Shouji: A Fast and Efficient Pre-
Alignment Filter for Sequence
Alignment

Mohammed Alser, Hasan Hassan, Akash Kumar,
Onur Mutlu, Can Alkan

Bioinformatics 2019

presented by Tobias Oberdorfer

Outline

Background on Bioinformatics
Problem of Read Mapping
Motivation & Goal for Shouji
Key Ideas

« Pre-alignment filter using sliding window approach

« Hardware accelerator for this pre-alignment filter
Results & Conclusion
Discussion
Future work & Questions

Background on Bioinformatics

What 1s Bioinformatics?

Definition of Bioinformatics !:

“Bioinformatics 1s an interdisciplinary field that develops methods and
software tools for understanding biological data, in particular when the data
sets are large and complex.”

These datasets can be amino acid or nucleotide sequences

R e b e e 1 i 1R — AATTGGCC

I Definition from Wikipedia

Read Mapping

Detection of differences and similarities between read and
reference sequences.

Read: TTTTACTGTTCTCCCTTTGAATACAATATATCTATATTTCCCTCTG...
Reference: TITTTACTGTTCTCCCTTTGAAATGACAATATATCTATATTTCCCTCTG...

Read: TTTTACTGTTCTCCCTTTGAAXTXACAATATATCTATATTTCCCTCTG...
Reference: TTTTACTGTTCTCCCTTTGAAATGACAATATATCTATATTTCCCTCTG...

Read Mapping

Read alignment 1s useful for many different applications, e.g.:
« Detect gene mutations

< Strain detection of viruses or bacteria

Not only in bioinformatics, but wherever text comparison 1s used:

< OCR error correction

<+ Auto-correction % 1 &

: 4 :
rcik irkc

Levenshtein distance

How to do Read Mapping?

Two closely related ways of working on read mapping

« Edit distance
o Minimum number of edits to change one sequence into the other
o Edit operations include deletion, insertion, and substitution

o Can have different orders with the same number of edits

« Pairwise alignment
o Use scoring function on type of operation to order edits
o Search for optimal arrangement

o Requires backtracking

Problem of Read Mapping

Really slow!

Enumerating all possible prefixes is necessary for the optimum!

Proof 1dea via contradiction:
Assume we found the optimum without enumerating all possible prefixes.

Now let one prefix, which 1s not enumerated, be part of the optimum.

Edit distance and pairwise alignment are non-additive measures

Calculating the sum for a divided sequence 1s not necessarily the same as for
calculating it directly on the original sequence

Our best option

Enumerating all possible prefixes is necessary for the optimum!

Use Dynamic Programming (short DP)

«» Use a matrix to remember already calculated prefixes

% Most implementations in quadratic space and time complexity O(m?) !
+ Fastest known algorithm? still takes O(m?/log?m)

< May require backtracking to read optimum from penalty

I Big O notation is a mathematical notation that describes the limiting behaviour of a function
2Masek, W. J. and Paterson, M. S. (1980) A faster algorithm computing string edit distances

10

Our best option

Algorithms using Dynamic Programming
«» For pairwise alignment: Needleman—Wunsch or Smith—Waterman

< For edit distance : Levenshtein distance

Acceleration of Dynamic Programming algorithms in previous work

« Calculate only the necessary parts of the DP-matrix

« E.g. Banded Smith-Waterman 1s only calculating some diagonals

« Hardware-accelerators in FPGA, using SIMD or GPU

« Parallelism for DP is hard, as there are data-dependencies between cells
Il

Is there another way?

Use pre-alignment filtering heuristics to eliminate sequences before
using the computationally-expensive optimal alignment algorithm.

