Seminar in

Computer Architecture
Meeting 2: Example Review: RowClone

Prof. Onur Mutlu

ETH Zurich
Fall 2020
24 September 2020

Suggested Paper Discussion Format

Problem & Goal

Key ldeas/solution
Novelty ~20-25 minute

Mechanisms & Implementation Summary

Major Results
Takeaways/Conclusions

Strengths
Weaknesses ~10 min Critique
Alternatives plus

New ideas/problems ~10 min Discussion

Brainstorming and Discussion

SAFARI 2

Presentation Schedule

We will have 11 sessions of presentations

2 presentations in each of the 11 sessions
o Max 50 minutes total for each presentation+discussion
o We will take the entire 2 hours in each meeting

Each presentation

o One student presents one paper and leads discussion
o Max 25 minute summary+analysis

o Max 10 minute critique

o Max 10 minute discussion+brainstorming+feedback
o Should follow the suggested guidelines

Algorithm for Presentation Preparation

Study Lecture 1b again for presentation guidelines

Read and analyze your paper thoroughly
o Discuss with anyone you wish + use any resources

Prepare a draft presentation based on guidelines

Meet mentor(s) and get feedback

o Revise the presentation and delivery

Meet mentor(s) again and get further feedback
o Revise the presentation and delivery

Meetings are mandatory — you have to schedule them with
your assigned mentor(s). We may suggest meeting times.

Practice, practice, practice

Example Paper Presentations

Learning by Example

= A great way of learning

= We will do at least one today

Structure of the Presentation

Background, Problem & Goal
Novelty

Key Approach and Ideas
Mechanisms (in some detail)
Key Results: Methodology and Evaluation
Summary

Strengths

Weaknesses

Thoughts and Ideas
Takeaways

Open Discussion

Background, Problem & Goal

Novelty

Key Approach and Ideas

Mechanisms (in some detail)

11

Key Results:
Methodology and Evaluation

Summary

13

Strengths

Weaknesses

15

Thoughts and Ideas

Takeaways

Open Discussion

18

Example Paper Presentation

19

Let’s Review This Paper

Vivek Seshadri, Yoongu Kim, Chris Fallin, Donghyuk Lee, Rachata
Ausavarungnirun, Gennady Pekhimenko, Yixin Luo, Onur Mutlu, Michael A.
Kozuch, Phillip B. Gibbons, and Todd C. Mowry,

"RowClone: Fast and Energy-Efficient In-DRAM Bulk Data Copy and
Initialization”

Proceedings of the 46th International Symposium on Microarchitecture

(MICRO), Davis, CA, December 2013. [Slides (pptx) (pdf)] [Lightning Session
Slides (pptx) (pdf)] [Poster (pptx) (pdf)]

RowClone: Fast and Energy-Efficient
In-DRAM Bulk Data Copy and Initialization

Vivek Seshadri Yoongu Kim Chris Fallin” Donghyuk Lee

vseshadr@cs.cmu.edu yoongukim@cmu.edu cfallin@cif.net donghyuki@cmu.edu

Rachata Ausavarungnirun Gennady Pekhimenko Yixin Luo
rachata@cmu.edu gpekhime@cs.cmu.edu yixinluo@andrew.cmu.edu

Onur Mutlu Phillip B. Gibbonst Michael A. Kozucht Todd C. Mowry

onur@cmu.edu phillip.b.gibbons@intel.com michael.a.kozuch@intel.com tcm@cs.cmu.edu

Carnegie Mellon University fIntel Pittsburgh

http://users.ece.cmu.edu/~omutlu/pub/rowclone_micro13.pdf
http://www.microarch.org/micro46/
http://users.ece.cmu.edu/~omutlu/pub/rowclone_seshadri_micro13-talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/rowclone_seshadri_micro13-talk.pdf
http://users.ece.cmu.edu/~omutlu/pub/rowclone_seshadri_micro13_lightning-talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/rowclone_seshadri_micro13_lightning-talk.pdf
http://users.ece.cmu.edu/~omutlu/pub/rowclone_seshadri_micro13-poster.pptx
http://users.ece.cmu.edu/~omutlu/pub/rowclone_seshadri_micro13-poster.pdf

