h264ref omnetpp progress

Unfair slowdown of different threads [MICRO 2007]

System performance loss [MICRO 2007]

Vulnerability to denial of service [USENIX Security 2007]

Inability to enforce system-level thread priorities [MICRO 2007]

Normalized Memory Stall-Time
O NWDUIO NN ®

Our Goal

Control inter-thread interference in DRAM

Design a shared DRAM scheduler that

o provides high system performance
preserves each thread’sl DRAM bank parallelisml

o provides fairness to threads sharing the DRAM system
equalizes memory-slowdowns of equal-priority threads

o is controllable and configurable
enables different service levels for threads with different priorities

10

Outline

Background and Goal

Motivation
o Destruction of Intra-thread DRAM Bank Parallelism

Parallelism-Aware Batch Scheduling

o Batching
o Within-batch Scheduling

System Software Support
Evaluation
Summary

11

The Problem

Processors try to tolerate the latency of DRAM requests by
generating multiple outstanding requests

o Memory-Level Parallelism (MLP)
o Out-of-order execution, non-blocking caches, runahead execution

Effective only if the DRAM controller actually services the
multiple requests in parallel in DRAM banks

Multiple threads share the DRAM controller

DRAM controllers are not aware of a thread’s MLP
o Can service each thread’s outstanding requests serially, not in parallel

12

Bank Parallelism of a Thread

2 DRAM Requests Bank 0 Bank1
Single Thread: 1

Thread A+ [Compuite [NISISINNNN Compute]

Bank O &

Bank 1 Thread A: Bank O, Row 1

Thread A: Bank 1, Row 1

Bank access latencies of the two requests overlapped
Thread stalls for ~ONE bank access latency

13

Bank Parallelism Interference in DRAM

Baseline Scheduler; Bank 0 Bank 1
2 DRAM Requests

Thread A: Bank 0, Row 1
Thread B: Bank 1, Row 99|

Thread B: Bank 0, Row 99|
Thread A: Bank 1, Row 1

Bank access latencies of each thread serialized
Each thread stalls for ~TWO bank access latencies

14

Parallelism-Aware Scheduler

Baseline Scheduler: Bank 0 Bank 1
2 DRAM Requests

Thread A: Bank 0, Row 1
Thread B: Bank 1, Row 99|

Thread B: Bank 0, Row 99|
Thread A: Bank 1, Row 1

Parallelism-aware Scheduler:
2 DRAM Requests

_ Saved Cyae

Bank O M
Bank 1

2 DRAM, Requests

Average stall-time:
~1.5 bank access
latencies

15

Outline

Background and Goal

Motivation
o Destruction of Intra-thread DRAM Bank Parallelism

Parallelism-Aware Batch Scheduling (PAR-BS)

o Request Batching
o Within-batch Scheduling

System Software Support
Evaluation
Summary

16

Parallelism-Aware Batch Scheduling (PAR-BS)

Principle 1: Parallelism-awareness
o Schedule requests from a thread (to

different banks) back to back -
o Preserves each thread’s bank parallelism
o But, this can cause starvation... ,_._T_Z_ ______ = 2.----\
f' T \= Batch
Principle 2: Request Batching i i
o Group a fixed number of oldest requests 1 L12 i
from each thread into a “batch” l\ O |

a Service the batch before all other requests
o Form a new batch when the current one is done

o Eliminates starvation, provides fairness

o Allows parallelism-awareness within a batch

PAR-BS Components

Request batching

Within-batch scheduling

o Parallelism aware

18

Request Batching

Each memory request has a bit (marked) associated with it

Batch formation:

o Mark up to Marking-Cap oldest requests per bank for each thread
o Marked requests constitute the batch

o Form a new batch when no marked requests are left

Marked requests are prioritized over unmarked ones
o No reordering of requests across batches: no starvation, high fairness

How to prioritize requests within a batch?

19

Within-Batch Scheduling

Can use any existing DRAM scheduling policy
o FR-FCFS (row-hit first, then oldest-first) exploits row-buffer locality

But, we also want to preserve intra-thread bank parallelism
o Service each thread’s requests back to back

Scheduler computes a ranking of threads when the batch is
formed

o Higher-ranked threads are prioritized over lower-ranked ones

o Improves the likelihood that requests from a thread are serviced in
parallel by different banks

Different threads prioritized in the same order across ALL banks

20

How to Rank Threads within a Batch

Ranking scheme affects system throughput and fairness

Maximize system throughput
o Minimize average stall-time of threads within the batch

Minimize unfairness (Equalize the slowdown of threads)
o Service threads with inherently low stall-time early in the batch

o Insight: delaying memory non-intensive threads results in high
slowdown

Shortest stall-time first (shortest job first) ranking

o Provides optimal system throughput [Smith, 1956]*

o Controller estimates each thread’s stall-time within the batch
o Ranks threads with shorter stall-time higher

* W.E. Smith, “Various optimizers for single stage production,” Naval Research Logistics Quarterly, 1956.