Recent work in this direction:

«» SHD a SIMD-friendly bit-vector filter (Xin et al., 2015)

«» GRIM-Filter exploiting 3D-stacked DRAM (Kim et al., 2018)
« GateKeeper (Alser et al., Bioinformatics 2017)

« MAGNET (Alseretal., July 2017)

12

Motivation & Goal

13

Motivation

However, most of the previous work regarding DP

+» Simplify the scoring function of the algorithm used
+» Provide non-optimal sequence alignment

And regarding pre-alignment filtering

+» Are not scalable enough

«» Accuracy 1s too low for most applications

14

Goal

Hence the goal 1s to reduce time spent on calculating
optimal alignment while still maintaining high filtering
accuracy using a new pre-alignment filter approach

15

Key Ideas

16

Key Ideas
High filtering accuracy by correctly detecting common
subsequences

« By rapidly excluding dissimilar sequences from the optimal
alignment calculation using a sliding search window approach

Hardware accelerator for this new pre-alignment filter

« Judicious use of the parallelism friendly architecture of modern
FPGAs

+ Clever observation for calculation of filter steps

17

Filtering Strategy

The pigeonhole principle

Example with 10 pigeons in 9 holes

Because 10 > 9 holds, the pigeonhole
principle says that at least one hole has
more than one pigeon. !

I Example and picture taken from Wikipedia Pigeonhole principle

18

Filtering Strategy

Based on the pigeonhole principle:

If two sequences differ by F edits,

Then at most E+1 non overlapping common subsequences can exist
And the total length of those must be at least m-E,

where m sequence length and E the edit distance threshold

Example with E=1and m = 7: Common subsequences:
Read: TAC and TGT

Reference: Total length: 6 = 7-1
19

Filtering Strategy

Based on the pigeonhole principle:

If two sequences differ by E edits:

Then at most E+1 non overlapping common subsequences can exist
And the total length of those must be at least m-E

where m sequence length and E the edit distance threshold

Example with E=1and m = 7: Common subsequences:
Read: TAC and TG

Reference: Total length: 5 <6 = 7-1
20

Filtering Strategy

Based on the pigeonhole principle:

If two sequences differ by E edits:

Then at most E+1 non overlapping common subsequences can exist
And the total length of those must be at least m-E

where m sequence length and E the edit distance threshold

This 1n turn means for our filter, that any two sequences, that have less than
m-FE total overlapping length of the common subsequences, can be rejected

without further thought.
21

Filtering Strategy

Implemented 1n three steps:
1) Build the neighborhood map
2) Find common subsequences using sliding window approach

3) Accept or reject pair after summing up windows

22

Filtering Strategy

1) Build the neighborhood map

For edit distance threshold E and m length of
sequences

+ Represented as a m-by-m matrix N of
binary values

«» Row represents the Text sequence and
columns the Pattern sequence

e N0, if Pli] =Tl[j
NlLjl = {1, if P[i] # T[j

Calculation formula of neighborhood map entry

Filtering Strategy

1) Build the neighborhood map
S ((0) if Pli] =TIj
iy o {1, if P[i] = T[j

Calculation formula of neighborhood map entry

Because of the length requirement of m-E,
we only need the diagonals, 1.e. 1 and j should
satisfy 1 Si<mandi-E<j<it+E

Filtering Strategy

2) Find common subsequences using the
sliding window approach

«» Common subsequence in neighborhood 1s
represented as consecutive zeros in a
diagonal

« Sliding window of size four found to be
optimal

Glg|T]c|clalglalGlc|TIC
Glojojufol f [| [||
Glofojujoln] | [[||]
Tififolnifl | oF L)
Glofojufofififo] | | | |
Al Jujrjififolijol | | |

G| | Jrjoififoijol | |
al | | Jujifolifolift) |
G| | | | [tftfofufofujt]
Tl L[] ffuefifijolt
T Lol
Gl | |][Jifofujrin
T oL
28

Filtering Strategy

3) Sum up windows and accept or reject the
two sequences depending on the sum

< Done using the so called
Shouji bit-vector

< Sum can be calculated using a 4-bit
hardware lookup table for the sliding

windows IIIIIIIIII!I
Shouji bit-vector: nnnn.nnnn.n.
30

Hardware Accelerator

Accelerator 1s built up modular:

