
Seminar in
Computer Architecture

Meeting 4: PAR-BS Memory Scheduler

Prof. Onur Mutlu

ETH Zürich
Fall 2020

8 October 2020

More on PAR-BS
n Onur Mutlu and Thomas Moscibroda,

"Parallelism-Aware Batch Scheduling: Enhancing both
Performance and Fairness of Shared DRAM Systems"
Proceedings of the 35th International Symposium on Computer
Architecture (ISCA), pages 63-74, Beijing, China, June 2008.
[Summary] [Slides (ppt)]
One of the 12 computer architecture papers of 2008
selected as Top Picks by IEEE Micro.

2

https://people.inf.ethz.ch/omutlu/pub/parbs_isca08.pdf
http://isca2008.cs.princeton.edu/
https://people.inf.ethz.ch/omutlu/pub/parbs_isca08-summary.pdf
https://people.inf.ethz.ch/omutlu/pub/mutlu_isca08_talk.ppt

More on PAR-BS
n Onur Mutlu and Thomas Moscibroda,

"Parallelism-Aware Batch Scheduling: Enabling High-Performance and Fair
Memory Controllers"
IEEE Micro, Special Issue: Micro's Top Picks from 2008 Computer Architecture
Conferences (MICRO TOP PICKS), Vol. 29, No. 1, pages 22-32, January/February 2009.

3

https://people.inf.ethz.ch/omutlu/pub/parbs_ieee_micro09.pdf
http://www.computer.org/micro/

We Will Do This Differently
n I will give a “conference talk”

n You can ask questions and analyze what I described

4

Parallelism-Aware Batch Scheduling
Enhancing both Performance and Fairness

of Shared DRAM Systems

Onur Mutlu and Thomas Moscibroda
Computer Architecture Group

Microsoft Research

6

Outline

n Background and Goal
n Motivation

q Destruction of Intra-thread DRAM Bank Parallelism
n Parallelism-Aware Batch Scheduling

q Batching
q Within-batch Scheduling

n System Software Support
n Evaluation
n Summary

The DRAM System

7

Columns

R
ow

s

Row Buffer

DRAM CONTROLLER

DRAM Bus

BANK 0 BANK 1 BANK 2 BANK 3

FR-FCFS policy
1) Row-hit first
2) Oldest first

8

Multi-Core Systems

CORE 0 CORE 1 CORE 2 CORE 3

L2
CACHE

L2
CACHE

L2
CACHE

L2
CACHE

DRAM MEMORY CONTROLLER

DRAM
Bank 0

DRAM
Bank 1

DRAM
Bank 2

DRAM
Bank 7

. . .

Shared DRAM
Memory System

Multi-Core
Chip

threads’ requests
interfere

Inter-thread Interference in the DRAM System

n Threads delay each other by causing resource contention:
q Bank, bus, row-buffer conflicts [MICRO 2007]

n Threads can also destroy each other’s DRAM bank parallelism
q Otherwise parallel requests can become serialized

n Existing DRAM schedulers are unaware of this interference
n They simply aim to maximize DRAM throughput

q Thread-unaware and thread-unfair
q No intent to service each thread’s requests in parallel
q FR-FCFS policy: 1) row-hit first, 2) oldest first

n Unfairly prioritizes threads with high row-buffer locality

9

Consequences of Inter-Thread Interference in DRAM

10

n Unfair slowdown of different threads [MICRO 2007]
n System performance loss [MICRO 2007]
n Vulnerability to denial of service [USENIX Security 2007]
n Inability to enforce system-level thread priorities [MICRO 2007]

Cores make
very slow
progress

Memory performance hogLow priority

High priority
N

or
m

al
iz

ed
 M

em
or

y
St

al
l-T

im
e DRAM is the only shared resource

Our Goal

n Control inter-thread interference in DRAM

n Design a shared DRAM scheduler that

q provides high system performance
n preserves each thread’s DRAM bank parallelism

q provides fairness to threads sharing the DRAM system
n equalizes memory-slowdowns of equal-priority threads

q is controllable and configurable
n enables different service levels for threads with different priorities

