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Abstract—Given the increasing impact of Rowhammer, and
the dearth of adequate other hardware defenses, many in the
security community have pinned their hopes on error-correcting
code (ECC) memory as one of the few practical defenses against
Rowhammer attacks. Specifically, the expectation is that the ECC
algorithm will correct or detect any bits they manage to flip in
memory in real-world settings. However, the extent to which
ECC really protects against Rowhammer is an open research
question, due to two key challenges. First, the details of the ECC
implementations in commodity systems are not known. Second,
existing Rowhammer exploitation techniques cannot yield reliable
attacks in presence of ECC memory.

In this paper, we address both challenges and provide concrete
evidence of the susceptibility of ECC memory to Rowhammer at-
tacks. To address the first challenge, we describe a novel approach
that combines a custom-made hardware probe, Rowhammer bit
flips, and a cold-boot attack to reverse engineer ECC functions
on commodity AMD and Intel processors. To address the second
challenge, we present ECCploit, a new Rowhammer attack based
on composable, data-controlled bit flips and a novel side channel
in the ECC memory controller. We show that, while ECC mem-
ory does reduce the attack surface for Rowhammer, ECCploit
still allows an attacker to mount reliable Rowhammer attacks
against vulnerable ECC memory on a variety of systems and
configurations. In addition, we show that, despite the non-trivial
constraints imposed by ECC, ECCploit can still be powerful in
practice and mimic the behavior of prior Rowhammer exploits.

I. INTRODUCTION

Originally designed to handle accidental and rare occur-
rences of data corruption in DRAM chips due to cosmic rays
or electrical interference [1]–[4], Error-Correcting Code (ECC)
memory is also perceived as one of the few effective bul-
warks against Rowhammer attacks [5]. These attacks exploit
a vulnerability in DRAM hardware that allows attackers to
flip bits in memory that should not be accessible to them [6].
Since the discovery of the Rowhammer vulnerability in 2014,
the security community has devised ever more worrying ex-
ploitation techniques. Starting with fairly simple, probabilistic
corruption of page tables from native x86 code [6], researchers
have extended the Rowhammer attack surface across all sorts
of computing systems (including PCs [6]–[8], clouds [9], [10],
and mobile devices [11], [12]), launching exploits from differ-
ent environments (such as native C binaries [6] and browser-
based JavaScript [7], [8], [12]), using a variety of processors
(notably x86 [6], ARM [11], and GPU [12]), against a variety
of targets (page tables [6], [11], encryption keys [10], object
pointers [7], repository URLs [10], and opcodes [13]), in
different types of memory (DDR3 [6] and DDR4 [11]). As
a result, Rowhammer has grown into a major security concern
in real-world settings.

Not surprisingly, there has been much speculation on the ef-
fectiveness of ECC memory in deterring real-world Rowham-
mer attacks [5], [6], [10], [11], [13], often hypothesizing
ECC memory would reduce Rowhammer to a denial-of-service
vulnerability [6], [13]. As a result, practical Rowhammer
exploits have thus far only targeted non-ECC-equipped plat-
forms. However, once the uncommon case, ECC-equipped
platforms are now on the rise, from large cloud providers (e.g.,
Amazon EC2 [14]) to high-end consumer platforms [15]. In
addition, ECC memory is increasingly deployed on low-power
platforms such as mobile and IoT devices to drop the DRAM
refresh rate below “safe” values and save power [16], [17].
It has therefore become important to quantitatively assess the
effectiveness of ECC memory as a Rowhammer mitigation.

ECC is able to correct n bit errors (with n ≥ 1) and
detect cases where more than n bits have flipped, up to some
maximum. For this purpose, ECC adds redundant ECC bits to
every data word that “check” the other bits. The combination
of the data bits and the ECC bits is known as a code word.
ECC ensures that if any bit in a valid code word changes, it
is no longer a valid code word. Thus, in a chipset with ECC
memory, attackers may still use Rowhammer to cause a bit
flip in physical memory, but the ECC mechanism immediately
catches it on the first subsequent access, and flips it back.
Since the probability of flipping exactly the right set of bits
to turn one valid code word into a new valid code word using
Rowhammer is extremely low, state-of-the-art Rowhammer
attacks either fail, or trigger uncorrectable errors, leading
to denial of service. Better still, modern processors apply
additional memory reliability measures such as data masking
(scrambling) to turn the data that the CPU really writes to main
memory into pseudo-random patterns—making it even harder
for an attacker to flip the right bits. The research question in
this paper is whether the assumption is true that Rowhammer
attacks are really not practical on ECC memory. In particular,
we examine the strength of ECC in several modern chipsets
and show that this is not the case: reliable attacks in real-world
settings are harder, but still possible.

To determine the exact protection offered by ECC, we
must know the details of the ECC algorithms. Unfortunately,
vendors such as Intel and AMD do not release these details.
Moreover, to the best of our knowledge, no prior work has
managed to reverse engineer the ECC functions. Important
contributions of this paper are therefore the recovered ECC
computation for popular chipsets and a detailed description of
the techniques to reverse engineer other ECC algorithms.

A major challenge in examining a DRAM’s susceptibility to
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Rowhammer on ECC memory, both for us and for attackers,
is detecting the bit flips in the first place. How do we even
know that we flipped a bit using Rowhammer, if the hardware
automatically flips it back when we try to read it? Phrased
differently, observing ECC errors is hard, precisely because
the hardware is designed to hide them. To solve this problem,
we describe a novel side channel that allows us to observe bit
flips even when the error correction functionality flips them
back when we read the corresponding memory location.

Armed with the ability to detect (correctable) bit flips
and knowledge of a fully reverse engineered ECC algorithm,
another challenge towards reliable attacks is to surgically
trigger the “right” combination of bit flips in a single code
word to bypass ECC. An invalid combination may be corrected
or, worse, trigger uncorrectable errors and crash the system. To
address this challenge, we develop a new Rowhammer attack
technique based on composable, data-controlled bit flips. The
key insight is that Rowhammer bit flips are data-dependent
and, if we study how specific data patterns determine the
triggering of individual bit flips, we can then reliably isolate/-
compose multiple bit flips by placing the “right” data patterns
in memory. Our attack, termed ECCploit, relies on such insight
to incrementally find an exploitable combination of bit flips
in a code word and bypass ECC memory.

Given the need to bypass ECC checks, such exploits are
more constrained compared to existing Rowhammer attacks.
For this reason, we reproduce known end-to-end exploits on
ECC memory and analyze the attack surface, that is the
probability of finding the bit flip patterns that bypass the
ECC checks for these exploits. While we do find that ECC
checks significantly reduce the Rowhammer attack surface,
we show ECCploit can still be used to successfully mount
Rowhammer exploits in practical settings. In addition, while
we evaluate ECCploit in an ideal scenario where the system is
configured properly to handle ECC errors (i.e., the worst case
for attackers), we find that in many systems this is not the case.
For example, while we expect a crash in case of uncorrectable
errors, sometimes the system does not immediately crash,
allowing for much simpler exploitation with ECC memory.

Contributions. Our main contribution is showing that ECC
memory, even when combined with data scrambling, does not
offer adequate protection against Rowhammer. We do so by:

• Describing a novel reverse engineering technique for re-
covering ECC implementations on commodity hardware.

• Identifying the ECC implementation on several popular
chipsets and investigating how commodity systems re-
spond to ECC exceptions.

• Presenting ECCploit, a new reliable Rowhammer attack
that leverages undocumented ECC implementation de-
tails, a novel side channel in the memory controller, and
composable, data-controlled bit flips. We show ECCploit
can be used for practical privilege escalation attacks by
reproducing existing exploits on ECC-based systems.

II. BACKGROUND

In the following, we provide a high-level description of the
DRAM architecture, the Rowhammer vulnerability, and ECC
properties we rely on for our ECCploit attack.

A. DRAM Organization

Architecture. DRAM uses one of the last parallel buses in
modern systems. In a common setup, 64 lines connect a Dual
Inline Memory Module (DIMM) to the CPU forming a 64-bit
wide data bus. Multiple chips inside a DIMM form the 64 bits
of data every time DRAM is accessed. For example, with 8-bit
wide chips (i.e., 8x), eight chips are involved in each DRAM
read or write operation. Each chip consists of multiple banks.
Multiple rows of DRAM cells are stacked together to form
each of these banks. Cells are the smallest unit of storage in
DRAM and are built using a capacitor and an access transistor.
The amount of charge stored in the capacitors denotes the
value of one or zero depending on the charge level.
Accessing DRAM. The smallest unit of access inside DRAM
is a row. To access DRAM, the same bank is selected in all
chips and the data from the selected row is moved to a cache
called row buffer before being transmitted on the bus (i.e., row
activation). Subsequent accesses to addresses that map to the
same row will be served from the row buffer (i.e., row hit)
and addresses that map to a different row require writing the
contents of the row buffer back to the cells and moving the
target row into the row buffer (i.e., row miss).
Refresh. Given that DRAM cells are built from capacitors,
they lose charge and hence their value over time. To restore
the charge, the cells need to be recharged, a process called
DRAM refreshing. This process is orchestrated by the memory
controller, which is responsible for periodically refreshing
individual DRAM cells at a predetermined refresh rate. The
refresh rate is determined based on the expected amount of
charge leakage (e.g., dependent on the manufacturing process),
and the implementation constraints (e.g., presence of ECC).
Supporting ECC. Cosmic rays and other external events
can cause corruption in DRAM cells by changing the charge
levels in the capacitors [1]–[4]. To address this problem, ECC
memory stores extra parity bits (also known as control bits)
next to the data bits to correct these corruptions. DRAMs with
ECC support come with additional chips. The memory bus is
then enlarged with eight additional lines (i.e., 72-bit wide bus)
to transfer the control bits next to their data bits [18]–[21].