RowClone

Fast and Energy-Efficient In-DRAM
Bulk Data Copy and Initialization

Vivek Seshadri

Y. Kim, C. Fallin, D. Lee, R. Ausavarungnirun,
G. Pekhimenko, Y. Luo, O. Mutlu,
P. B. Gibbons, M. A. Kozuch, T. C. Mowry

SAFARI CarnegieMellon <intel®>

Background, Problem & Goal

Memory Channel — Bottleneck

Limited Bandwidth\

High Energ

Goal: Reduce Memory Bandwidth Demand

Reduce unnecessary data movement

Bulk Data Copy and Initialization

Bulk Data
Copy

Bulk Data
Initialization

SAFARI

Bulk Data Copy and Initialization

The Impact of Architectural Trends on Operating System Performance

Mendel Rosenblum, Edouard Bugnion, Stephen Alan Hermrod,
et Witchel, and Anoop Gupta

4
+

Com icati
munications Technolog

ving Bulk Memory Copying and Initialization
Performance

' Lah

Architecture Support for Impro

Xigowei Jiang, Yan Solihin Li Zhao. Ravishankar Lyer
Intel Labs

Pept. of Electrical and Computer Engineering
North Caroling State University
Raleigh, USA

Intel Corporation
Hillshoro, USA

SAFARI

Bulk Data Copy and Initialization

memmove & memcpy: 5% cycles in Google’s datacenter [Kanev+ ISCA’I5]

00000

00000
00000

Zero initialization ' '

Forking (e g., security) Checkpointing

d L

— =

VM Cloning page Migration
Deduplication

SAFARI o

Many more

Shortcomings of Today’s Systems

1) High latency
3) Cache pollution \

2) High bandwidth utilization

4) Unwanted data movement

1046ns, 3.6ul (for 4KB page copy via DMA)

28

Novelty, Key Approach, and
Ideas

RowClone: In-Memory Copy

3) No cache pollution 1) Low latency

2) Low bandwidth utilization
4) No unwanted data movement

1046ns, 3.6u) —=> 90ns, 0.04ul

30

RowClone: In-DRAM Row Copy

Transfer
row

Transfer
row

4 Kbytes

Idea: Two consecutive ACTivates

Negligible HW cost

Step 1: Activate row A

Step 2: Activate row B

DRAM subarray

Row Buffer (4 Kbytes)

Data Bus

Mechanisms (in some detail)

32

DRAM Chip Organization

1
-
b
N\
N\
N\

>
N\
gy

Memory Channel
Chip 1/O

Se—
\
L
-
-
-
’/
—— - 7
7

Bank /O

\
\
\
\
- \
~ \
Se \ \
~
S o |
N |
I
/]
/ I'
/
/)
/ /
N /
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
[

<
p
\

Row of DRAM Cells /
Row Buffer —

RowClone Types

Intra-subarray RowClone (row granularity)
o Fast Parallel Mode (FPM)

Inter-bank RowClone (byte granularity)
o Pipelined Serial Mode (PSM)

Inter-subarray RowClone

34

RowClone: Fast Parallel Mode (FPM)

Row Buffer

1. Source row to row buffer

: 2. Row buffer to destination row

RowClone: Intra-Subarray (I)

VDD/2 \A_Dé H

Src 0<—I e
dst o<—I e

Amplify the
difference
Data gets ; ;

IW% 9

copied

Sense Amplifier ‘ i 1
(Row Buffer) 'iig2

RowClone: Intra-Subarray (1)

Row Buffer

1. Activate src row (copy data from src to row buffer)

7

_

2. Activate dst row (disconnect src from row buffer,
connect dst — copy data from row buffer to dst)

~\

Fast Parallel Mode: Benefits

Bulk Data Copy

Latency @l Energy @l

1046ns to 90ns 3600nJ to 40nJ

No bandwidth consumption
Very little changes to the DRAM chip

Fast Parallel Mode: Constraints

Location of source/destination
o Both should be in the same subarray

Size of the copy
o Copies af//the data from source row to destination

RowClone: Inter-Bank

A N

~ 7N o ’Shared

Memory Channel
|
|
Chip 1/O
t

v\ J

Internal bus

-

Overlap the latency of the read and the write

. 1.9X latency reduction, 3.2X energy reduction)

\

Generalized ROWCIOH@ 0.01% area cost

Inter Subarray Copy
(Use Inter-Bank Copy Twice)

d
(1’\

[][Bank} Bankl/O]| \
I . \ / ,l

[
(O]
Inter Bank Copy Intra Subarray

(Pipelined Copy (2 ACTSs)
Internal RD/WR)

>

Chip 1/O

Memory Channel

<€

\.