11

12

Outline

n Background and Goal
n Motivation

q Destruction of Intra-thread DRAM Bank Parallelism
n Parallelism-Aware Batch Scheduling

q Batching
q Within-batch Scheduling

n System Software Support
n Evaluation
n Summary

The Problem

n Processors try to tolerate the latency of DRAM requests by
generating multiple outstanding requests
q Memory-Level Parallelism (MLP)
q Out-of-order execution, non-blocking caches, runahead execution

n Effective only if the DRAM controller actually services the
multiple requests in parallel in DRAM banks

n Multiple threads share the DRAM controller
n DRAM controllers are not aware of a thread’s MLP

q Can service each thread’s outstanding requests serially, not in parallel

13

Bank Parallelism of a Thread

14

Thread A: Bank 0, Row 1

Thread A: Bank 1, Row 1

Bank access latencies of the two requests overlapped
Thread stalls for ~ONE bank access latency

Thread A :

Bank 0 Bank 1

Compute

2 DRAM Requests

Bank 0
Stall Compute

Bank 1

Single Thread:

Compute

Compute

2 DRAM Requests

Bank Parallelism Interference in DRAM

15

Bank 0 Bank 1

Thread A: Bank 0, Row 1

Thread B: Bank 1, Row 99

Thread B: Bank 0, Row 99
Thread A: Bank 1, Row 1

A : Compute

2 DRAM Requests

Bank 0
Stall

Bank 1

Baseline Scheduler:

B: Compute

Bank 0

Stall
Bank 1

Stall

Stall

Bank access latencies of each thread serialized
Each thread stalls for ~TWO bank access latencies

2 DRAM Requests

Parallelism-Aware Scheduler

16

Bank 0 Bank 1

Thread A: Bank 0, Row 1

Thread B: Bank 1, Row 99

Thread B: Bank 0, Row 99
Thread A: Bank 1, Row 1

A :

2 DRAM Requests
Parallelism-aware Scheduler:

B: Compute
Bank 0

Stall Compute

Bank 1

Stall

2 DRAM Requests

A : Compute

2 DRAM Requests

Bank 0

Stall Compute

Bank 1

B: Compute

Bank 0

Stall Compute
Bank 1

Stall

Stall

Baseline Scheduler:

Compute
Bank 0

Stall Compute

Bank 1

Saved Cycles Average stall-time:
~1.5 bank access

latencies

17

Outline

n Background and Goal
n Motivation

q Destruction of Intra-thread DRAM Bank Parallelism
n Parallelism-Aware Batch Scheduling (PAR-BS)

q Request Batching
q Within-batch Scheduling

n System Software Support
n Evaluation
n Summary

Parallelism-Aware Batch Scheduling (PAR-BS)

n Principle 1: Parallelism-awareness
q Schedule requests from a thread (to

different banks) back to back
q Preserves each thread’s bank parallelism
q But, this can cause starvation…

n Principle 2: Request Batching
q Group a fixed number of oldest requests

from each thread into a “batch”
q Service the batch before all other requests
q Form a new batch when the current one is done
q Eliminates starvation, provides fairness
q Allows parallelism-awareness within a batch

18

Bank 0 Bank 1

T1

T1

T0

T0

T2

T2

T3

T3

T2 T2

T2

Batch

T0

T1 T1

PAR-BS Components

n Request batching

n Within-batch scheduling
q Parallelism aware

19

Request Batching

n Each memory request has a bit (marked) associated with it

n Batch formation:
q Mark up to Marking-Cap oldest requests per bank for each thread
q Marked requests constitute the batch
q Form a new batch when no marked requests are left

n Marked requests are prioritized over unmarked ones
q No reordering of requests across batches: no starvation, high fairness

n How to prioritize requests within a batch?