« Sequence controller
o Gets the input sequences from PCle

o Distributes the sequences among the
filtering units

« n filtering units
o Can be as many as fit on the FPGA

<+ Result controller
o Accumulated results of filtering units
o Sends the results back over PCle

o
=
7
=]
o
)
14
@
o
c
()
=]
o
D
n

RIFFA Driver

FPGA Board
Sequence Controller

FIFO FIFO FIFO ... FIFO
I

RIFFA RX Engine

Filtering || Filtering || Filtering Filtering
Unit #1 Unit #2 Unit #3 Unit #N

y WY 0w @@0@0@0@0@N
p FIFO FIFO FIFO --- FIFO

] Result Controller

RIFFA TX Engine

31

Filtering Unit

. m search windows for processing™“>""""
« For each diagonal cquences o ength m characters SteP S
. . A 0' - g
in a search window, §S
. S *
we have a counter. ; SN 83
4 E '5’ 0's
«» Implemented as di:gi:als Ts Counter
hardware-lookup- : s af :
. earch Windou <y Shoji
tables 2E+1 digonals ’ bit-vector
A Search
<+ In total m search ———=<——| Window m-1 oY
windows over the w} 0: dissimilar
neighborhood map —————y(Window m

«» Shouyj1 bit-vector to
accumulate sum

32

Results & Conclusions

33

Results

The following things were evaluated:
+» Filtering accuracy of different algorithms
«» FPGA resource utilization for hardware accelerators

« Execution time of four mentioned pre alignment filters for filtering and
end-to-end

Testbench setup:

» 3.6 GHz Intel 17-3820 CPU

» 8 GB RAM

« Xilinx Virtex 7 VC709 board (Xilinx, 2014) to implement accelerators
«» FPGA design using Vivado 2015.4 in synthesizable Verilog

34

1004
90 s GateKeeper
@ 20%9 Shouji
Fol ° = 704 4 . MAGNET
iltering : o =
5 509 -
2 5ol |
£
Accuracy =
109 4
0eq 4
012 3 456 7 8 910012 3 4567 8 910012 3 45 ¢6 7 8 910012 3 45678910
Accuracy tested by Set_1 Set_2 Set_3 Set_4

Edit distance threshold (chajacters) and dataset number

looking at false accept (a) Sequerce length = 100

1009
rate 909 . Gatekeeper
3§$ shouji
. ™ 1 m— AGNET
All algorithms % oo | ——
8 sog -
< 407
% 307
* 207
109
SHD and GateKeeper m o1 346 7 9101213150 1 3 4 6 7 9100121315f0 1 3 4 6 7 910121315[0 1 3 4 6 7 9 101213 15
Set 5 Set 6 Set_7 Set_8

Edit distance threshold (cha al:ters] and dataset number

useless after some
threshold Seque ce length =150

Shouji better than SHD . %E shodi
and GateKeeper ggg :IS-.:;GNET
MAGNET best for £l

high-edit datasets ™

(c) Sequence length = 250

FPGA Resource

Utilization
Table 1: FPGA resource usage for a single filtering unit of Shouji,
= MAGNET, and GateKeeper, for a sequence length of 100 and under
2% and 5% edit distances, different edit distance thresholds. We highlight the best value in each
FPGA on 250MHz column.
« SHD cannot be Fil Single Filtering Unit Max. No. of
. o uter - Y e W — — — — —
directly implemented Slice LUT Slice Register Filtering Units
in FPGA - 0.69% 0.01% 16
Shoujt 1.72% 0.01%
+ MAGNET uses a lot MAGNET 10.50% 0.8%
more resources than 37.80% 2.30%
.o . o 0 (1]
Shouji per filtering unit GateKeeper 0.39% 0.01%
0.71% 0.01%
& and

GateKeeper are

36

Filtering Time

Same setup as previous
and SHD on a single
CPU core

« Shouji as fast as
GateKeeper

< Shouji 2 to 8 times
faster than MAGNET

< Shouji a lot faster than
SHD

Table 2: Execution time (in seconds) of FPGA-based GateKeeper,
MAGNET, Shouji, and CPU-based SHD under different edit distance
thresholds and sequence lengths. We use set_1 to set_4 for a sequence
length of 100 and set_9 to set_12 for a sequence length of 250. We
provide the performance results for both a single filtering unit and
the maximum number of filtering units (in parentheses).