RowClone: Fast Row Initialization

v

Fix a row at Zero
(0.5% loss in capacity)

42

RowClone: Bulk Initialization

Initialization with arbitrary data
a Initialize one row
o Copy the data to other rows

Zero initialization (most common)
o Reserve a row in each subarray (always zero)
o Copy data from reserved row (FPM mode)

o 6.0X lower latency, 41.5X lower DRAM energy
0 0.2% loss in capacity

SAFARI

43

RowClone: Latency & Energy Benefits

Latency Reduction Energy Reduction
iézl T11.6x go - /44X
41.5x
10 6.0Xx °0
8 40
o 1.9x 20
‘21] - 1.0x I 3.2x 1.5x
- >~ v > > — o — -
Very low cost: 0.01% increase in die area
-

J

‘ Copy ‘ Zero ‘

| Copy | Zero |

SAFARI

44

System Design to
Enable RowClone

End-to-End System Design

- How to communicate
Application occurrences of bulk
copy/initialization across
. ?

Operating System layers:

How to ensure cache
coherence?

How to maximize latency and

Microarchitecture :
energy savings?

DRAM (RowClone) How to handle data reuse?

46

1. Hardware/Software Interface

= Two new instructions
* memcopy and meminit
* Similar instructions present in existing ISAs

= Microarchitecture Implementation
* Checks ifinstructions can be sped up by RowClone

* Exportinstructions to the memory controller

2. Managing Cache Coherence

» RowClone modifies data in memory
* Need to maintain coherence of cached data

= Similarto DMA

* Source and destination in memory
* Can leverage hardware support for DMA

= Additional optimizations

3. Maximizing Use of the Fast

\"i[e]o[=

= Make operating system subarray-aware

* Primitives amenable to use of FPM
* Copy-on-Write
o Allocate destination in same subarray as source
o Use FPM to copy

* Bulk Zeroing

o Use FPM to copy data from reserved zero row

4. Hanadling Data Reuse After

= Data reuse after zero initialization
* Phase 1: OS zeroes out the page
* Phase 2: Application uses cachelines of the page

= RowClone
* Avoids misses in phase 1
* Butincurs misses in phase 2

* RowClone-Zero-Insert (RowClone-Zl)
* Insert clean zero cachelines

Key Results:
Methodology and Evaluation

Methodology

Out-of-order multi-core simulator
1MB/core last-level cache

Cycle-accurate DDR3 DRAM simulator

6 Copy/Initialization intensive applications

+SPEC CPU2006 for multi-core

Performance
o Instruction throughput for single-core
o Weighted Speedup for multi-core

Copy/Initialization Intensive Applications

System bootup (Booting the Debian OS)

Compile (GNU C compiler — executing cc1)
Forkbench (A fork microbenchmark)

Memcached (Inserting a large number of objects)
MySql (Loading a database)

Shell script (find with 1s on each subdirectory)

Copy and Initialization in Workloads

B Read
.AEET =
0.6 ’N .I I. .

N
-

W Zero H Copy m Write

[

Fraction of Memory Traffic

bootup compile forkbench mcached mysql shell

SAFARI >

Single-Core - Performance and

Enerc

m |[PC Improvement ® Memory Energy Reduction
70%

60%
o J
40% —

Improvements correlate with fraction of
memory traffic due to copy/initialization

J\to Baseline

g

0% -

bootup compile forkbench mcached mysql shell

Multi-Core Systems

» Reduced bandwidth consumption benefits all
applications.

= Run copy/initialization intensive applications
with memory intensive SPEC applications.

= Half the cores run copyl/initialization intensive
applications. Remaining half run SPEC
applications.

Multi-Core Results: Summary

B System Performance B Memory Energy Efficiency

ment over Baseline

30%
25%
20%
15%
10%

dh bk

~

Consistent improvement in
energy/instruction

Summary

58

Executive Summary

= Bulk data copy and initialization
* Unnecessarily move data on the memory channel
* Degrade system performance and energy efficiency
= RowClone — perform copy in DRAM with low cost
* Uses row buffer to copy large quantity of data
* Source row — row buffer — destination row
« 11X lower latency and 74X lower energy for a bulk copy
= Accelerate Copy-on-Write and Bulk Zeroing
* Forking, checkpointing, zeroing (security), VM cloning
* |Improves performance and energy efficiency at low cost
* 27% and 17% for 8-core systems (0.01% DRAM chip area)

Strengths

Strengths of the Paper

Simple, novel mechanism to solve an important problem
Effective and low hardware overhead
Intuitive idea!

