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ABSTRACT
Garbage collection (GC) is a standard feature for high productivity
programming, saving a programmer from many nasty memory-
related bugs. However, these productivity benefits come with a cost
in terms of application throughput, worst-case latency, and energy
consumption. Since the first introduction of GC by the Lisp program-
ming language in the 1950s, a myriad of hardware and software
techniques have been proposed to reduce this cost. While the idea of
accelerating GC in hardware is appealing, its impact has been very
limited due to narrow coverage, lack of flexibility, intrusive system
changes, and significant hardware cost. Even with specialized hard-
ware GC performance is eventually limited by memory bandwidth
bottleneck. Fortunately, emerging 3D stacked DRAM technologies
shed new light on this decades-old problem by enabling efficient
near-memory processing with ample memory bandwidth. Thus, we
propose Charon1, the first 3D stacked memory-based GC accelera-
tor. Through a detailed performance analysis of HotSpot JVM, we
derive a set of key algorithmic primitives based on their GC time
coverage and implementation complexity in hardware. Then we
devise a specialized processing unit to substantially improve their
memory-level parallelism and throughput with a low hardware cost.
Our evaluation of Charon with the full-production HotSpot JVM
running two big data analytics frameworks, Spark and GraphChi,
demonstrates a 3.29× geomean speedup and 60.7% energy savings
for GC over the baseline 8-core out-of-order processor.

CCS CONCEPTS
•Computer systems organization→ heterogeneous (hybrid)
systems; Special Purpose Systems.

1Charon, in Greek mythology, is the ferryman who carries souls of the dead.
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1 INTRODUCTION
Garbage collection (GC) is a form of automatic memory manage-
ment technique which is widely utilized in many programming
languages like Java, C#, JavaScript, and Python. With GC, program-
mers do not need to explicitly deallocate an object after its use.
Instead, a runtime garbage collector automatically identifies data
objects that cannot be accessed in the future (i.e., garbage) and auto-
matically performs deallocation to reclaim memory spaces used by
such objects. With its ability to automatically deallocate memory,
GC naturally improves the productivity of programmers and can
completely eliminate or substantially reduce the memory-related
bugs (e.g., memory leaks, dangling pointer, etc.).

Unfortunately, the advantages of GC often come with noticeable
performance and power/energy cost. Even worse, GC is prohibi-
tively expensive in big data analytics manipulating a large num-
ber of objects scattered across a large memory region. Multiple
sources report that GC can account for some 50% of execution
time in memory-intensive big data analytics [6, 14, 18, 49, 50].
Moreover, latency-sensitive applications suffer GC-induced long
tail-latency [13, 37], significantly degrading quality of service and
management cost in distributed cloud. Note that the amount of GC
overhead is closely related to the application’s working set size and
the available heap size. Considering the recent trend of slowdown
in DRAM technology scaling and rapid increase in dataset size
and compute parallelism, the cost GC is expected to continuously
increase in the future.

To counter the unavoidable, expected increase in the GC over-
head, it is critical to improve the throughput of GC. Unfortunately,
GC — a process of identifying live objects through graph traver-
sals and migrating them to contiguous memory region — is a very
memory-intensive workload that involves many ill-suited opera-
tions for general-purpose processors. For example, general-purpose
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processors achieve limited memory-level parallelism (MLP) due
to their limited instruction window and load/store queue size. At
the same time, they have limited bandwidth to off-chip memory
which can often become a bottleneck. In fact, we observed that the
average IPC of modern Intel Xeon core running garbage collection
is below 0.5 on various big-data analytics workloads, indicating
that the modern CPU is not very effective for GC. Thus, our re-
search focuses on exploiting the opportunities in specialization
and near-memory computation to overcome challenges of GC in
general-purpose processors.

The idea of accelerating GC in hardware has been explored for a
long time since the introduction of GC by the Lisp programming
language in the 1950s. However, they have had limited impact
for various reasons. For example, some proposals target a specific
language (e.g., Lisp [45], Smalltalk [64]), a specific hardware (e.g.,
FPGA [5], specialized memory [61, 67]), or a class of algorithms
(e.g., reference counting [27, 61, 66]), to have narrow coverage. Oth-
ers attempt to implement GC fully in hardware [38–41, 60, 62, 66]
lack flexibility. For example, a state-of-the-art GC accelerator by
Maas et al. [38] hard-wires a relatively simple mark-sweep algo-
rithm, and hence cannot fully offload the popular generational GC,
which requires a copying collector between semispaces (genera-
tions). Also, full offloading is invasive as it often requires major
changes to the processor, thus incurring a high cost for hardware
design and verification. Our analysis shows that a small number
of tiny primitives dominate the total GC time, and we argue for
offloading those primitives, not the entire GC. This approach is
more future-proof as those primitives likely outlive continuously
evolving GC algorithms. Furthermore, GC algorithms are often bot-
tlenecked by memory bandwidth. Therefore, without addressing
this bandwidth problem, building specialized hardware is only a
half solution. Fortunately, emerging 3D stacked DRAM technolo-
gies like HBM [25] and HMC [9] uncover intriguing opportunities
for this decades-old problem by enabling efficient processing on
near-memory logic and providing ample memory bandwidth.