B. Rowhammer

As transistors become smaller, their reliability starts to
suffer. Kim et al. [5] showed that frequent activations of
the same row cause bits to flip in adjacent rows without
accessing them. The reason is the increased amount of charge
leakage from DRAM cell capacitors (built from transistors)
due to parasitic coupling and passing gate effects. Termed
the Rowhammer vulnerability, soon a plethora of attacks
abused a single bit flip to compromise desktops, laptops,
and mobile phones [6]–[8], [10]–[13]. Such attacks come in
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different variants, double-sided, single-sided, or one-location
Rowhammer [13]—depending on the aggressor row(s) used
by the attacker to corrupt the victim row—and exploit the fact
that Rowhammer bit flips are observable and reproducible.

All of these attacks have been executed on systems without
ECC and, while there has been speculation on the possibility of
bypassing simple ECC functions since the original Rowham-
mer paper [5], an end-to-end Rowhammer attack on ECC
memory on a real system has never been attempted for two
main reasons. First, ECC implementations on modern systems
are often undocumented and go beyond the simple SECDED
ECC which we describe shortly. Second, it is challenging to
trigger Rowhammer corruptions without triggering corrections
or crashes on a system protected by ECC. Before further
discussing these challenges, we need to understand how ECC
is currently implemented on modern commodity systems.

C. ECC in DRAM

In current designs, the only ECC-aware unit inside the
processor is its memory controller. Assuming the CPU wants
to write a message of k bits, the memory controller appends r
bits of redundant information for error correction and detection
and stores a codeword of n = k+r bits in DRAM. In practice,
CPU vendors choose k to be a multiple of a memory word
(64 bits) and r = k

8 . In fact, the ratio of redundant to data bits
(1-to-8) is embedded in the current Double Data Rate (DDR)
standards (DDR3 [18] and DDR4 [19]), memory bus standards
with 8 control bits and 64 data bits. For manufacturing
simplicity, the same type of memory chips is used to store
both the data bits and as well the control bits. Concretely,
one can identify DIMMs that provide ECC by counting the
number of memory chips on the module.

Block codes. DRAM ECC uses linear block codes for calcu-
lating the r bits [22]. Differences in the size of r bits and their
actual value provide different trade-offs in terms of reliability
and performance. There are two types of linear block error
correcting codes, binary and non-binary codes. A binary code
is denoted as (n, k) and has a granularity of a single bit while
non-binary codes treat multiple bits as a single symbol. A
particular case of binary code, the (7, 4) code, was first studied
and generalized by Richard Hamming [23] and represents an
improvement from the simple parity checking as it offers error
correcting capabilities with 3 parity bits for 4 bits of data.

SECDED. The Hamming Distance (HD) between any code-
word (dmin) of the (7, 4) code is at least 3, meaning that it
can detect up to 2 bit errors and correct a single detectable
error. However, distinguishing between a message that has a
corruption of one bit and a message that has a corruption
of two bits is not possible. The implication is that some 2-
bit faulty messages will falsely be “corrected”. An extended
Hamming code adds an extra parity bit to solve this problem
and serves as the basis of the design of ECC used in modern
memory systems as it provides single error correction and
double-bit error detection (SECDED) [22].

Chipkill. High-available systems need to detect multiple ad-
jacent bit errors. This requirement of the error correcting
capabilities is known as the chipkill [21] functionality. BCH
codes [24] have the desired property of precise control of
the error guarantees. The Reed–Solomon (RS) codes [25] are
a class of effective and easy-to-construct non-binary codes
which can be viewed as particular BCH codes. The com-
monly deployed Chipkill implementation, based on BCH/RS
codes [26], provides double-chip error detect and single-chip
error correct (SCDCD). Note that Chipkill can correct bit
errors up to the size of the symbol, which is often chosen
to be the number of bits in a chip. As a result, even if the
system loses an entire chip, it can still continue operation.

More generally, a linear block error detecting and correcting
code with a dmin, can detect dmin − 1 errors and correct
b(dmin− 1)/2c errors. Similarly, an RS code that can correct
t symbols has a HD of 2t + 1 and uses 2t redundant error
correcting symbols. As we shall see in Section V-F, our setups
use a version of RS codes.
ECC functions. For simplicity and compatibility with non-
ECC DIMMs [22], it is desirable for the memory controller
to store the control bits and the data in distinct memory chips.
From a theoretical perspective, this requirement maps over
the systematic encoding procedure, in which the message is
always a prefix in the codeword.

To encode a message d = (d1, d2, · · · , dk), where di
represents a symbol from the alphabet (e.g., a bit), the encoder
performs a multiplication with a generator matrix G, i.e.
v = d · G, where v is the encoded message (data). For the
practical systematic encoding procedure, G = [Ik|P ], where
Ik is the identity matrix of size k, and P is the parity check
matrix which has k rows and r columns:
v = d ·G

= d · [Ik|P ]
= d · ([Ik|0k,r] + [0k,k|P ]) where 0m,n is a zero matrix
= d · [Ik|0k,r] + d · [0k,k|P ]

(1)
Let ECC(d) be the last r bits from the d · [0k,k|P ] product,
which we loosely call the ECC bits for data d. Using the
Kronecker function (δi,j = 1 if i = j and δi,j = 0 if i 6= j),
we can rewrite the ECC bits as:

ECC(d) =

(∑k
i=1 di · [δ1,i, δ2,i, · · · , δk,i]

)
· P

ECC(d) =
∑k

i=1 di · [Pi,1, Pi,2, · · · , Pi,r]

(2)

where Pi,j represents the value (0 or 1) from the parity check
matrix with coordinates row i and column j. Each row of
the parity check matrix can be expressed as an r bit number
called parity value. Parity check matrices are not disclosed by
processor manufacturers. We devise techniques for obtaining
this information on various systems in Section V. Once we
have the parity check matrix, we can predict ECC values for
arbitrary data. On top of ECC, some systems further scramble
data before sending them on the memory bus, complicating
the reverse engineering of parity check matrices.
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TABLE I: Target systems.

ID Manufacturer CPU model Microarchitecture

AMD-1 AMD Opteron 6376 Bulldozer (15h)
Intel-1 Intel Xeon E3-1270 v3 Haswell
Intel-2 Intel Xeon E5-2650 v1 Sandy Bridge
Intel-3 Intel Xeon E5-2620 v1 Sandy Bridge

III. THREAT MODEL

We assume computer systems protected with ECC memory
where bit flips are detected and/or corrected in the memory
controller. This is common in clouds, high-end workstations,
and low-power devices. We further assume the memory chips
to be affected by the Rowhammer vulnerability [5]. In addi-
tion, we assume that the attacker does not have access to ECC
exceptions as these are often exposed to privileged software.
Thus the attack can be carried by a non-privileged local user.
We assume that the attacker can learn the CPU model and
the memory technology. This is trivial to satisfy as access to
/proc/cpuinfo is unrestricted and cloud providers’ public
documentation usually contains a description of the underlying
hardware [27], [28]. Similar to existing Rowhammer attacks,
the attackers’ aim is to reliably compromise co-located virtual
machines [10], [29] or escalate their privilege by executing
unprivileged and/or sandboxed code on the target machine [6]–
[8], [11]–[13].

IV. SUMMARY OF CHALLENGES

To exploit a system protected with ECC memory using
Rowhammer, the attacker first needs to find the ECC algorithm
implemented in the memory controller of the target system’s
processor. Given the knowledge of the ECC function, the
attacker then needs to safely compose enough bit flips to
trigger a Rowhammer corruption that is not detected (and
corrected) by the ECC algorithm—without triggering uncor-
rectable errors that may crash the system. These corruptions
are different than normal Rowhammer corruptions given that
they flip multiple bits at the same time. Because the proba-
bility of bits to be in the “flips-from” state decreases as the
number of bits that flip increases, it becomes challenging to
exploit such constrained bit flips to compromise a system.
In summary, to achieve successful and reliable end-to-end
exploitation, we need to address the following challenges:
[C1] How to reverse engineer unknown ECC functions on
commodity processors?
[C2] How to trigger Rowhammer corruptions on ECC memory
without crashing the system?
[C3] How to exploit the system given that Rowhammer-based
ECC corruptions corrupt multiple bits at the same time?

We address [C1] in Section V, [C2] in Section VI, and [C3]
in Section VI-B and in Section VII.

V. CHALLENGE C1: REVERSE ENGINEERING ECC

To get a rough idea of the ECC functions used by CPU
manufacturers, we first consulted their patents and the CPUs’

public documentation. Unfortunately, these were neither com-
plete nor fully accurate, so additional techniques were neces-
sary. As we shall see, the coding theory behind our attacks is
quite involved, so we first provide the intuition.

Whenever an ECC system writes a value in memory, it
will also write some ECC bits. For instance, some ChipKill
implementations write 4 ECC nibbles (for a total of 16 bits)
for every 128 bits of data. The exact calculation of the ECC
nibbles is not important at this point, but the first ECC nibble
will use one set of data nibbles, the second one a slightly
different set, and so on. Upon accessing this value in memory
at a later stage, it will calculate the ECC nibbles again and
XOR them with the ECC nibbles in memory. The result is
known as a syndrome. If the syndrome is non zero, there must
have been an error. By looking at which syndromes indicate
an error, ChipKill can locate the faulty nibble and correct it.