Greatly improves performance and efficiency (assuming
data is mapped nicely)

Seems like a clear win for data initialization (without
mapping requirements)

Makes software designer’s life easier
o If copies are 10x-100x cheaper, how to design software?

Paper tackles many low-level and system-level issues
Well-written, insightful paper

61

Weaknesses

62

Weaknesses

Requires data to be mapped in the same subarray to
deliver the largest benefits

o Helps less if data movement is not within a subarray
a Does not help if data movement is across DRAM channels

Inter-subarray copy is very inefficient

Causes many changes in the system stack
o End-to-end design spans applications to circuits

o Software-hardware cooperative solution might not always be
easy to adopt

Cac

Eva
Eva
Are

e coherence and data reuse cause real overheads

uation is done solely in simulation

uation does not consider multi-chip systems
these the best workloads to evaluate?

03

Recall: Try to Avoid Rat Holes

Performance Analysis Rat Holes

Workload Metrics Configuration Details

04

Source: https://www.cse.wustl.edu/~jain/iucee/ftp/k_10adp.pdf

Thoughts and Ideas

Extensions and Follow-Up Work

Can this be improved to do faster inter-subarray copy?
a Yes, see the LISA paper [Chang et al., HPCA 2016]

Can we enable data movement at smaller granularities
within a bank?

a Yes, see the FIGARO paper [Wang et al., MICRO 2020]

Can this be improved to do better inter-bank copy?
o Yes, see the Network-on-Memory paper [CAL 2020]

Can similar ideas and DRAM properties be used to perform
computation on data?

a Yes, see the Ambit paper [Seshadri et al., MICRO 2017]
66

LISA: Fast Inter-Subarray Data Movement

= Kevin K. Chang, Prashant J. Nair, Saugata Ghose, Donghyuk Lee,
Moinuddin K. Qureshi, and Onur Mutlu,
"Low-Cost Inter-Linked Subarrays (LISA): Enabling Fast
Inter-Subarray Data Movement in DRAM"
Proceedings of the 22nd International Symposium on High-
Performance Computer Architecture (HPCA), Barcelona, Spain,
March 2016.

Slides (pptx) (pdf)]

[Source Code]

Low-Cost Inter-Linked Subarrays (LISA):
Enabling Fast Inter-Subarray Data Movement in DRAM

Kevin K. Chang', Prashant J. Nair*, Donghyuk Leef, Saugata Ghose, Moinuddin K. Qureshi*, and Onur Mutlu®
g ghy g
fCarnegie Mellon University — *Georgia Institute of Technology

SAFARI 07

https://users.ece.cmu.edu/~omutlu/pub/lisa-dram_hpca16.pdf
http://hpca22.site.ac.upc.edu/
https://users.ece.cmu.edu/~omutlu/pub/lisa-dram_kevinchang_hpca16-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/lisa-dram_kevinchang_hpca16-talk.pdf
https://github.com/CMU-SAFARI/RamulatorSharp

Moving Data Inside DRAM?

Bank 5P2' ‘
- rows
Bank DRAM
1 |l
Bank \\\Ce
Bank
DRAM

Goal: Provide a new substrate to enable

wide connectivity between subarrays

68

Key Idea and Applications

* Low-cost Inter-linked subarrays (LISA)
— Fast bulk data movement between subarrays
— Wide datapath via isolation transistors: 0.8% DRAM chip area

| §Iu barray |)

—1 —1

AL AL - AL A

- - ==l

| Subarray 2 |

* LISA is a versatile substrate — new applications
Fast bulk data copy: Copy latency 1.363ms—0.148ms (9.2x)
— 66% speedup, -55% DRAM energy

In-DRAM caching: Hot data access latency 48.7ns—21.5ns (2.2x)
— 5% speedup

Fast precharge: Precharge latency 13.1ns—5.0ns (2.6x)
— 8% speedup

69

More on LISA

= Kevin K. Chang, Prashant J. Nair, Saugata Ghose, Donghyuk Lee,
Moinuddin K. Qureshi, and Onur Mutlu,
"Low-Cost Inter-Linked Subarrays (LISA): Enabling Fast
Inter-Subarray Data Movement in DRAM"
Proceedings of the 22nd International Symposium on High-
Performance Computer Architecture (HPCA), Barcelona, Spain,
March 2016.