21

Shortest Stall-Time First Ranking

Maximum number of marked requests to any bank (max-bank-load)
o Rank thread with lower max-bank-load higher (~ low stall-time)

Total number of marked requests (total-load)

o Breaks ties: rank thread with lower total-load higher

T3
13
T3
--
--
13
- 13 13
Bank 0| | Bank 1| |Bank 2 | | Bank 3

max-bank-load | total-load

Ranking:
TO>T1>T2>T3

22

Example Within-Batch Scheduling Order

Baseline Scheduling T3 A PAR-BS Scheduling T3
Order (Arrival order) — 6 Order p—
T T3 T3 5 T3 T3
(D)
- 4|E - T3
- 3 -
T 13 |2 El K
- 3 |1 ECE K
Bank O Bank 1| |Bank 2 Bank 3 Bank O Bank 1| |Bank 2 Bank 3
Ranking: TO>T1>T2>T3
TO | T1 | T2 TO ([T1 | T2
Stall times Stall times

AVG: 5 bank access latencies AVG: 3.5 bank access latencies

Time

R NN W s~ 01O N

Putting It Together: PAR-BS Scheduling Policy

PAR-BS Scheduling Policy

‘ (1) Marked requests first \ Batching

(2) Row-hit requests first
(3) Higher-rank thread first (shortest stall-time first)
(4) Oldest first

Three properties:

Parallelism-aware
within-batch
scheduling

o Exploits row-buffer locality and intra-thread bank parallelism

o Work-conserving

Services unmarked requests to banks without marked requests

o Marking-Cap is important
Too small cap: destroys row-buffer locality

Too large cap: penalizes memory non-intensive threads

Many more trade-offs analyzed in the paper

24

Hardware Cost

<1.5KB storage cost for
o 8-core system with 128-entry memory request buffer

No complex operations (e.g., divisions)

Not on the critical path
o Scheduler makes a decision only every DRAM cycle

25

Outline

Background and Goal

Motivation
o Destruction of Intra-thread DRAM Bank Parallelism

Parallelism-Aware Batch Scheduling

o Batching
o Within-batch Scheduling

System Software Support
Evaluation
Summary

26

System Software Support

OS conveys each thread’s priority level to the controller
o Levels 1, 2, 3, ... (highest to lowest priority)

Controller enforces priorities in two ways
o Mark requests from a thread with priority X only every Xth batch
o Within a batch, higher-priority threads’ requests are scheduled first

Purely opportunistic service

o Special very low priority level L
o Requests from such threads never marked

Quantitative analysis in paper

27

Outline

Background and Goal

Motivation
o Destruction of Intra-thread DRAM Bank Parallelism

Parallelism-Aware Batch Scheduling

o Batching
o Within-batch Scheduling

System Software Support
Evaluation
Summary

28

Evaluation Methodology

4-, 8-, 16-core systems

o X86 processor model based on Intel Pentium M

o 4 GHz processor, 128-entry instruction window

o 512 Kbyte per core private L2 caches, 32 L2 miss buffers

Detailed DRAM model based on Micron DDR2-800
o 128-entry memory request buffer

a 8 banks, 2Kbyte row buffer

o 40ns (160 cycles) row-hit round-trip latency

a 80ns (320 cycles) row-conflict round-trip latency

Benchmarks

o Multiprogrammed SPEC CPU2006 and Windows Desktop applications
o 100, 16, 12 program combinations for 4-, 8-, 16-core experiments

29

Comparison with Other DRAM Controllers

= Baseline FR-FCFS [Zuravleff and Robinson, US Patent 1997; Rixner et al., ISCA 2000]
o Prioritizes row-hit requests, older requests
o Unfairly penalizes threads with low row-buffer locality, memory non-intensive
threads
= FCFS [Intel Pentium 4 chipsets]
o Oldest-first; low DRAM throughput
o Unfairly penalizes memory non-intensive threads

= Network Fair Queueing (NFQ) [Nesbit et al., MICRO 2006]
o Equally partitions DRAM bandwidth among threads
o Does not consider inherent (baseline) DRAM performance of each thread
o Unfairly penalizes threads with high bandwidth utilization [MICRO 2007]
o Unfairly prioritizes threads with bursty access patterns [MICRO 2007]

= Stall-Time Fair Memory Scheduler (STFM) [Mutlu & Moscibroda, MICRO 2007]
o Estimates and balances thread slowdowns relative to when run alone
o Unfairly treats threads with inaccurate slowdown estimates
o Requires multiple (approximate) arithmetic operations

30

Unfairness on 4-, 8-, 16-core Systems

Unfairness = MAX Memory Slowdown / MIN Memory Slowdown [MICRO 2007]