As we shall see, the calculation of the syndromes in math-
ematical terms involves a fairly complicated multiplication
of the transposed and extended parity check matrix with
the error pattern, but in practice the multiplication matrix is
precomputed and stored as a table, while the multiplications
and additions are simply AND and XOR operations (as shown
above). The point is that if we have the syndromes for known
error patterns, we can also perform the inverse operation and
obtain the parity check matrix—and hence the ECC function.

To this end, we artificially injected single bit errors in mem-
ory to see what happens and deduce what the syndrome must
have been, and also performed cold boot attacks to recover the
ECC bits as generated by one machine on another machine. We
detail these techniques after providing a theoretical foundation
for the attacks. To our knowledge, we are the first to reverse
engineer the ECC functions of common CPUs (Table I).

A. Theoretical foundation

Both Hamming and BCH codes are polynomial codes.
Polynomial codes can use exclusive-or instead of addition
and and instead of multiplication in the Galois Field (GF),
simplifying their implementation in hardware.

Proposition 1. We can recover the complete ECC function by
finding the ECC value for every ECC-word with exactly one
data bit asserted.

Each row of the parity check matrix, can be expressed as
a r bit number called parity value. Considering Equation 2,
the ECC value for a data word (d) that has bits asserted on
positions s, can be expressed as an exclusive-or operation
between the parity value of each data word (d′) with a single
d′i asserted (∀i ∈ {s|ds = 1}). �

To decode and correct errors of a received codeword
v′ = (v1, v2, · · · , vk+r), linear codes use an efficient technique
called syndrome decoding. The syndrome is computed as
S(v′) = v′ · HT where H = [−PT |Ik+r] for the systematic
encoding and S has dimensions (1, r). When no error occur
in the transmission (v′ = v) then S(v′) = d · [Ik|P ] ·
[−PT |Ik+r]

T ⇒ S(v′) = 0.
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Proposition 2. The ECC value of a data word with a single
bit asserted on a specific position is equal to the syndrome
obtained when that specific bit is faulted.

In the presence of an error e = (e1, e2, · · · , ek+r) with
e 6= 01,k+r, v′ = v+e, and because S(v) = 0, we can rewrite
the syndrome as:

S(v + e) = (v + e) ·HT

= v ·HT + e ·HT

= S(v) + e ·HT

= e ·HT

= e · ([−PT |Ir]T )
= e · ([−PT |0r,r]T + [0Tk,r|Ir]T )

(3)

We use the notation SY ND(v′) = (e1, e2, · · · , ek) · −P , to
refer to the syndrome obtained when errors are inserted only
in the data bits. Using the Kronecker function we can rewrite
the syndrome obtained under faults as:

SY ND(v′) = −
(∑k

i=1 ei · [δ1,i, δ2,i, · · · , δk,i]
)
· P

SY ND(v′) = −
∑k

i=1 ei · [Pi,1, Pi,2, · · · , Pi,r]

(4)

As the operations are performed on a binary GF and the code
is cyclic, the “−” sign has no meaning. Therefore by choosing
ei = di in Equation 2 and 4, we obtain the proof below. For
simplicity, we choose ei such that at most one bit is flipped.

∀v : ECC(v) = SY ND(v). � (5)

Assuming the attacker has access to the same machine as the
victim, we show how an attacker can use Proposition 1 and 2 to
inject faults and perform cold boot attacks to reverse engineer
the contents of the parity matrix and the order in which the
output data is mapped to the DRAM bus lines. Note that the
attacker needs to perform this process only once and reuse the
recovered information when attacking victim machines that
use the same CPU model. The CPU model information on the
victim machine is available through sources such as cpuid.

B. Fault Injection

In this section, we describe how to obtain all syndromes
(and thus the ECC function) by observing only the syndromes
for specific errors that we inject ourselves in a controlled way,
where exactly one bit is flipped. For now, we assume that when
the ECC engine corrects an error, the attacker can also read
the syndrome for that specific error. We will show how we
relax this assumption later. The crux of our attack is that if
we repeatedly flip a single bit at every possible bit position
of an ECC word, and obtain all the corresponding syndromes,
the recovery of the ECC function is trivial (Equation 5). For
example, the ECC value of an ECC word where bit i and j
are asserted is the result of the XOR operation between the
syndrome when a 1-to-0 bit is flipped in the i position and
the syndrome when the bit is flipped in the j position. To
recover the syndromes, we flip bits at the desired bit positions
using one of the following three fault injection mechanisms:
1) a custom built shunt probe. 2) facilities provided by some

Fig. 1: DDR3 socket pin-out. DQx ( ), VSS ( ) and other signals ( ).

(a) A custom shunt probe. (b) Tweezers short-circuiting DQ0 and VSS .

Fig. 2: Fault injection with the help of syringe needles.

memory controllers. 3) Rowhammer bit flips. We describe
these mechanisms next.

Error injection with a shunt probe. To reduce noise and
cross-talk between high-speed signals, data pins of the DDR
DIMM (DQx) are physically placed next to a ground (VSS)
signal. As the ground plane (VSS) has a very low impedance
compared to the data signal and because the signal driver is
(pseudo) open drain, short-circuiting the VSS and DQx signals
will pull DQx from its high voltage level to “0”. Depending on
the encoding of the high voltage, this short-circuiting results
in a 1-to-0 or 0-to-1 bit flip on a given DQx line.

Figure 1 displays the locations of the important signals and
shows that a DQx signal is always adjacent to a VSS signal.
Therefore, to inject a single correctable bit error, while the
system exercises the memory by writing and reading all ones,
we have to short-circuit a DQx signal with VSS . We can
achieve the short-circuiting effect with the help of a custom-
built shunt probe using syringe needles (Figure 2a). We insert
the probe in the holes of the DIMM socket as shown in
Figure 2b. For clarity, we omit the memory module from
the picture. We then use tweezers to control when the error
is injected by shorts-circuiting the two needles and thus the
targeted DQx and nearby VSS signal. This method, while
simple (and cheap), is effective in the case of a memory
controller that computes ECCs in a single memory transaction
(ECC word size is 64 bits) and can be used instead of
expensive ad-hoc equipment [30], [31].

On some systems (e.g., configuration AMD-1) data is
retrieved in two memory transactions and then interleaved.
Because of the low temporal accuracy of the shunt probe
method, an error inserted on memory line DQk (0 ≤ k < 64)
that appears on data bit 2 ∗ k will also “reflect” on data bit
2∗k+1 inside the 128 bit ECC word. In this case the syndrome
corresponds to two bit errors and contradicts Proposition 1.
To ensure single bit errors, once the interleaved mechanism is
understood, the exercising data can be constructed such that
the reflected positions contain only bits that are encoded to
low voltage, essentially masking the reflections.
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Error injection with memory controller. Some server-grade
processors incorporate memory controllers that provide the
functionality for artificially injecting errors in memory. This
mechanism is useful when testing the error-reporting func-
tionality of the software stack. The error injection facility is
exposed as PCI registers, but the OEM can choose to lock
these resources from the firmware. Furthermore, the way to
specify where the error and what type of error is injected
varies across platforms. For example, on some systems the
error is injected on the next uncached memory access (e.g.,
AMD-1) while on others the error is injected on an address
that is explicitly specified (e.g., Intel-1).
Error injection with Rowhammer. It is also possible to
use Rowhammer to trigger bit flips when support for error
injection in the memory controller is lacking. Note that this
Rowhammer “attack” is merely intended to detect the syn-
dromes and not (yet) to bypass ECC. When a vulnerable
aggressor-victim row is detected (either by observing ECC
error counters or by using the side-channel introduced in
Section VI-A), the position of the bit flip is still unknown
to the attacker. However, as we show in Section VI-B, we
can overwrite the value of the vulnerable bit with the value to
which it flips, to stop the bit from flipping under Rowhammer.
Therefore, no error is observed when the bit is masked. We
can then leverage this property to perform a binary search for
the position of the bit flip. The main problem with this method
is the need to find bit flips on every possible position within
ECC-word size. On the other hand, once attackers own a set
of such vulnerable DIMM(s), they can use these DIMMs to
reverse engineer any target.

C. Dealing with lack of syndromes

On some systems, the entire error-handling stack is exposed
to software and drivers adequately report the syndromes when
ECC errors happen. On other systems, drivers do not always
properly report the syndromes (e.g., Intel-1) and on yet other
systems, syndromes are lacking altogether (e.g., Intel-2 and
Intel-3). We developed our own driver for reading syndromes
for Intel-1. For Intel-2 and Intel-3, it is possible to use
the available error counters (for which we also developed
drivers) and rely on Proposition 1 to reverse engineer the ECC
function. However, this approach is error-prone and requires
more manual effort. Instead, we rely on a cold boot attack for
reverse engineering the ECC functions on these systems.

D. Cold boot attacks

Cold boot attacks, previously used to breach privacy and
reverse engineer the data scrambling performed inside memory
controllers [32], [33], consist of three main steps: 1) interesting
data is written in memory, 2) the temperature of the memory
is lowered such that data retention of the DDR module is high,
and 3) the memory is read back after a reboot, for instance by
removing the DIMM and immediately plugging it into another
machine and booting.