Slides (pptx) (pdf)]

[Source Code]

Low-Cost Inter-Linked Subarrays (LISA):
Enabling Fast Inter-Subarray Data Movement in DRAM

Kevin K. Chang', Prashant J. Nair*, Donghyuk Leef, Saugata Ghose, Moinuddin K. Qureshi*, and Onur Mutlu®
g ghy g
fCarnegie Mellon University — *Georgia Institute of Technology

SAFARI 7

https://users.ece.cmu.edu/~omutlu/pub/lisa-dram_hpca16.pdf
http://hpca22.site.ac.upc.edu/
https://users.ece.cmu.edu/~omutlu/pub/lisa-dram_kevinchang_hpca16-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/lisa-dram_kevinchang_hpca16-talk.pdf
https://github.com/CMU-SAFARI/RamulatorSharp

FIGARO: Fine-Grained In-DRAM Copy

= Yaohua Wang, Lois Orosa, Xiangjun Peng, Yang Guo, Saugata Ghose,
Minesh Patel, Jeremie S. Kim, Juan Gomez Luna, Mohammad
Sadrosadati, Nika Mansouri Ghiasi, and Onur Mutluy,
"FIGARO: Improving System Performance via Fine-Grained In-
DRAM Data Relocation and Caching”
Proceedings of the 53rd International Symposium on
Microarchitecture (MICRO), Virtual, October 2020.

FIGARO: Improving System Performance
via Fine-Grained In-DRAM Data Relocation and Caching
Yaohua Wang* Lois Orosal Xiangjun Peng®* Yang Guo* Saugata Ghose®* Minesh Patelf
Jeremie S. Kim Juan Gomez Lunal Mohammad Sadrosadati® Nika Mansouri Ghiasif Onur Mutluf?

*National University of Defense Technology TETH Ziirich © Chinese University of Hong Kong
©University of Iilinois at Urbana—Champaign iCarnegie Mellon University 8 Institute of Research in Fundamental Sciences

SAFARI &

https://people.inf.ethz.ch/omutlu/pub/FIGARO-fine-grained-in-DRAM-data-relocation-and-caching_micro20.pdf
http://www.microarch.org/micro53/

Network-On-Memory: Fast Inter-Bank Copy

= Seyyed Hossein SeyyedAghaei Rezaei, Mehdi Modarressi, Rachata
Ausavarungnirun, Mohammad Sadrosadati, Onur Mutlu, and Masoud
Daneshtalab,
"NoM: Network-on-Memory for Inter-Bank Data Transfer in
Highly-Banked Memories"
IEEE Computer Architecture Letters (CAL), to appear in 2020.

NoM: NETWORK-ON-MEMORY FOR INTER-BANK DATA TRANSFER IN HIGHLY-BANKED MEMORIES

Seyyed Hossein SeyyedAghaei Rezaej’ Mehdi Modarressi’-3 Rachata Ausavarungnirun?
Mohammad Sadrosadati?® Onur Mutlu# Masoud Daneshtalab®
"University of Tehran 2King Mongkut's University of Technology North Bangkok ’Institute for Research in Fundamental Sciences
4ETH Zurich *Malardalens University

SAFARI 72

https://people.inf.ethz.ch/omutlu/pub/network-on-memory-data-copy_ieee-cal20.pdf
http://www.computer.org/web/cal

In-DRAM Bulk Bitwise AND/OR

= Vivek Seshadri, Kevin Hsieh, Amirali Boroumand, Donghyuk

Lee, Michael A. Kozuch, Onur Mutlu, Phillip B. Gibbons, and
Todd C. Mowry,

"Fast Bulk Bitwise AND and OR in DRAM"
IEEE Computer Architecture Letters (CAL), April 2015.