5

P
N &

w
&

N
Ul

Unfairness (lower is better)
N w

=
&

B FR-FCFS
OFCFS

B NFQ
BSTFM

B PAR-BS

1.11X

4-core

1.08X

8-core

16-core

31

System Performance (Hmean-speedup)

oll

Normalized Hmean Speedu

8.3%

6.1%

5.1%

4-core

B FR-FCFS
BFCFS
BNFQ

B STFM

B PAR-BS

8-core

16-core

32

Outline

Background and Goal

Motivation
o Destruction of Intra-thread DRAM Bank Parallelism

Parallelism-Aware Batch Scheduling

o Batching
o Within-batch Scheduling

System Software Support
Evaluation
Summary

33

Summary

Inter-thread interference can destroy each thread’s

DRAM bank parallelism

o Serializes a thread’s requests = reduces system throughput

o Makes techniques that exploit memory-level parallelism less effective
o Existing DRAM controllers unaware of intra-thread bank parallelism

A new approach to fair and high-performance DRAM scheduling

o Batching: Eliminates starvation, allows fair sharing of the DRAM system

o Parallelism-aware thread ranking: Preserves each thread’s bank parallelism

o Flexible and configurable: Supports system-level thread priorities = QoS policies

PAR-BS provides better fairness and system performance than
previous DRAM schedulers

34

Thank you. Questions?

Parallelism-Aware Batch Scheduling

Enhancing both Performance and Fairness

of Shared DRAM Systems

Onur Mutlu and Thomas Moscibroda
Computer Architecture Group
Microsoft Research

Backup Slides

Multiple Memory Controllers (1)

Local ranking: Each controller uses PAR-BS independently
o Computes its own ranking based on its local requests

Global ranking:

Meta controller that computes a global

ranking across all controllers based on global information
o Only needs to track bookkeeping info about each thread’s requests

to the banks in

The difference
scheme depenc

each controller

petween the ranking computed by each
s on the balance of the distribution of

requests to eac

N controller

o Balanced - Local and global rankings are similar

38

Multiple Memory Controllers (1I)

4.5 m FR-FCFS — 1.6
4 O FCFS - 214 7.4% 11.5%
B NFQ 3
3.5 1 m STFM 312
0 3 mPAR-BSLocal | & .
Sy m PAR-BS Global S
— (D)
T 0.8 -
s 2 T
- |
{5 1.18X 1.33X go 6
<0.4 -
- ;
0.5 - =0.2
0 0 -

16-core system, 4 memory controllers

39

Example with Row Hits

Bl Thread 1 277 Thread 3

" QR Tveac2 [Theaos tie
e L] =
,’/ -
=L Pl a==I"1 =
o = 7 &
e
RO _] C
. . | vz &
Bank1 Bank2 Bank3 Bank4 Bank1 Bank2 Bank3 Banké4 Bank1 Bank2 Bank3 Bank4
(a) Arrival order (and FCFS schedule) (b) FR-FCFS schedule (c) PAR-BS schedule
Thread 1 4 Thread 1 Thread 1
Thread 2 4 Thread 2 3 Thread 2 2
Thread 3 5 Thread 3 4.5 Thread 3 4
Thread 4 7 Thread 4 4.5 Thread 4 5.5
AVG 5 AVG 4.375 AVG 3.125

40

End of Backup Slides

Now Your Turn to Analyze...

= Background, Problem & Goal
= Novelty

= Key Approach and Ideas

= Mechanisms (in some detail)
= Key Results: Methodology and Evaluation
= Summary

= Strengths

= Weaknesses

= Thoughts and Ideas

= Takeaways

= Open Discussion

42

PAR-BS Pros and Cons

Upsides:
o First scheduler to address bank parallelism destruction across
multiple threads

o Simple mechanism (vs. STFM)
o Batching provides fairness
o Ranking enables parallelism awareness

Downsides:

o Does not always prioritize the latency-sensitive applications
o Deadline guarantees?

o Complexity?

Some ideas implemented in real SoC memory controllers

43

More on PAR-BS

= Onur Mutlu and Thomas Moscibroda,
"Parallelism-Aware Batch Scheduling: Enhancing both
Performance and Fairness of Shared DRAM Systems"
Proceedings of the 35th International Symposium on Computer
Architecture (ISCA), pages 63-74, Beijing, China, June 2008.
[Summary] [Slides (ppt)]
One of the 12 computer architecture papers of 2008
selected as Top Picks by IEEE Micro.