To read the ECC bits, the attacker can perform a cold boot
attack, where the first two steps are similar to other cold

boot attacks. However, because the ECC bits are not exposed
explicitly by the memory controller, we cannot directly access
them in Step 3. We can use a custom FPGA-based memory
controller to read the ECC control bits. While there are existing
solutions to do so for normal DIMMs [34], we did not find
a cost-effective solution for ECC memory. Instead, we opted
for using an off-the-shelf motherboard and CPU combination
for which we already recovered and verified the ECC function
with methods presented in Section V-B. Knowing 1) the data
that was written, 2) the data that we read after the cold boot,
3) the expected ECC value and 4) the observed syndrome, we
can reconstruct the ECC value that was stored by the victim
system for certain data patterns.

One challenge is that ECC memory is normally always
initialized at boot time by the target system to avoid spurious
ECC errors when accessing the memory. This initialization
is usually done by the firmware (BIOS) and stops us from
performing our cold boot attack. To achieve our goal, we
bypassed the memory initialization by reverse engineering and
modifying the parts of the binary BIOS code that performs
DRAM initialization. We will open-source this patch along
with all other necessary details to allow others to build a
generic ECC memory dumper.

E. Reverse engineering approach

Table II summarizes the pros and cons of our available
reverse engineering mechanisms. We now briefly describe
how we employed these mechanisms to reverse engineer ECC
functions on the machines described in Table I.

Machine AMD-1. Here, the data sheet includes the syndrome
table decoding technique for locating ECC errors. The system
supports symbols of 4 or 8 bits wide and uses 128 bits (two 64-
bits beats interleaved) to compute the ECC control bits. The
data sheet further claims that the code can correct any number
of errors in a single symbol and detect two symbols data
corruption, hinting at a variant of the BCH code. We recover
the complete ECC function using the syndrome table. To find
out that the system indeed uses the same ECC functions to
find the mapping of the data bits to DRAM pins, we employ
our shunt probe. Our results conclude that AMD-1’s memory
controller accurately reports errors and we further find how
data bits are mapped to DRAM pins. The mapping of data
bits to DRAM pins is helpful when reverse engineering with
cold boot attacks.

The data sheet of a newer version of the AMD-1 CPU model
mentions the support for error injection. We therefore wrote
a driver for injecting errors through the memory controller of
this system and confirmed that it also supports this mechanism.
We used the error injection functionality to also confirm that
bit errors in different symbols are uncorrectable.

Machine Intel-1. The ECC function for this system is not
documented. While it has support for error injection through
the memory controller, unfortunately driver support for this
functionality at the moment of writing is non-existent. Given
that writing a device driver for error injection in this processor
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TABLE II: Advantages (4) and disadvantages (5) of the proposed ECC recovery methods in this paper (	 indicates ‘neutral or fixable’).

Method Compatibility Price Setup Time Precision

Needle FI 44 works on any hardware 44 a few dollars 5 fiddly 44 recovers signal mapping
Mem. cntr. 55 not always available 44 free 5 software support is rare 	 potentially imprecise

5 no signal mapping
Rowhammer FI 4 targets’ performance 4 vulnerable DIMMs 4 quick 5 no signal mapping
Cold-boot 44 works on any hardware 5 initial investment 5 rather slow 44 recovers signal mapping

5 cooling spray

TABLE III: Properties of recovered ECC algorithms.

ID dmin(cw) dmin(data) symbol size

AMD-1 3 4 8
Intel-1 4 4 4

is much more involved than just reading information (such
as syndromes), we opted for using Rowhammer bit flips
themselves for reverse engineering the ECC function. The
data sheet of Intel-1 exposes the ECC error counters and
syndromes of the ECC error. We had to write our own drivers
to access this information. We previously already built a
database of vulnerable bits and DIMMs and used a novel side-
channel attack to leak whether the ECC unit is correcting
a bit flip (which we explain in Section VI-A). Using our
database of bit flips on these vulnerable DIMMs, we found
the syndromes for each vulnerable bit position—only three
DIMMs were required for a complete recovery. We validated
our results using the shunt probe, which showed that the
memory controller shuffles the data when sending them to
various data pins on the DIMMs.

Machines Intel-2 and Intel-3. These two machines are the
least friendly in terms of documentation, but their data sheets
do mention that ECC is generated over 64 bits of information
at a time. Using our shunt probe, we realized that the software
stack in these machines does not report ECC errors. To reverse
engineer the ECC functions on these machines, we employ our
cold boot attack and rely on the already reverse engineered
ECC function on AMD-1 to stage the last step of the cold boot
attack. We re-flashed the BIOS of AMD-1 with changes that
bypass the memory initialization. In this process, we used an
old version of the memory initialization that was contributed
by the manufacturer to the coreboot project [35]. Note that
the two-beats ECC computation and residual errors due to cold
boot complicate the complete recovery of the parity matrix on
these machines. As a result, the recovered ECC functions for
these machines still contain a few incorrect cases.

F. Results

For brevity, since AMD-1 and Intel-1 are representative
of the general trends we observed across all setups, and the
recovery on Intel-2 and Intel-3 is not entirely complete due to
residual errors in the cold boot attacks, we focus on AMD-
1 and Intel-1 in the remainder of the paper. Even so, all the
recovered parity matrices for the configurations in Table I can
be found in Figures 8 and 9 in the Appendix.

TABLE IV: ECC error handling software with a default Debian 9.

ID OS log Firmware log Crash on UE

AMD-1 yes yes yes
Intel-1 no yes no

TABLE V: Error patterns that can circumvent ECC.

ID Pattern Config. # flips Flips location

AMD-1 [P1] Ideal 3-BF-16 3 symbols, 1 in control bits
AMD-1 [P2] Ideal 4-BF-16 Min. 2 symbols
Intel-1 [P3] Ideal 4-BF-8 Min. 2 symbols
Intel-1 [P4] Default 2-BF-8 Min. 2 symbols

Ideal guarantees. We first discuss the ideal guarantees pro-
vided by the ECC functions in the two systems. In an ideal
setting, correctable errors should be detected and corrected,
while uncorrectable errors that are detected should result in a
process or system crash. In this configuration, the only way an
attacker can compromise the system is by triggering enough bit
flips at the right positions to ensure that the ECC function does
not detect a corruption. Table III shows the minimum number
of bit flips required in either data bits (i.e., dmin(data)) or
data bits plus control bits (i.e., dmin(cw)). Triggering these
many bit flips close to each other is difficult on most DIMMs
that are vulnerable to Rowhammer. However, it is much easier
to trigger corruptions on Intel-1 as discussed next.

State of practice. As shown in Table IV, we found that in
Intel-1 detected uncorrectable errors do not crash the system
and are not even reported by the OS. The main cause seems
to be improper software support for the memory controller in
the OS, i.e. the error reporting driver fails to recognize and
initialize the resources of the error reporting mechanism. As a
consequence, an attacker can exploit the system, in its default
configuration, with a smaller number of bit flips than necessary
with the ideal guarantee provided with the ECC function.

Exploitable patterns. We use Z3, a constraint solver, to mine
exploitable patterns of the ECC functions for AMD-1 and
Intel-1. Table V shows the results for the ideal and default
configurations. For AMD-1, the attacker requires at least three
bit flips in 16 bytes (i.e., an ECC word) when one of the bit
flips is in the control bits ([P1]). The other two bit flips should
target two distinct symbols (i.e., be at least 8 bits apart). When
targeting data bits alone, four bit flips should land in at least
two distinct symbols in an ECC word ([P2]).

For Intel-1, in an ideal configuration, an attacker needs to
find four bit flips in at least two distinct symbols (i.e., at least
4 bits apart) in eight bytes ([P3]). However, given that Intel-1
does not crash on detected uncorrectable errors, with only two
bit flips in distinct symbols in an ECC word, it is possible to
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TABLE VI: Percentages of rows with corruptions in an ECC DIMM.

[P1] [P2] [P3] [P4]
0.12% 0.12% 0.06% 0.60%

TABLE VII: Percentages of rows with corruptions in the flip database of Tatar
et al. [37] with 14 DIMMs.

ID Bit flips [P1] [P2] [P3] [P4]
A1 200468 18.38% 04.41% 00.79% 29.51%
A2 21542 00.23% 00.03% 00.03% 02.81%
A3 2926 00.00% 00.00% 00.00% 00.30%
A4 256359 26.80% 08.52% 02.10% 37.52%
B1 1504 00.00% 00.00% 00.00% 00.00%
C1 16489 00.09% 00.00% 00.00% 01.32%
D1 2131 00.00% 00.00% 00.00% 00.66%
E1 202630 06.30% 00.76% 00.14% 17.16%
E2 24587 00.06% 00.00% 00.00% 01.51%
F1 413796 51.09% 26.02% 06.00% 53.03%
G1 15990 00.06% 00.00% 00.00% 00.93%
H1 16087 00.03% 00.00% 00.00% 00.77%
I1 130187 00.82% 00.03% 00.00% 06.24%
J1 7185 00.00% 00.00% 00.00% 00.70%

AVG 93705 7.42% 2.84% 0.65% 10.89%

exploit the system ([P4]).
Exploitable ECC DIMMs. We ordered ECC DIMMs from
four different DRAM chip manufacturers. We chose ECC
DIMMs with DRAM chips based on previously published
work [10], [36], [37]. Note that the exact same DRAM chips
are used both in ECC and non-ECC DIMMs. We found that
one out of the four manufacturers produces DIMMs that cause
corruption on both AMD-1 and Intel-1. Table VI shows the
results of hammering 109k pairs of aggressor-victim-rows and
the percentage of rows that have enough bit flips to escape
the patterns discussed in Table V. We later use this DIMM to
evaluate our end-to-end exploits in Section VII.