E GateKeeper MAGNET Shouji

Sequence Length = 100
0.18. 165 2.89(0.36.8) 2.89 (0.18, 16)

Sequence Length = 250
5 578(0.72,8) 5.78(2.89%2) 5.78(0.72%,8)
15 578(0.72,8) 578(5.78°. 1) 5.78(0.72,8)

4 Execution time, in seconds, for a single filtering unit.

Execution time, in seconds, for maximum filtering units.
¢ The number of filtering units.

d Theoretical results based on the resource utilization and data throughput.

37

Table 3: End-to-end execution time (in seconds) for several state-of-
the-art sequence alignment algorithms, with and without pre-align-

Execution ment filters (Shouji, MAGNET, GateKeeper, and SHD) and across
T 1 me different edit distance thresholds.
E Edlib w/ Shouji w/ MAGNET w/ GateKeeper w/ SHD
Integration of pre- 2 506.66 26.86 30.69 36.39 96.54
alignment filters in state- 5 632.95 147.20 106.80 20877 27651
of-the-art aligners E Parasail | w/Shouji w/MAGNET w/ GateKeeper w/ SHD
2 1310.96 69.21 78.83 9387 154.02
B 5 204458 475.08 341.77 673.99 741.73
< Shouj1 speedup
o E FPGASW | w/Shouji w/MAGNET w/ GateKeeper w/ SHD
2 11.33 0.78 1.04 0.99 61.14
o 51133 2.81 334 391 71.65
* Shouji is the : E cupasw++3.0| w/Shouji w/ MAGNET w/ GateKeeper w/ SHD
with up to 2 1008 0.71 0.96 0.90 61.05
S 10.08 2.52 3.13 3.50 71.24
E GSWABE | w/Shouji w/MAGNET w/ GateKeeper w/ SHD
2 61.86 3.44 4.06 4.60 64.75
5 61.86 14.55 11.75 20.57 88.31

Conclusion

« Shouj1 and MAGNET are asymptotically inexpensive, because they run in
linear time on the mnput length O(m)

«» Shouj1 and MAGNET significantly improve filtering accuracy over
GateKeeper and SHD

«+ FPGA implementations significant improvement of speed over the
equivalent CPU implementations

« Shouyji is scalable and can be used in many different pipelines without
negatively affecting them

39

General questions so far?

40

Discussion

41

¢¢

As such, we hope that 1t catalyzes the adoption of
specialized pre-alignment accelerators in genome

sequence analysis.
)

M. Alser et al. in Shouji: A Fast and Efficient Pre-Alignment Filter for Sequence Alignment (2019)

This should be the case,
as Shouji is a solution to speed up the ever more
important field of sequencing in Bioinformatics

y)

Strengths

«» Shouji 1s scalable because there 1s no interdependence between windows
« Elegant hardware/software co-design

« Shouyj1 sacrifices no capabilities of other pipelines/sequence aligners and
can be adapted for any bioinformatics pipeline performing sequence
alignment

« Accelerator, 1n a FPGA, not using vendor specific functions and as such
can be used on any available architecture supporting FPGAs

«» All code and designs are open-sourced

« With some knowledge of common subsequences it 1s an easy paper to
understand

43

Weaknesses

« Shouj1 1s not so good for long sequences, but not verified

+ Data movement 1s still a big bottleneck that was not solved
« High false-accept rate for low-edit sequences