Fast Bulk Bitwise AND and OR in DRAM

Vivek Seshadri*, Kevin Hsieh*, Amirali Boroumand*, Donghyuk Lee*,
Michael A. Kozuchf, Onur Mutlu*, Phillip B. Gibbons', Todd C. Mowry*

*Carnegie Mellon University TIntel Pittsburgh

SAFARI 73

http://users.ece.cmu.edu/~omutlu/pub/in-DRAM-bulk-AND-OR-ieee_cal15.pdf
http://www.computer.org/web/cal

Ambit: Bulk-Bitwise in-DRAM Computation

= Vivek Seshadri, Donghyuk Lee, Thomas Mullins, Hasan Hassan, Amirali
Boroumand, Jeremie Kim, Michael A. Kozuch, Onur Mutlu, Phillip B. Gibbons,
and Todd C. Mowry,
"Ambit: In-Memory Accelerator for Bulk Bitwise Operations Using
Commodity DRAM Technology"
Proceedings of the 50th International Symposium on
Microarchitecture (MICRO), Boston, MA, USA, October 2017.
[Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)] [Poster (pptx) (pdf)]

Ambit: In-Memory Accelerator for Bulk Bitwise Operations
Using Commodity DRAM Technology

Vivek Seshadri'® Donghyuk Lee*> Thomas Mullins®® Hasan Hassan® ~Amirali Boroumand”®
Jeremie Kim*® Michael A. Kozuch® Onur Mutlu®® Phillip B. Gibbons® Todd C. Mowry”®

'Microsoft Research India *NVIDIA Research “Intel *ETH Ziirich °Carnegie Mellon University

SAFARI 74

https://people.inf.ethz.ch/omutlu/pub/ambit-bulk-bitwise-dram_micro17.pdf
http://www.microarch.org/micro50/
https://people.inf.ethz.ch/omutlu/pub/ambit-bulk-bitwise-dram_micro17-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/ambit-bulk-bitwise-dram_micro17-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/ambit-bulk-bitwise-dram_micro17-lightning-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/ambit-bulk-bitwise-dram_micro17-lightning-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/ambit-bulk-bitwise-dram_micro17-poster.pptx
https://people.inf.ethz.ch/omutlu/pub/ambit-bulk-bitwise-dram_micro17-poster.pdf

In-DRAM Bulk Bitwise Execution Paradigm

= Vivek Seshadri and Onur Mutluy,
"In-DRAM Bulk Bitwise Execution Engine"

Invited Book Chapter in Advances in Computers, to appear
in 2020.

[Preliminary arXiv version]

In-DRAM Bulk Bitwise Execution Engine

Vivek Seshadri Onur Mutlu
Microsoft Research India ETH Zirich

visesha@microsoft.com onur .mutlu@inf.ethz.ch

SAFARI 7>

https://arxiv.org/pdf/1905.09822.pdf
https://arxiv.org/pdf/1905.09822.pdf

Extensions and Follow-Up Work (1)

Can this idea be evaluated on a real system? How?
a Yes, see the Compute DRAM paper [MICRO 2019]

Can similar ideas be used in other types of memories?
Phase Change Memory? RRAM? STT-MRAM?

a Yes, see the Pinatubo paper [DAC 2016]

Can we have more efficient solutions to
o Cache coherence (minimize overhead)
o Data reuse after copy and initialization

76

Pinatubo: PCM RowClone and Bitwise Ops

Pinatubo: A Processing-in-Memory Architecture for Bulk
Bitwise Operations in Emerging Non-volatile Memories

Shuangchen Li*; Cong Xu?, Qiaosha Zou*?, Jishen Zhao®, Yu Lu*, and Yuan Xie*
University of California, Santa Barbara®, Hewlett Packard Labs?

University of California, Santa Cruz?, Qualcomm Inc.%, Huawei Technologies Inc.?
{shuangchenli, yuanxie}ece.ucsb.edu’

SAFARI nttps://cseweb.ucsd.edu/~jzhao/files/Pinatubo-dac2016.pdf 7

https://cseweb.ucsd.edu/~jzhao/files/Pinatubo-dac2016.pdf

RowClone Demonstration in Real DRAM Chips

ComputeDRAM: In-Memory Compute Using Off-the-Shelf

DRAMs
Fei Gao Georgios Tziantzioulis David Wentzlaff
feig@princeton.edu georgios.tziantzioulis@princeton.edu wentzlaf@princeton.edu
Department of Electrical Engineering Department of Electrical Engineering Department of Electrical Engineering
Princeton University Princeton University Princeton University

SAFARI https://parallel.princeton.edu/papers/microl19-gao.pdf 78

https://parallel.princeton.edu/papers/micro19-gao.pdf

Takeaways

Key Takeaways

A novel method to accelerate data copy and initialization

Simple and effective
Hardware/software cooperative

Good potential for work building on it to extend it
o To different granularities
o To make things more efficient and effective

o Many works have already built on the paper (see LISA, FIGARO,
Ambit, ComputeDRAM, and other works in Google Scholar)

Easy to read and understand paper
80

Open Discussion

81

Discussion Starters

Thoughts on the previous ideas?
How practical is this?