Other DIMMs. Table VII shows the ECC protection for the
public database of bit flips published by Tatar et al. [37] that
contains 14 desktop DIMMs with the kind of chips that are
used in ECC DIMMs also. We find that every DIMM but
one exhibits bit flips that ECC cannot correct and 10 contain
potentially uncorrectable corruptions that the ECC algorithm
cannot detect. When the ECC detection is used correctly (i.e.,
[P1], [P2] and [P3]), 0.65%-7.42% of all bit flips still cause
silent corruptions. On the default configuration ([P4]), on
average up to 10.89% of the bit flips cannot be corrected.

VI. CHALLENGE C2: ECC-AWARE ROWHAMMER

This section addresses [C2] and shows how an attacker
armed with details on the ECC function can reliably trigger
Rowhammer bit flips that bypass ECC memory with no
crashes. To this end, we show an attacker can observe bit flips
using a side channel and then control bit flips using carefully
selected data patterns in memory.

A. Observing bit flips

We now present a novel side channel that allows an attacker
to observe bit flips that trigger correctable ECC errors. For
this purpose, we use double-sided Rowhammer (i.e., accessing
two aggressor rows targeting a victim row in between) to

Fig. 3: ECC memory access time distribution across 3K aggressor-victim pairs
for corrupted vs. uncorrupted data.

trigger bit flips and then measure the number of clock cycles it
takes to access the victim row. On setup Intel-1, we select 3K
aggressor-victim pairs and measure the DRAM access time
on the victim row after Rowhammer. In case of a bit flip
in the victim, this access triggers a correctable ECC error.
We also randomly select 3K pairs that are potential targets
for Rowhammer (i.e., map to adjacent rows), but that do not
trigger any error after Rowhammer. To confirm ECC error
correction is triggered, we read platform-specific hardware
registers that record the presence of an ECC correctable error.

Figure 3 shows that accesses to data triggering correctable
ECC errors are slower than those to data with no bit flips.
The timing difference is three orders of magnitude, yielding
a reliable timing side channel to distinguish between the two
cases. Furthermore, we note that, in the error case, the access
time has higher dispersion compared to the error-free case.

To show this side channel is present on different platforms,
we target a single vulnerable aggressors-victim pair across
our setups. In this experiment, each pair is hammered in two
rounds each comprising 100 Rowhammer iterations. In the
first round, we choose data such that errors are triggered. In
the second round we change the data such that no errors are
triggered. On setup Intel-1, we confirm the error case is slower
by a factor of 563.1x compared to the error-free case. On setup
AMD-1, however, we observe a difference of only a factor of
1.01x. To closely examine the latter scenario, we randomly
pick 5 vulnerable victim rows, hammer them, and measure
the DRAM access time for each 8-byte word in the victim
row. We repeat this experiment 100 times per victim row and
report the average access time in Figure 4. As evident by the
peaks in the figure (marking synchronously corrected ECC
errors), even a minimal difference in the number of cycles to
access the victim row is sufficient to reliably distinguish error
from error-free cases. Interestingly, we also observe that, in
some cases, error accesses are faster than error-free ones. Such
negative peaks (first and fourth subplot in Figure 4) seem to
only occur in the case of 0-to-1 bit flips. We leave the study
of this phenomenon as future work.

In summary, the presented side channel is reliable enough to
observe bit flips triggering ECC error corrections. Moreover,
the side channel can reveal the exact location and direction of
the bit flip. In the following, we investigate the source of the
side channel in hardware and software.

ECC error handling architecture. ECC error detection is
synchronous with respect to a given memory access. In par-
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Fig. 4: ECC memory access times for all the 8-byte chunks in 5 victim rows.
The peaks correspond to bit flip-induced ECC errors corrected by hardware.

ticular, in response to a memory access request from the CPU,
the memory controller immediately retrieves the data and its
associated ECC bits from memory. Before returning the data
to the CPU, the controller checks the data for errors. Note
that, when so-called scrubbing is enabled, the controller can
also periodically check the memory for errors with no CPU
synchronization. However, given the low scanning frequency
(a few hours for a full memory scan), its impact can be safely
ignored for our purposes (short-lived Rowhammer attacks).

Once an error is detected by the memory controller, error-
correcting operations are immediately performed by the hard-
ware. Since the hardware has to correct (and to write back)
the data via a slow path, this may introduce a measurable
latency on the corresponding memory access and give rise
to a timing side channel. In addition, the hardware needs to
inform the system of the event using one of the following
options (depending on the boot-time configuration): raise an
exception at the software level or invoke a system management
interrupt (SMI) handler.

With the first option, a machine check exception (MCE) is
triggered as soon as the error is detected—even if interrupts
are disabled [38]. With a failing memory cell, correctable
machine check interrupts (CMCIs) become frequent, resulting
in non-trivial system overhead due to excessive time spent
servicing interrupts. To reduce the overhead, an OS driver
may dynamically switch to polling mode, where CMCIs are
blocked and error accounting registers are polled explicitly. In
both cases, errors are logged inside the OS and, depending on
the OS configuration, the memory page containing the error
is masked, the system is restarted, or the faulting process
is killed [39]. However, the OS does not have accurate
knowledge of the physical location of the error (e.g., the
exact DIMM, DRAM address, etc.), which makes it hard to
implement sophisticated error handling policies.

This problem is solved with the second option, where an
SMI handler can use platform-specific information to recover
the exact physical location of the error. This information can
then be saved in Advanced Configuration and Power Interface
(ACPI) tables or other error-reporting registers. To inform the
OS of the event, the SMI handler ultimately raises an MCE.
This option is widely used on recent Intel Xeon machines and
it is known as Enhanced Machine Check Architecture [40].

In both cases, a software chain that involves expensive
operations is synchronously executed as soon as an error is
triggered in response to a given memory access. This may
introduce significant access latency and give rise to another

timing side channel to detect ECC correctable errors.

ECC error handling in practice. As evidenced earlier,
ECC error handling side channels may originate from both
hardware and software operations. We now revisit our earlier
experiments across setups to exemplify their availability on
real-world platforms in their default configurations.

On setup AMD-1, uncorrectable errors crash the system.
Correctable errors are reported by the OS driver and appended
to a dedicated MCE log file (other than being logged at the
firmware level). These synchronous software operations are
lengthy and give rise to the strong timing signal we observed
in Figure 3. Had an SMI handler been enabled in our setup,
the signal would have been even stronger, given that studies
show that handling an SMI is up to 171x times slower than
simply triggering an MCE [31]. In addition, we observe that,
by default, on the Debian 9 distribution (Linux kernel 4.9.3)
used in our setup, the MCE log file1 is world-readable, yielding
an even more convenient side channel to observe bit flips.

On setup Intel-1, uncorrectable errors do not crash the
system. In addition, the available OS driver recognizes the
memory controller but does not report correctable errors. In
other words, no MCE event is logged by the OS. Correctable
and uncorrectable errors are logged in a firmware log, but only
after a certain threshold is reached. While no logging or other
software/firmware operations take place in the common case,
the error handling operations performed by the hardware at
memory access time are still sufficiently lengthy to give rise
to the crisp timing signal we observed in Figure 4.

In summary, while ECC-equipped platforms may be con-
figured in several different ways, error correcting operations
carried out in hardware or software are consistently observable
across platforms through a variety of side channels. This
allows attackers to reliably observe bit flips as a prelude to
end-to-end Rowhammer attacks on ECC-equipped platforms.

B. Controlling and composing bit flips

It has been long known that Rowhammer bit flips are data-
dependent. For example, the original Rowhammer paper [5]
showed that a stripe pattern in DRAM’s array-of-rows orga-
nization (even/odd rows populated with 0s/1s or vice versa)
induced the most errors. Since then, similar patterns have been
used to maximize the number of bit flips and ease Rowhammer
exploitation. We now aim to show that such data-dependent
behavior can also be used to control and compose bit flips
and enable ECC-aware Rowhammer exploitation. We start
with showing how data patterns can be used to enable/disable
individual bit flips and later show such behavior is independent
of neighboring flips or data patterns enabling composability.

Controlling individual bit flips. We start by exhaustively
testing our memory chips using double-sided Rowhammer
with 4 possible data patterns: (i) 0/1-stripe (aggressor rows
populated with all 0s, victim rows populated with all 1s),
(ii) 1/0-stripe (aggressor rows populated with all 1s, victim

1/var/log/mcelog
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rows populated with all 0s), (iii) 0-uniform (aggressor and vic-
tim rows populated with all 0s), and (iv) 1-uniform (aggressor
and victim rows populated with all 1s). Across our setups,
we observe numerous bit flips in the two stripe configurations
and no bit flips in the uniform ones. To confirm the latter
result, we progressively reduce the DRAM refresh rate until
we observe bit flips for the uniform patterns. This only happens
for unstable system configurations with very low refresh rates,
where bit flips occur even without Rowhammer.

This experiment empirically shows an important property
of Rowhammer: bit flips occur due to parasitic current [41],
which induces capacitors storing opposite electric charges (i.e.,
data values) to interfere with one another and cause charge
leakage in the victim cells. The direction of the bit flip (1→ 0
vs. 0 → 1) triggered by a particular stripe pattern (0/1-stripe
vs. 0/1-stripe) is an artifact of data scrambling operated by the
memory controller, which stores 0s (or 1s) as a charged (or
non-charged) state. However, since scrambling on commodity
systems operates by XORing data values with an address-
dependent bitmask that repeats consistently across (adjacent)
rows [33], the bitwise stripe pattern is preserved even in the
presence of scrambling. In other words, for every bit i in a
given aggressor-victim-aggressor row tuple, data scrambling
can (if at all) turn a 0−1−0 bit column (assuming 0/1-stripe)
into a 1−0−1 column (and vice versa), but always preserve the
stripe (or in other cases uniform) pattern at the bit granularity.
This property shows that, somewhat counterintuitively, we can
ignore data scrambling to control Rowhammer bit flips with
(stripe) data patterns. It also suggests we can enforce bit-
granular stripe patterns to control individual bit flips.