«» Specialized hardware chips may discourage the target users

« Specialized hardware can be expensive

44

Future Work

45

Future Work

<+ Better connection between accelerators and CPU

< Newer PCle channels or more lanes

<+ PClIe Gen 5 has four times the transfer rate of Gen 3

«» That would mean the 4-lane connection would have 15.754 GB/s throughput

+» Different and newer protocols than RIFFA 2.2

46

JetStream: An Open-Source High-Performance

PCI Express 3 Streaming Library for FPGA-to-Host
and FPGA-to-FPGA Communication

Malte Vesper, Dirk Koch Kizheppatt Vipin Suhaib A. Fahmy
School of Computer Science Mahindra Ecole Centrale School of Engineering
The University of Manchester vipin.kizheppatt@mechyd.edu.in University of Warwick
malte.vesper@postgrad.manchester.ac.uk s.fahmy @warwick.ac.uk
dirk.koch@manchester.ac.uk

VerColib: Fast and Versatile Communication for FPGAs via PCI
Express

Oguzhan Sezenlik' - Sebastian Schiiller! - Joachim K. Anlauf’

Received: 10 September 2018 / Revised: 6 March 2019 / Accepted: 25 June 2019
© Springer Science+Business Media, LLC, part of Springer Nature 2019

Future Work

« Another avenue for future work 1s the exploration of
(in the thousands of base-pairs)

SneakySnake: A Fast and Accurate Universal Genome
Pre-Alignment Filter for CPUs, GPUs, and FPGAs

Mohammed Alser®?, Taha Shahroodi®, Juan Gémez-Luna®, Can Alkan?’, and

- F I._.j ‘.:_?
Onur Mutlu*>*

! Department of Computer Science, ETH Zurich, Zurich 8006, Switzerland
“Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh 15213, PA, USA

Future Work

¢ If sequence alignment moves into the , there 1s a need for
for ethical, security and legal reasons.

Secure Cloud Computing for Pairwise Sequence Alignment

Sergio Salinas Pan Li
Department of Electrical Engineering and Computer Department of Electrical Engineering and Computer
Science Science
Wichita State University Case Western Reserve University
salinas@cs.wichita.edu lipan@case.edu

49

Questions

50

Questions

Data movement 1s still a bottleneck. How could we try to reduce 1t?

+ For better performance of the current accelerator just newer and faster I/0
would already help

+» Bringing the accelerator closer to memory
«» Building a hardware accelerator with integrated memory
<« Building memory with integrated FPGA /a hardware accelerator

< Build accelerator close to/in caches

« 'To still improve memory access and throughput without having to build new
memory

51

Questions

Any 1deas for reducing the adoption problem? Is it even a problem?

« Authors mention two ways to improve upon this weakness

«» Closely integrate the accelerator into sequencers for real-time pre-alignment
filtering

« Offer cloud computing with access to advanced FPGA chips
«» Market the benefits of the speedup well and 1t should not pose a problem

« Best example are mining accelerators for crypto currencies

52

Questions

Do you have any ideas where this way of speeding up DP-algorithms
could also be useful?

« Many from different insights of read mapping
«» Banded DP-algorithms are already used sometimes

«» Combining pre filtering with DP-algorithms is also looked at:

Combining dynamic programming with filtering to solve a four-stage
two-dimensional guillotine-cut bounded knapsack problem

Francois Clautiaux®P"*, Ruslan Sadykov™?, Francois Vanderbeck®"”, Quentin Viaud®P

*IMB, Unwversité de Bordeaux, 351 cours de la Libération, 33405 Talence, France 53
YINRIA Bordeauz - Sud-Ouest, 200 avenue de la Vieille Tour, 33405 Talence, France

Questions
Can you think of fields that could be similarly in need of string
alignment as read mapping in bioinformatics?

« Natural language processing
% OCR error correction

« Autocorrection in text-based editors or apps

« Reconstruction of languages using the comparative method

< Social sciences

« Business and marketing research

54

Shouji: A Fast and Efficient Pre-
Alignment Filter for Sequence
Alignment

Mohammed Alser, Hasan Hassan, Akash Kumar,
Onur Mutlu, Can Alkan

Bioinformatics 2019

presented by Tobias Oberdorfer

35