Will the problem become bigger and more important over
time?

Will the solution become more important over time?
Are other solutions better?

Is this solution clearly advantageous or opposite in some
cases?

82

General Issues

= Data mapping and interleaving
= Data coherence between caches and DRAM

= Data reuse

= All are issues with Processing in Memory

83

More on RowClone

Vivek Seshadri, Yoongu Kim, Chris Fallin, Donghyuk Lee, Rachata
Ausavarungnirun, Gennady Pekhimenko, Yixin Luo, Onur Mutlu, Michael A.
Kozuch, Phillip B. Gibbons, and Todd C. Mowry,

"RowClone: Fast and Energy-Efficient In-DRAM Bulk Data Copy and
Initialization”

Proceedings of the 46th International Symposium on Microarchitecture

(MICRO), Davis, CA, December 2013. [Slides (pptx) (pdf)] [Lightning Session
Slides (pptx) (pdf)] [Poster (pptx) (pdf)]

RowClone: Fast and Energy-Efficient
In-DRAM Bulk Data Copy and Initialization

Vivek Seshadri Yoongu Kim Chris Fallin” Donghyuk Lee

vseshadr@cs.cmu.edu yoongukim@cmu.edu cfallin@cif.net donghyuki@cmu.edu

Rachata Ausavarungnirun Gennady Pekhimenko Yixin Luo
rachata@cmu.edu gpekhime@cs.cmu.edu yixinluo@andrew.cmu.edu

Onur Mutlu Phillip B. Gibbonst Michael A. Kozucht Todd C. Mowry

onur@cmu.edu phillip.b.gibbons@intel.com michael.a.kozuch@intel.com tcm@cs.cmu.edu

Carnegie Mellon University fIntel Pittsburgh

http://users.ece.cmu.edu/~omutlu/pub/rowclone_micro13.pdf
http://www.microarch.org/micro46/
http://users.ece.cmu.edu/~omutlu/pub/rowclone_seshadri_micro13-talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/rowclone_seshadri_micro13-talk.pdf
http://users.ece.cmu.edu/~omutlu/pub/rowclone_seshadri_micro13_lightning-talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/rowclone_seshadri_micro13_lightning-talk.pdf
http://users.ece.cmu.edu/~omutlu/pub/rowclone_seshadri_micro13-poster.pptx
http://users.ece.cmu.edu/~omutlu/pub/rowclone_seshadri_micro13-poster.pdf

RowClone

Fast and Energy-Efficient In-DRAM
Bulk Data Copy and Initialization

Vivek Seshadri

Y. Kim, C. Fallin, D. Lee, R. Ausavarungnirun,
G. Pekhimenko, Y. Luo, O. Mutlu,
P. B. Gibbons, M. A. Kozuch, T. C. Mowry

SAFARI CarnegieMellon <intel®>

Some History

86

Historical Perspective

This work is perhaps the first example of “minimally
changing DRAM chips” to perform data movement and
computation

o Surprising that it was done as late as 2013!

It led to a body of work on in-DRAM (and in-NVM)
computation with “hopefully small” changes

Work building on RowClone still continues

Initially, it was dismissed by some reviewers
o Rejected from ISCA 2013 conference

87

One Review (ISCA 2013 Submission)

PAPER STRENGTHS

The paper includes a well written background on DRAM
organization/operation. The proposed technique is simple
and elegant; it

nicely exploits key circuit-level characteristics of DRAM
designs and

minimizes the changes necessary to commodity DRAM
chips.

PAPER WEAKNESSES

I am concerned on the applicability of the technique and
found the

evaluation to be uncompelling in terms of motivating the
work as well as

quantifying the potential benefit. Details on how to
efficiently manage

the coherence between the cache hierarchy and DRAM to
enable the proposed

technique are glossed over, but in my opinion are critical
to the

narrative.