To confirm this intuition, for each bit flip triggered in the
previous experiment, we flip the corresponding (column-wide)
bits in the aggressor rows to enforce a bit-granular uniform
pattern and hammer again. Across our setups, we observe
this is consistently sufficient to disable the original individual
bit flips. Restoring the original bit-granular stripe pattern
consistently re-enables every given bit flip. This experiment
shows we can reliably control individual bit flips. In other
words, for every bit i in a given aggressor-victim-aggressor
row tuple, setting aggressor bit values to enforce a column-
wide uniform pattern (0−0−0 or 1−1−1) prevents occurrence
of any flips in the victim bit, while setting aggressor bit values
to enforce a column-wide stripe pattern (0−1−0 or 1−0−1)
induces flips in the victim bit (assuming the underlying cell is
vulnerable). We can then switch between the two patterns to
selectively enable/disable individual bit flips.

Impact of neighboring bit flips. We now have the ability to
control individual bit flips starting from a given data pattern
configuration in an aggressor-victim-aggressor row tuple. We
now want to verify whether controlling multiple bit flips in
the same ECC word at the same time is viable. This property
is necessary to ensure composability of bit flips and is only
realistic with no cross-bit-flip interference. To confirm the
absence of such interference, we select all the victim ECC
words that revealed multiple stripe-induced bit flips in our

previous experiment, and exhaustively test all the relevant
combinations of aggressor bit values. For example, given a
victim ECC word with only two bit flips at offset i and j with
the 0/1-stripe pattern, we test the 4 possible combinations of
column-wide 0/1-stripe (or 1/0-stripe) at offset i and column-
wide 0/1-stripe (or 1/0-stripe) at offset j. We say that there is
no cross-bit-flip interference in a given victim ECC word iff
the bit flip i (j) is solely dependent on the aggressor bit values
at offset i (j). Across our setups, we observe no interference
in any vulnerable ECC word, empirically confirming we can
control multiple bit flips at the same time in a given word.
Impact of neighboring data. Our last experiment showed
we can control individual bit flips with no interference from
neighboring bit flips nor neighboring aggressor bit values. This
was the case even for adjacent bit flips, showing that value
changes in the aggressor bits at offset i+1 (or i− 1) have no
impact on a bit flip at offset i. To achieve fully unconstrained
bit flip composability, however, we also need to study the
impact of neighboring data values in the victim row.

For this purpose, we set up a new experiment, in which we
select all the aggressor-victim-aggressor row tuples that trigger
a single bit flip and randomly assign them one of the following
data patterns: D (column-wide 1/0-stripe pattern in the bit flip
location, random values elsewhere in the aggressor rows, and
0s elsewhere in the victim row) and N (same as D, but 1s are
used elsewhere in the victim row). The patterns are designed
to stress the extreme cases of data values following (or not
following) the direction of the bit flip (respectively). For this
reason, we present results with data scrambling disabled, but
we observed a similar trend with data scrambling enabled.

Figure 5 presents our results, depicting the probability
distribution of the difference between the number of bit flips
induced by D and N patterns as a function of the probability
of the occurrence of the D pattern (which we vary in every
experiment). As the difference is generally less than 2.5%
across setups, this shows that even neighboring data values in
the victim row have little or no influence on a given bit flip.
This confirms an attacker can surgically manipulate aggressor
data bits to obtain fully composable, data-controlled bit flips
and target arbitrary victim data in a given ECC word.

Interestingly, in some setups (e.g., AMD-1), there seems
to be less interference, showing that, while the properties we
described well-approximate DRAM behavior across setups,
they cannot perfectly model all the physical constraints in
general. However, our approximations are sufficient to reliably
mount practical attacks, as shown by our end-to-end exploit.

VII. CHALLENGE C3: A PRACTICAL ECCploit

In this section, we present ECCploit and show how an
attacker—armed with knowledge of the ECC function, a side
channel to observe bit flips, and the ability to control/compose
bit flips via data patterns in aggressor rows—can mount
practical end-to-end Rowhammer exploits on ECC-equipped
systems. ECCploit consists of three phases. First, we template
memory to find correctable bit flips. Second, we try to combine
multiple of these bit flips to create error patterns that the
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Fig. 5: Probability distribution of the difference between the number of D
and N pattern-induced bit flips vs. probability of occurrence of the D pattern.

ECC function is unable to detect. Finally, we use these
patterns to launch exploits on three different victims: page
table entries [6], RSA public keys [10], and binary code [13].

A. Templating correctable errors

In the templating phase, we probe the memory to see if we
can safely trigger bit flips using Rowhammer. In particular,
we only want to cause errors that the ECC function can
correct automatically. Although the error correction ensures
that we cannot observe these bit flips directly, the side channel
presented in Section VI still lets us detect them.
Target address selection. Templating starts with a list of
potential aggressor locations (a1 and a2 in the case of double-
sided Rowhammer) and victim (v) addresses which should
both map to the same bank but different (neighboring) rows.
Obtaining this list is trivial if we know the mapping between
virtual and physical addresses. In our exploits, we rely on
existing reverse engineering techniques to reconstruct such
mapping [42]. However, even if this information is absent, the
attack can start with an exhaustive list of addresses—slowing
down, but not stopping, the attack.
Pattern selection. Our attack uses double-sided Rowham-
mer to detect usable tuples of aggressor-victim-aggressor
(a1, v, a2). To ensure a crash-free templating strategy (i.e.,
only triggering correctable ECC errors in vulnerable loca-
tions), we arrange values in aggressor and victim rows such
that the Hamming distance is less than or equal to the number
of errors E that the ECC algorithm is capable of correcting.
In other words, we make sure that for each ECC word in the
victim row, the corresponding ECC words in the aggressor
rows are only E bit flips apart. Assuming x is the value stored
in an ECC word, and x′ is the value with E bits flipped, we can
either store x in the victim ECC word and x′ in the aggressor
ECC words or x′ in the victim ECC row and x in the aggressor
ECC words to check for correctable bit flips in either 1 → 0
or 0→ 1 directions due to the resulting striping patterns.
Search strategy. Rather than targeting a single ECC word
and single word offset for each Rowhammer trial, we target
all the words in the victim row at the same time during each
hammering attempt. For each word, we consider a different
set of E bits in subsequent attempts. For instance, if the ECC
corrects single bit errors, we hammer first with bit patterns
in the aggressor and victim rows such that aggressors and

Fig. 6: Templating with ECC memory.

victim differ only in the most significant bit of each of the
ECC words in the row, then with patterns that differ only in
the next bit, and so on. At each trial, we read from the entire
victim row all at once and use our side channel to detect bit
flips anywhere in the row—we found this is reliable even at
the row granularity. This strategy exploits composability of
bit flips and allows us to batch many independent tests and
increase the templating efficiency. For instance, if the ECC
corrects single bit errors, this strategy requires only as many
trials per tuple as the number of bits in a single ECC word.
ECC algorithms that use multiple-bit symbols (e.g., ChipKill)
require even fewer trials as a row contains fewer symbols.

If we detect bit flip(s) anywhere in the victim row, we need
to hammer the tuple a few more times to identify the flipping
ECC word(s). For this purpose, we perform a (pseudo-)binary
search—omitting stripe patterns in words we are not testing—
until we reproduce the bit flip(s) on one or more words. The
entire process is repeated twice for each tuple using the two
possible stripe patterns. This is to identify vulnerable bits in
both directions (1→ 0 or 0→ 1). After scanning all the tuples
in memory, we note down all the vulnerable 1-bit templates
with the corresponding (a1, v, a2) tuple, the ECC word, the
word offset, and the direction of the bit flip in the victim row.

B. Combining bit flips

Given our knowledge of the ECC algorithm and the 1-bit
templates inducing correctable bit flips from the previous step,
the goal of this phase is to combine multiple bit flips in a single
ECC word and produce new words that escape ECC detection.
As a first step, we group together all the 1-bit templates that
have the same aggressor rows, victim row, direction, and ECC
word in a template group.

Next, we generate possible flipped words that, when induced
via Rowhammer, bypass the target ECC algorithm. Specifi-
cally, for every template group, we want to find a combination
of k 1-bit templates that would induce k bit flips that result in
a corruption that ECC does not correct ([P4]) or even detect
([P1], [P2] and [P3]). For simplicity, the current version of
ECCploit only targets flips in the data bits and not in the
control bits. While this is enough for our setup, one can
optimize ECCploit further to take control bits into account.
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Figure 6 shows the results of our templating step on the
Intel-1 machine. On this machine, we can directly observe
(detectable) corruptions without crashing the system. When
we cannot directly observe uncorrectable errors (e.g., AMD-
1), we can instead use the side channels discussed in Sec-
tion VI-A. Overall, we only have 265 templates available.
When directly observing bit flips, it takes 4 hours to find
these templates. Using the word-level side channel, it takes
6 days, and using the row-level side channel, it takes us
8 weeks to find these templates. To compare, assuming no
ECC support, it would take us at most 1 minute to find 265
templates. This shows that ECC does significantly reduce the
attack surface of Rowhammer attacks, by forcing the attacker
to go through a much lengthier templating step. However, this
is typically unimportant in practical attack settings, where the
attacker can run code on demand on the victim machine and
complete a templating step of hours or even days in complete
isolation without interfering with the rest of the system. After
templating is over, ECC has essentially no impact on the
exploitation step, which completes in seconds or minutes
similar to existing non-ECC exploits. Next we discuss how we
use our templates to build practical exploits on ECC memory.