20

Within-Batch Scheduling
n Can use any existing DRAM scheduling policy

q FR-FCFS (row-hit first, then oldest-first) exploits row-buffer locality
n But, we also want to preserve intra-thread bank parallelism

q Service each thread’s requests back to back

n Scheduler computes a ranking of threads when the batch is
formed
q Higher-ranked threads are prioritized over lower-ranked ones
q Improves the likelihood that requests from a thread are serviced in

parallel by different banks
n Different threads prioritized in the same order across ALL banks

21

HOW?

How to Rank Threads within a Batch
n Ranking scheme affects system throughput and fairness

n Maximize system throughput
q Minimize average stall-time of threads within the batch

n Minimize unfairness (Equalize the slowdown of threads)
q Service threads with inherently low stall-time early in the batch
q Insight: delaying memory non-intensive threads results in high

slowdown

n Shortest stall-time first (shortest job first) ranking
q Provides optimal system throughput [Smith, 1956]*

q Controller estimates each thread’s stall-time within the batch
q Ranks threads with shorter stall-time higher

22
* W.E. Smith, “Various optimizers for single stage production,” Naval Research Logistics Quarterly, 1956.

n Maximum number of marked requests to any bank (max-bank-load)
q Rank thread with lower max-bank-load higher (~ low stall-time)

n Total number of marked requests (total-load)
q Breaks ties: rank thread with lower total-load higher

Shortest Stall-Time First Ranking

23

T2T3T1

T0

Bank 0 Bank 1 Bank 2 Bank 3

T3

T3 T1 T3

T2 T2 T1 T2

T1 T0 T2 T0

T3 T2 T3

T3

T3

T3
max-bank-load total-load

T0 1 3

T1 2 4

T2 2 6

T3 5 9

Ranking:
T0 > T1 > T2 > T3

7

5

3

Example Within-Batch Scheduling Order

24

T2T3T1

T0

Bank 0 Bank 1 Bank 2 Bank 3

T3

T3 T1 T3

T2 T2 T1 T2

T1 T0 T2 T0

T3 T2 T3

T3

T3

T3Baseline Scheduling
Order (Arrival order)

PAR-BS Scheduling
Order

T2

T3

T1 T0

Bank 0 Bank 1 Bank 2 Bank 3

T3

T3

T1

T3T2 T2

T1 T2T1

T0

T2

T0

T3 T2

T3

T3

T3

T3

T0 T1 T2 T3
4 4 5 7

AVG: 5 bank access latencies AVG: 3.5 bank access latencies

Stall times

T0 T1 T2 T3
1 2 4 7Stall times

Ti
m

e

1
2

4

6

Ranking: T0 > T1 > T2 > T3

1
2
3
4
5
6
7

Ti
m

e

Putting It Together: PAR-BS Scheduling Policy
n PAR-BS Scheduling Policy

(1) Marked requests first
(2) Row-hit requests first
(3) Higher-rank thread first (shortest stall-time first)
(4) Oldest first

n Three properties:
q Exploits row-buffer locality and intra-thread bank parallelism
q Work-conserving

n Services unmarked requests to banks without marked requests
q Marking-Cap is important

n Too small cap: destroys row-buffer locality
n Too large cap: penalizes memory non-intensive threads

n Many more trade-offs analyzed in the paper

25

Batching

Parallelism-aware
within-batch
scheduling

Hardware Cost
n <1.5KB storage cost for

q 8-core system with 128-entry memory request buffer

n No complex operations (e.g., divisions)

n Not on the critical path
q Scheduler makes a decision only every DRAM cycle

26

27

Outline

n Background and Goal
n Motivation

q Destruction of Intra-thread DRAM Bank Parallelism
n Parallelism-Aware Batch Scheduling

q Batching
q Within-batch Scheduling

n System Software Support
n Evaluation
n Summary

System Software Support

n OS conveys each thread’s priority level to the controller
q Levels 1, 2, 3, … (highest to lowest priority)

n Controller enforces priorities in two ways
q Mark requests from a thread with priority X only every Xth batch
q Within a batch, higher-priority threads’ requests are scheduled first

n Purely opportunistic service
q Special very low priority level L
q Requests from such threads never marked