38

Another Review and Rebuttal

DETAILED COMMENTS

The paper proposes a simple and not new idea, block
copy in a DRAM, and the creates a complete

Reviewer B mentions that our idea is "not new". An
explicit

reference by the reviewer would be helpful here. While
the

reviewer may be referring to one of the patents that we
cite in

our paper (citations 2, 6, 25, 26, 27 in the paper), these
patents

are at a superficial level and do *not* provide a concrete
mechanism. In contrast, we propose three concrete
mechanisms and

provide details on the most important architectural and
microarchitectural modifications required at the DRAM
chip, the

memory controller, and the CPU to enable a system that
supports

the mechanisms. We also analyze their latency, hardware
overhead,

power, and performance in detail. We are not aware of
any prior

work that achieves this. 39

ISCA 2013 Submission

ISCA40 Paper #295 onur@cmu.edu Profile | Help | Sign out

#268 Papers #353 (All) . Search |

Main Edit

#295 RowClone: Fast and Efficient In-DRAM Copy
and Initialization of Bulk Data

 COMMENT Rejected A 1014kB Thursday 22 Nov 2012 12:11:45am EST
NOTIFICATION | 0fd459a9adc6194cda028a394d2e4d929f662f32
If selected, you will receive
email when updated comments You are an author of this paper.
are available for this paper.
— ABSTRACT + AUTHORS
+ OTHER CONFLICTS Many programs initialize or copy V. Seshadri, Y. Kim, D. Lee,
large amounts of memory data. C. Fallin, R. Ausavarungnirun,
Initialization and copying are G. Pekhimenko, Y. Luo, O. Mutlu,

OveMer Nov WriQua RevConAnd

Review #295A 3 4 5 3
Review #295B 4 3 4 3
Review #295C 3 4 4 3

90

Yet Later... in ISCA 2015...

Profiling a warehouse-scale computer

Svilen Kanev' Juan Pablo Darago’ Kim Hazelwood’
Harvard University Universidad de Buenos Aires Yahoo Labs
Parthasarathy Ranganathan Tipp Moseley Gu-Yeon Wei David Brooks
Google Google Harvard University Harvard University
<35
~ 300]
T 28] P ::nimmove
; 20 1 prr"otobuf
815 2 hash
£ 100 _ allocation
%’ 5 1 compression
3 0 ‘

RIS Data movement In fact, RPCs are by far not the only code
g 8 portions that do data movement. We also tracked all calls to the

Figure 4: 22-27% of WSC cycles are spent in different cc memcpy () and memmove () library functions to estimate the

nents of “datacenter tax”. amount of time spent on explicit data movement (i.e., exposed
o through a simple API). This is a conservative estimate because

we see common building blocks once we aggregate sampled) L. L.) .

profile data across many applications running in a datacenter. it does not track inlined or explicit copies. Just the variants of

In this section, we quantify the performance impact of the these two library functions represent 4-5% of datacenter cycles.

datacenter tax, and argue that its components are prime can-

didates for hardware acceleration in future datacenter SoCs. Recent work in performing data movement in DRAM [45]

could optimize away this piece of tax.

MICRO 2013 Submission

#206 RowClone: Fast and Energy-Efficient In-DRAM
Bulk Data Copy and Initialization

ATION Accepted A 1947kB Friday 31 May 2013 1:48:46pm PDT |
ceive fd8423acdd9a222280302355899340083e5a40b1
e for You are an author of this paper.
+ ABSTRACT + AUTHORS
Bulk data copy and initialization V. Seshadri, Y. Kim, C. Fallin,
operations are frequently triggered D. Lee, R. Ausavarungnirun,
by several system level operations G. Pekhimenko, Y. Luo, O. Mutlu,
in modern systems. Despite the P. Gibbons, M. Kozuch, T. Mowry
fact that these operations do not [details]
require [more]
+ Torics

OveMer Nov WriQua RevExp
Review #206A 5
Review #206B 4.
Review #206C 3
Review #206D 3
Review #206E L

WWANSL
anhbphphp
WWwh phb

Suggestions to Reviewers

= Be fair; you do not know it all
= Be open-minded; you do not know it all

= Be accepting of diverse research methods: there is no
single way of doing research

= Be constructive, not destructive
= Do not have double standards...

Do not block or delay scientific progress for non-reasons

SAFARI]

Seminar in

Computer Architecture
Meeting 2: Example Review: RowClone

Prof. Onur Mutlu

ETH Zurich
Fall 2020
24 September 2020