C. Exploitation

Armed with vulnerable ECC-aware templates, an attacker
can now mount practical exploits by (i) massaging the target
data onto the vulnerable location, (ii) setting the corresponding
aggressor bit values as dictated by the templates, and (iii)
and hammering to reliably reproduce the (composed) bit flips
on the victim data. This exploitation strategy is similar, in
spirit, to the one employed by existing reliable Rowhammer
attacks [10]. The key difference—and challenge for ECC-
aware exploitation—is that the number of useful templates
is now much lower, given that we need a carefully-selected
combination of bit flips to bypass ECC. Furthermore, unlike
existing Rowhammer exploits, ECC templates corrupt multiple
bits and this can complicate existing Rowhammer attacks.

To study the effectiveness of our ECCploit attack in
real-world exploitation settings, we reproduce three existing
Rowhammer attacks on Intel-1. (i) The original Rowhammer
attack by Seaborn [6], which flips bits in page table entries
(PTE) to map an unauthorized page (ideally a page table page)
for privilege escalation, (ii) the attack introduced by Razavi
et al. [10] which flips bits in a RSA key to compromise its
cryptographic strength for authentication bypass, and (iii) the
attack introduced by Gruss et al. [13] that flips bits in opcodes,
leading to user authentication bypass in the sudo command.
Page Table Entry (PTE) ECCploit. Like the original attack
by Seaborn et al. [6], we spray physical memory with page
tables and then try to gain access to an inaccessible page by
flipping a bit in a PTE. To implement this attack, we need
to consider the format of the PTE. The format of the PTE
can vary across different architectures. In modern Intel and
AMD machines, PTEs are 64 bits wide and store the physical
address of a page in bits 12 to L, where L is the number
of bits required to address the machine’s physical memory.

Importantly, Intel requires that bits L to 51 are zero, lest any
access triggers a general protection fault which would crash
the machine. AMD even prescribes a zero value for all bits
between L and 63. Given this, useful templates contain at least
one bit flip between bit 12 and L in 64 bits chunks and do not
trigger a 0 → 1 bit flip in the L:51 range on Intel machines
and L:63 range on AMD machines. Note that bit flips on the
first 12 bits are often harmless (e.g., cacheable flag).

Results. From our discovered 265 templates, 6.15% are ex-
ploitable. The rest are templates that would crash the system
because bits would flip in the reserved field of the PTE. As
shown in Figure 6, we find the first suitable template after 19
minutes if we can directly observe the bit flips, and 12 hours
or 4 days using the side channels respectively. Without ECC,
it would take less than 2 seconds to find a suitable template.

Summarizing, even with an imperfect page table spraying
strategy of the Seaborn attack, we were able to map unautho-
rized memory pages with a success rate of 39.9% and a page
table page with a 2.5% success rate. In the remaining cases,
the attack fails to modify any PTE of the attack process, but no
crashes occur. By tracking the correctable error counters, we
confirmed that when there is no change in the PTE, as either
no bit flip occurs or ECC corrects the error. This happens
because the victim PTE does not always have the target bits
set in the direction of the chosen template.

Brasser et al. [36] report a 5% success rate in a similar non-
ECC setting for mapping page table pages, which shows that
our ECC-based exploitation strategy has relatively little impact
on the success of the attack compared to traditional Rowham-
mer exploits. On our testbed, a more sophisticated massaging
strategy such as the one employed by Drammer [11] can obtain
a significantly higher success rate in mapping a page table page
in the address space (39.9% in the ideal case).

RSA ECCploit. RSA [43] is a public-key crypto system which
relies on the infeasibility of factorizing the product (n) of two
large prime numbers with a similar number of bits. The attack
uses the fact that a single-bit-faulted n (n1) is easy to factorize
as the chance of the factors of n1 being of similar size is very
low—the probability to efficiently factorize n1 is 12-22% [10].
We claim that in the presence of t bit faults (t ≥ 2), nt is
efficiently factorizable with at least the same probability as
n1. This is because flipping a single bit versus flipping t bits
in n only changes the quantity that is added or subtracted to
n. The result in both cases is a natural number with the same
probability of being easily factorizable. Formally, using the
Erdös-Kac [44] theorem, the number of distinct prime factors
of n1 and of nt follows the standard normal distribution with
the mean and variance log log n∗. Because nt and n1 are of
similar sizes, the probability to efficiently factorize the faulty
n is the same in both cases—12-22%.

Results. To experimentally confirm this claim, we use 1337
randomly generated RSA keys from each size class of 1024 bit,
2048 bit and 4096 bit. We then replicate Flip Feng Shui [10]
using our ECC templates. On average, our 265 templates could
only mutate a given 1024 bit key 2.8 times, a given 2048 bit

12



key 5.5 times, and a given 4096 bit key 9.4 times. Given a
1 hour cutoff time to ECM [45], we can factorize 45.1% of
the 1024 bit keys, 37% of the 2048 bit keys and 28.7% of
the 4096 bit keys. Without considering the factorization and
memory deduplication delay, if we can directly observe the
errors it takes us on average 2 hours, and 3 days or 4 weeks if
we use the side channels as shown in Figure 6. Without ECC,
it takes us less than a minute to achieve similar success rates.

Opcode modification ECCploit. This attack corrupts instruc-
tions in memory to bypass certain security checks [13]. As
already mentioned, on ECC protected memory, more than one
bit flip within the same ECC word is necessary to bypass the
ECC protection. On synthetic x86_64 binaries that mimic
authentications, we find that the probability of the code being
successfully attacked slowly grows from 5% to 10% when
the number of bit flips in 8 bytes increases from 1 to 4
respectively. On the other hand, the probability of the program
to crash is 55% when 4 bits are changed as opposed to 20%
when a single bit is flipped. To investigate whether corrupting
opcodes is feasible with ECC templates in a real application,
we target sudoers.so which is responsible for privilege
elevation functionality provided by the sudo command.

Results. In the same version of the binary, Gruss et al. [13]
find 29 candidate instructions in which a single bit flip
yields unauthorized access. Template #36 flips bit 0 and 5
of a single byte, changing a conditional branch instruction
(jne $8fa0 at offset 0xbdc0) to a mov instruction (mov
0x1da(%rbp),%eax), leading to an authentication bypass.
When observing ECC errors directly, we find this template in
32 minutes, and it takes 12 hours or 4 days when using the
side channels as shown in Figure 6. Without ECC, we can
target any of the 29 candidate instructions without worrying
about crashes. We can find such a flip in 6 minutes.

VIII. RELATED WORK

Rowhammer. After the initial disclosure of Rowhammer [5],
security researchers showed advanced Rowhammer-based ex-
ploitation of browsers [6]–[8], [46], clouds [10], [29] and
mobile phones [11], [12], and even managed to flip bits
across the network [46]. Although it was always clear that
it is possible that more bits flip than an ECC function can
handle, properly implemented ECC memory is still perceived
as a practical mitigation for Rowhammer exploits [6], [13].
However, some researchers already questioned whether ECC
is enough, and consistent with our findings, discovered that
some systems do not always report ECC events [47]. We are
the first to show that reliable Rowhammer attacks are possible,
even if the system reports these events correctly.

Hardware reverse engineering. There are many undocu-
mented features modern hardware systems. The complex hash-
ing function that decides how physical addresses map to CPU
cache sets is an example which is important for a variety of
cache attacks [48]–[51]. Maurice et al. [52] reverse engineers
this mapping. DRAMA [42] reverse engineers the mapping
function from physical addresses to DRAM addresses. Inside

memory chips, each DRAM address is further decoded in
banks, rows and columns. Jung et al. [53] reverse engineer
this physical decoding scheme by applying a temperature
gradient to memory chips. GPU architectures are sometimes
undocumented, Frigo et al. [12] reverse engineer a common
integrated GPU in mobile phones. In this paper, we reversed
engineered the ECC functions in common processors and used
this to mount successful and reliable Rowhammer attacks.

ECC error handling and error injection. While others have
studied the overhead of SMI handling [31], [54], the overhead
of handling ECC exceptions is only briefly noted in the context
of memory reliability [9], [55], [56]. Recently, Gottscho et
al. [31] injected faults in memory with the help of a custom
proprietary device and focused on the overhead of these errors.
Instead, we proposed several new and cheaper ways to induce
memory errors (e.g., a simple syringe needle probe).

IX. MITIGATIONS

We have shown that ECC alone is not an adequate Rowham-
mer mitigation. One way to strengthen ECC is to combine
it with Target Row Refresh (TRR) [19]—another hardware
mechanism, designed specifically to protect against Rowham-
mer. While there are reports of bit flips on memory with
TRR [11], [13], we expect that a combination of ECC with
TRR will make Rowhammer exploitation much harder.