n Quantitative analysis in paper

28

29

Outline

n Background and Goal
n Motivation

q Destruction of Intra-thread DRAM Bank Parallelism
n Parallelism-Aware Batch Scheduling

q Batching
q Within-batch Scheduling

n System Software Support
n Evaluation
n Summary

30

Evaluation Methodology
n 4-, 8-, 16-core systems

q x86 processor model based on Intel Pentium M
q 4 GHz processor, 128-entry instruction window
q 512 Kbyte per core private L2 caches, 32 L2 miss buffers

n Detailed DRAM model based on Micron DDR2-800
q 128-entry memory request buffer
q 8 banks, 2Kbyte row buffer
q 40ns (160 cycles) row-hit round-trip latency
q 80ns (320 cycles) row-conflict round-trip latency

n Benchmarks
q Multiprogrammed SPEC CPU2006 and Windows Desktop applications
q 100, 16, 12 program combinations for 4-, 8-, 16-core experiments

31

Comparison with Other DRAM Controllers
n Baseline FR-FCFS [Zuravleff and Robinson, US Patent 1997; Rixner et al., ISCA 2000]

q Prioritizes row-hit requests, older requests
q Unfairly penalizes threads with low row-buffer locality, memory non-intensive

threads
n FCFS [Intel Pentium 4 chipsets]

q Oldest-first; low DRAM throughput
q Unfairly penalizes memory non-intensive threads

n Network Fair Queueing (NFQ) [Nesbit et al., MICRO 2006]
q Equally partitions DRAM bandwidth among threads
q Does not consider inherent (baseline) DRAM performance of each thread
q Unfairly penalizes threads with high bandwidth utilization [MICRO 2007]
q Unfairly prioritizes threads with bursty access patterns [MICRO 2007]

n Stall-Time Fair Memory Scheduler (STFM) [Mutlu & Moscibroda, MICRO 2007]
q Estimates and balances thread slowdowns relative to when run alone
q Unfairly treats threads with inaccurate slowdown estimates
q Requires multiple (approximate) arithmetic operations

32

Unfairness on 4-, 8-, 16-core Systems

1

1.5

2

2.5

3

3.5

4

4.5

5

4-core 8-core 16-core

Un
fa

irn
es

s
(lo

w
er

 is
 b

et
te

r)

FR-FCFS
FCFS
NFQ
STFM
PAR-BS

Unfairness = MAX Memory Slowdown / MIN Memory Slowdown [MICRO 2007]

1.11X 1.08X

1.11X

33

System Performance (Hmean-speedup)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

4-core 8-core 16-core

N
or

m
al

iz
ed

 H
m

ea
n

Sp
ee

du
p

FR-FCFS
FCFS
NFQ
STFM
PAR-BS

8.3% 6.1% 5.1%

34

Outline

n Background and Goal
n Motivation

q Destruction of Intra-thread DRAM Bank Parallelism
n Parallelism-Aware Batch Scheduling

q Batching
q Within-batch Scheduling

n System Software Support
n Evaluation
n Summary

Summary

n Inter-thread interference can destroy each thread’s
DRAM bank parallelism
q Serializes a thread’s requests à reduces system throughput
q Makes techniques that exploit memory-level parallelism less effective
q Existing DRAM controllers unaware of intra-thread bank parallelism

n A new approach to fair and high-performance DRAM scheduling
q Batching: Eliminates starvation, allows fair sharing of the DRAM system
q Parallelism-aware thread ranking: Preserves each thread’s bank parallelism
q Flexible and configurable: Supports system-level thread priorities à QoS policies

n PAR-BS provides better fairness and system performance than
previous DRAM schedulers

35

Summary

n Inter-thread interference can destroy each thread’s
DRAM bank parallelism
q Serializes a thread’s requests à reduces system throughput
q Makes techniques that exploit memory-level parallelism less effective
q Existing DRAM controllers unaware of intra-thread bank parallelism

n A new approach to fair and high-performance DRAM scheduling
q Batching: Eliminates starvation, allows fair sharing of the DRAM system
q Parallelism-aware thread ranking: Preserves each thread’s bank parallelism
q Flexible and configurable: Supports system-level thread priorities à QoS policies

n PAR-BS provides better fairness and system performance than
previous DRAM schedulers

34

Thank you. Questions?