Parallelism-Aware Batch Scheduling:
Enhancing both Performance and Fairness of Shared DRAM Systems

Onur Mutlu Thomas Moscibroda
Microsoft Research

{onur,moscitho } @microsoft.com

44

https://people.inf.ethz.ch/omutlu/pub/parbs_isca08.pdf
http://isca2008.cs.princeton.edu/
https://people.inf.ethz.ch/omutlu/pub/parbs_isca08-summary.pdf
https://people.inf.ethz.ch/omutlu/pub/mutlu_isca08_talk.ppt

More on PAR-BS

= Onur Mutlu and Thomas Moscibroda,

"Parallelism-Aware Batch Scheduling: Enabling High-Performance and Fair
Memory Controllers”

IEEE Micro, Special Issue: Micros Top Picks from 2008 Computer Architecture
Conferences (MICRO TOP PICKS), Vol. 29, No. 1, pages 22-32, January/February 2009.

PARALLELISM-AWARE
BATCH SCHEDULING: ENABLING
HIGH-PERFORMANCE AND FAIR
SHARED MEMORY CONTROLLERS

UNCONTROLLED INTERTHREAD INTERFERENCE IN MAIN MEMORY CAN DESTROY INDIVID-

UAL THREADS" MEMORY-LEVEL PARALLELISM, EFFECTIVELY SERIALIZING THE MEMORY
REQUESTS OF A THREAD WHOSE LATENCIES WOULD OTHERWISE HAVE LARGELY OVER-
LAPPED, THEREBY REDUCING SINGLE-THREAD PERFORMANCE. THE PARALLELISM-AWARE

BATCH SCHEDULER PRESERVES EACH THREAD'S MEMORY-LEVEL PARALLELISM, ENSURES

FAIRNESS AND STARVATION FREEDOM, AND SUPPORTS SYSTEM-LEVEL THREAD PRIORITIES. 45

https://people.inf.ethz.ch/omutlu/pub/parbs_ieee_micro09.pdf
http://www.computer.org/micro/

Some History

On PAR-BS

Variants implemented in Samsung SoC memory controllers

Effective platform level approach and DRAM accesses are
crucial to system performance. This paper touches this
topics and suggest a superior approach to current known

techniques. Review from ISCA 2008

Top Picks 2009 Review #1

<Review #1>

Provide a short summary of the paper (in your own words):

This paper presents a memory controller design that reduces inter-thread interference and
allows threads exploit memory level parallelism by ensuring that the requests of one thread
gets to fully utilize all the memory banks without intervening requests from other threads.

What are the strengths of the paper? (1-3 sentences):
This paper addresses a important problem - memory system performance in multicore processors.
The techniques presented in this paper are simple enough to implement and are shown to be
effective.

What are the strengths of the paper? (1-3 sentences):

The insight that I found most interesting is that current memory controllers can actually
destroy memory level parallelism. I believe that this observation alone will catalyze quite
a bit of additional research in either making the memory controller more efficient, or
perhaps simplifying the cores such that the order of exposed memory accesses better matches
the scheduling decisions/algorithm of the memory controller.

Top Picks 2009 Review #3

What are the strengths of the paper? (1-3 sentences):

The insight that I found most interesting is that current memory controllers can actually
destroy memory level parallelism. I believe that this observation alone will catalyze quite
a bit of additional research in either making the memory controller more efficient, or
perhaps simplifying the cores such that the order of exposed memory accesses better matches
the scheduling decisions/algorithm of the memory controller.

Provide the reasons why you believe this paper will or will not have a significant impact,
either short term or long term, or both. (The authors will see these comments.):

The exact proposed mechanism may or may not get adopted depending on whether the thread id's
get exported to the memory controller (although this is easier to do now with on-chip memory
controllers), but in my opinion the most interesting part of this paper is the observation
that current memory controllers can destroy MLP. So much power and complexity is spent on
exposing more MLP, and having the memory controller undo all of this hard work seems almost
silly. This work identifies this problem, and in doing so, I think will at least make more
researchers look at this phenomenon and try to find ways to exploit it. 1In the longer-term
and broader-picture, this work also advances the state of the art in terms of making better
use of the limited resource of memory bandwidth. As the number of cores/threads increases
per chip, there will likely be more opportunities for improving overall system efficiency by
having the memory system (or the uncore in general) more thread-aware.

Top Picks 2009 Review #4

Provide the reasons why you believe this paper will or will not have a significant impact,
either short term or long term, or both. (The authors will see these comments.):

This paper provides an interesting insight: that single-thread memory level parallelism can
be affected adversely by other threads and destroy some of the optimization's benefits that
have been developed for 000 cores over the years. It then proposes a simple mechanism based
on batching requests together.

Industry impact seems to be likely, since the mechanism is rather simple and hence low
overhead, and many-core chips will be concerned with thrashing.

Research impact, on the other hand, is perhaps a little low, as in just cited in further work
in memory scheduling.

Seminar in

Computer Architecture
Meeting 4: PAR-BS Memory Scheduler

Prof. Onur Mutlu

ETH Zlrich
Fall 2020
8 October 2020