State-of-the-art ECC algorithms in use today all target error
patterns of off-the-shelf DRAM under normal conditions [1],
[9] rather than adversarial cases. Another avenue for mitiga-
tions is to devise new Rowhammer-aware ECC algorithms that
can be deployed either in hardware or software [57]. Moreover,
to improve the guarantees of new ECC algorithms [58]–
[61], we may explicitly augment them with defenses against
Rowhammer, either in software [36], [46], [57], [62]–[64]
or in hardware—e.g., in the memory controllers or inside
the memory chips themselves. As an example, in-DRAM
ECC [65]–[68], where the ECC engine resides inside each
chip can co-exist with rank-level ECC implemented in the
memory controller [68]. The in-DRAM ECC helps to miti-
gate Rowhammer, while potentially masking the side channel
presented in this paper (since the errors are corrected on die).

Another common solution against Rowhammer is to in-
crease the DRAM refresh rate, but doing so wastes power.
Also, the current trend in practice is exactly the opposite:
manufacturers have started lowering the DRAM refresh rate
to save power and relying on ECC for memory integrity [16],
[66], [69], [70]. Since lowering the refresh rate dramatically
increases the number of Rowhammer bit flips [5], [7], [8],
doing so makes it easier to bypass ECC—we believe that it is
time to reconsider such strategies in the Rowhammer era.

X. CONCLUSION

Rowhammer has evolved into a serious threat to computer
systems from the smallest mobile devices to very large clouds,
but so far machinery with high-end memory with error cor-
recting code (ECC) has been free from such attacks. This has
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been due to the complex challenge of reverse engineering com-
modity ECC functions and, more importantly, to the narrow
margins within which attackers must operate: multiple bits
must flip in order to bypass the error correcting functionality,
but flipping the wrong number of bits may crash the system.
Thus, many believed that Rowhammer on ECC memory, even
if plausible in theory, is simply impractical. This paper shows
this to be false: while harder, Rowhammer attacks are still a
realistic threat even to modern ECC-equipped systems. This
is particularly worrying, because all other existing defenses
have already been proven insecure. Given the proliferation of
Rowhammer vulnerabilities across a broad range of systems,
we urgently need better defenses against these attacks.
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APPENDIX

(a) AMD-1 (b) Intel-2 and Intel-3 (c) Intel-1 (d) SEC-DED-S4ED [71]

Fig. 7: Hamming Distance (HD) of ECC function results.

To quickly visualize the ECC properties, In Figure 7 we show the HD of the various ECC algorithms that we recovered. A
pixel of coordinate x, y has a brightness level of the HD between the ECC result of datax and datay . Where datai means that
bit on position i is asserted and all the others are de-asserted. A black pixel (lowest brightness and HD) means that the ECC
are the same. On AMD-1 (Figure 7a we observe a distinct pattern at 8 bits intervals. This is expected, as the ECC algorithm
treats 8 bits as a single symbol. Repetitions are also observed in Figure 7d at 4 bits. This implementation corresponds to an
Intel patent [71] which can detect up to 4 bits (SEC-DED-S4ED). These patterns are not always obvious, for example Intel-1
(Figure 7c) uses the same ECC algorithm (and values) but the bits are considered in a different order.

ECCIntelHaswell ECCAmdFam10h

000 11110001 032 00100011 000 1000000000010100 032 1000000000100111 064 0001010010000000 096 0010011110000000
001 01000011 033 01100010 001 0100000000001010 033 0100000010101011 065 0000101001000000 097 1010101101000000
002 01101000 034 10010001 002 0010000000000101 034 0010000011101101 066 0000010100100000 098 1110110100100000
003 10010100 035 00001011 003 0001000010111010 035 0001000011001110 067 1011101000010000 099 1100111000010000
004 00001110 036 11111000 004 0000100001011101 036 0000100001100111 068 0101110100001000 100 0110011100001000
005 01010001 037 01010100 005 0000010010010110 037 0000010010001011 069 1001011000000100 101 1000101100000100
006 10100010 038 10101000 006 0000001001001011 038 0000001011111101 070 0100101100000010 102 1111110100000010
007 00011100 039 01001100 007 0000000110011101 039 0000000111000110 071 1001110100000001 103 1100011000000001
008 00011111 040 00110010 008 1000000011101101 040 1000000000010000 072 1110110110000000 104 0001000010000000
009 00110100 041 00100110 009 0100000011001110 041 0100000000001000 073 1100111001000000 105 0000100001000000
010 10000110 042 00011001 010 0010000001100111 042 0010000000000100 074 0110011100100000 106 0000010000100000
011 01001001 043 10110000 011 0001000010001011 043 0001000000000010 075 1000101100010000 107 0000001000010000
012 11100000 044 10001111 012 0000100011111101 044 0000100000000001 076 1111110100001000 108 0000000100001000
013 00010101 045 01000101 013 0000010011000110 045 0000010010111000 077 1100011000000100 109 1011100000000100
014 00101010 046 10001010 014 0000001001100011 046 0000001001011100 078 0110001100000010 110 0101110000000010
015 11000001 047 11000100 015 0000000110001001 047 0000000100101110 079 1000100100000001 111 0010111000000001
016 00101111 048 00010011 016 1000000001001110 048 1000000000100000 080 0100111010000000 112 0010000010000000
017 10000011 049 01100100 017 0100000000100111 049 0100000000010000 081 0010011101000000 113 0001000001000000
018 01100001 050 10010010 018 0010000010101011 050 0010000000001000 082 1010101100100000 114 0000100000100000
019 10011000 051 01110000 019 0001000011101101 051 0001000000000100 083 1110110100010000 115 0000010000010000
020 11010000 052 01001111 020 0000100011001110 052 0000100000000010 084 1100111000001000 116 0000001000001000
021 01010010 053 01011000 021 0000010001100111 053 0000010000000001 085 0110011100000100 117 0000000100000100
022 10100100 054 10100001 022 0000001010001011 054 0000001010111000 086 1000101100000010 118 1011100000000010
023 00101100 055 10001100 023 0000000111111101 055 0000000101011100 087 1111110100000001 119 0101110000000001
024 11110010 056 00110001 024 1000000010101011 056 1000000001000000 088 1010101110000000 120 0100000010000000
025 00111000 057 01000110 025 0100000011101101 057 0100000000100000 089 1110110101000000 121 0010000001000000
026 00010110 058 00101001 026 0010000011001110 058 0010000000010000 090 1100111000100000 122 0001000000100000
027 10001001 059 00000111 027 0001000001100111 059 0001000000001000 091 0110011100010000 123 0000100000010000
028 00001101 060 11110100 028 0000100010001011 060 0000100000000100 092 1000101100001000 124 0000010000001000
029 00100101 061 10000101 029 0000010011111101 061 0000010000000010 093 1111110100000100 125 0000001000000100
030 01001010 062 00011010 030 0000001011000110 062 0000001000000001 094 1100011000000010 126 0000000100000010
031 11000010 063 11001000 031 0000000101100011 063 0000000110111000 095 0110001100000001 127 1011100000000001

Fig. 8: Recovered parity matrices (Intel-1 and AMD-1 respectively).
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ECCIntelSandy64

000 10011101 032 10000000
001 01010000 033 11101101
002 10110010 034 01011101
003 01110001 035 00011100
004 00001101 036 01100100
005 01110000 037 11011000
006 00110101 038 00000101
007 11110111 039 10111011
008 01100010 040 11010000
009 10111001 041 10010100
010 01010000 042 10111001
011 11011010 043 11011111
012 01010001 044 10001010
013 01111000 045 11110001
014 10011000 046 01001011
015 11011110 047 11100000
016 10100011 048 10111101
017 10011011 049 01000000
018 01001101 050 00011011
019 01110000 051 11101001
020 10110101 052 01000010
021 01010101 053 00101010
022 01011111 054 00110001
023 01111010 055 00011010
024 10001010 056 11000111
025 10010010 057 11010110
026 00000101 058 10101111
027 01111110 059 01001011
028 00001010 060 11000101
029 01110011 061 01011010
030 01001101 062 10101110
031 11111000 063 11001100

Fig. 9: Recovered parity matrix with cold-boot attack on Intel-2 and Intel-3.

Hardware details. The Intel-1 setup uses the Intel Xeon E3-
1270 v3 CPU built on the Haswell microarchitecture and
a Supermicro X10SLL-F motherboard (BIOS version: 3.0a).
Setup AMD-1 contains the AMD Opteron 6376 CPU that is
part of the Bulldozer Family 15h microarchitecture. This CPU
was mounted on the Supermicro H8SGL-F motherboard with
the BIOS: 5.925, version: 3.5a). Intel-2 is the HP Proliant
DL360p Gen8 Server that uses the Intel Xeon E5-2650 v1
(Sandy Bridge) CPU with default configuration of BIOS
(version P71). Intel-3 is the SuperServer 1026GT that uses the
Intel Xeon E5-2620 v1 CPU (Sandy Bridge) and a Supermicro
X9DRG-HF motherboard with BIOS version 1.0c.

In our experiments we tested several memory modules from
different manufacturers. We confirm a significant amount of
Rowhammer bit flips in a DIMM similar to the one on which
Brasser et al. [36] reported the highest successful exploitation
rate. As Rowhammer is a fundamental architecture issue, many
other combinations of CPU (memory controllers) and memory
modules are susceptible to this class of attacks. We stress that
the configurations that we mention here represents just some
arbitrary setups that we came accross in our research and we
do not blame one manufacturer or another.
Disclosure. We disclosed our findings to the affected parties.
CVE-2018-18904 tracks the timing side-channel of the error
correction. Information about operating systems’ drivers of
several Linux distribution can be found in CVE-2018-18905
and in CVE-2018-18906.
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