Parallelism-Aware Batch Scheduling
Enhancing both Performance and Fairness

of Shared DRAM Systems

Onur Mutlu and Thomas Moscibroda
Computer Architecture Group

Microsoft Research

Backup Slides

Multiple Memory Controllers (I)
n Local ranking: Each controller uses PAR-BS independently

q Computes its own ranking based on its local requests

n Global ranking: Meta controller that computes a global
ranking across all controllers based on global information
q Only needs to track bookkeeping info about each thread’s requests

to the banks in each controller

n The difference between the ranking computed by each
scheme depends on the balance of the distribution of
requests to each controller
q Balanced à Local and global rankings are similar

39

Multiple Memory Controllers (II)

40

U
nf

ai
rn

es
s

N
om

al
iz

ed
 H

m
ea

n-
Sp

ee
du

p 7.4% 11.5%

1.18X 1.33X

16-core system, 4 memory controllers

Example with Row Hits

Stall time
Thread 1 4
Thread 2 4
Thread 3 5
Thread 4 7
AVG 5

41

Stall time
Thread 1 5.5
Thread 2 3
Thread 3 4.5
Thread 4 4.5
AVG 4.375

Stall time
Thread 1 1
Thread 2 2
Thread 3 4
Thread 4 5.5
AVG 3.125

End of Backup Slides

Now Your Turn to Analyze…
n Background, Problem & Goal
n Novelty
n Key Approach and Ideas
n Mechanisms (in some detail)
n Key Results: Methodology and Evaluation
n Summary
n Strengths
n Weaknesses
n Thoughts and Ideas
n Takeaways
n Open Discussion

43

PAR-BS Pros and Cons
n Upsides:

q First scheduler to address bank parallelism destruction across
multiple threads

q Simple mechanism (vs. STFM)
q Batching provides fairness
q Ranking enables parallelism awareness

n Downsides:
q Does not always prioritize the latency-sensitive applications
q Deadline guarantees?
q Complexity?

n Some ideas implemented in real SoC memory controllers
44

More on PAR-BS
n Onur Mutlu and Thomas Moscibroda,

"Parallelism-Aware Batch Scheduling: Enhancing both
Performance and Fairness of Shared DRAM Systems"
Proceedings of the 35th International Symposium on Computer
Architecture (ISCA), pages 63-74, Beijing, China, June 2008.
[Summary] [Slides (ppt)]
One of the 12 computer architecture papers of 2008
selected as Top Picks by IEEE Micro.

45

https://people.inf.ethz.ch/omutlu/pub/parbs_isca08.pdf
http://isca2008.cs.princeton.edu/
https://people.inf.ethz.ch/omutlu/pub/parbs_isca08-summary.pdf
https://people.inf.ethz.ch/omutlu/pub/mutlu_isca08_talk.ppt

More on PAR-BS
n Onur Mutlu and Thomas Moscibroda,

"Parallelism-Aware Batch Scheduling: Enabling High-Performance and Fair
Memory Controllers"
IEEE Micro, Special Issue: Micro's Top Picks from 2008 Computer Architecture
Conferences (MICRO TOP PICKS), Vol. 29, No. 1, pages 22-32, January/February 2009.

46

https://people.inf.ethz.ch/omutlu/pub/parbs_ieee_micro09.pdf
http://www.computer.org/micro/

Some History

On PAR-BS

n Variants implemented in Samsung SoC memory controllers

Review from ISCA 2008

Top Picks 2009 Review #1

Top Picks 2009 Review #3

Top Picks 2009 Review #4

Seminar in
Computer Architecture

Meeting 4: PAR-BS Memory Scheduler

Prof. Onur Mutlu

ETH Zürich
Fall 2020

8 October 2020