Thus, we architect, design, and evaluate Charon, a near-memory
accelerator specialized for specific operations in GC. By unlocking
massive memory-level parallelism through specialized hardware
designs and exploiting the abundant memory bandwidth available
at the near-memory logic layer, Charon accelerates key primitives
of GC derived from HotSpot JVM [24], the most popular production
JVM today, and enables general-purpose processors to offload GC
very efficiently with minimal changes to the processor. In summary,
this paper makes the following contributions:
• We perform a detailed analysis of the GC behavior in big data
processing frameworks using the production-grade HotSpot JVM.

• We identify key algorithmic primitives of GC and present special-
ized hardware processing units to substantially improve memory-
level parallelism and throughput of such primitives.

• We prototype Charon on HotSpot JVM to demonstrate its effec-
tiveness with a production-grade GC algorithm.

• We evaluate Charon with two large-scale data analytics frame-
works, Spark and GraphChi, using a detailed cycle-level simulator
(executing over 770 billion instructions in regions of interest),
and demonstrate that Charon achieves a 3.29× speedup and 60.7%
energy savings over the baseline 8-core out-of-order processor.
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Figure 1: Overview of ParallelScavenge GC in HotSpot

2 BACKGROUND
Garbage Collection Algorithms. Garbage is heap allocated ob-
jects that will not be used in the future. These objects are not
reachable by any chain of pointers from the root set, which con-
sists of objects that are accessible from outside the heap (e.g., stack
variables/pointers, global variables). A garbage collection (GC) is
a process of reclaiming these garbage objects that are no longer
in use by the program. In a language like C/C++, this process is
handled manually by programmers; on the other hand, in many
languages like Java, GC automatically handles this process.

There exist different types of GC algorithms with different goals.
For example, Java offers Parallel Compacting Collector [43], a
throughput-oriented collector, which focuses on the GC throughput.
Such a collector incurs a complete stop of all application threads
(mutator threads in a GC term) so that cores can devote their re-
sources to GC threads. In contrast, there are concurrent garbage
collectors (e.g., Concurrent-Mark-Sweep (CMS) in HotSpot JVM),
which allow application threads to continue in parallel with GC
threads. Such a concurrent garbage collector typically incurs less
pause time compared to the throughput-oriented garbage collector.
However, the concurrent garbage collector incurs overheads due to
i) synchronization to maintain a consistent memory state with the
application threads and ii) interference coming from sharing hard-
ware resources with concurrent threads of different natures (i.e.,
GC and original application) and achieves lower overall throughput
than the throughput-oriented one.
Generational Garbage Collection. Generational GC is a stan-
dard algorithm that uses multiple generations to take advantages
of the weak generational hypothesis [63], which assumes that most
objects in heap have a short lifetime while there exist a relatively
small set of objects that remain live for a long time. Typically, gen-
erational collectors divide heap into a Young and an Old generation.
The idea is to minimize the number of full garbage collection opera-
tion on entire heap by performing lightweight garbage collection on
a relatively small space (i.e., Young generation) where most objects
with short lifetime are collected.

Figure 1 presents the operations of the ParallelScavenge, which
is a popular generational, throughput-oriented collector in HotSpot
JVM. Objects are initially allocated to Eden space reserved for new
objects. When this Eden space is filled up and fails to allocate a new
object, a minor GC (MinorGC) is triggered. Starting from the root
set, the collector ❶ traverses the object graph consisting of live
objects. Specifically, MinorGC traverses live objects in the Eden and
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Figure 3: Simplified execution flow of GC

one of the two Survivor spaces (From) space, and ❷ copies them to
the other empty Survivor (To) space, or ❸ promotes them to Old
generation if the objects survive a certain number of MinorGCs in
Young generation. Then, MinorGC cleans up Eden and Survivor
(From) space, and designates the current From space as a To space
(and vice versa). Eventually, the Old generation will be filled with
promoted objects and this will trigger a major GC (MajorGC) event.
While MajorGC traverses live objects in a way that is similar to
that of MinorGC, it also triggers ❹ compaction to reduce heap
fragmentation.

3 ANALYSIS OF GC INEFFICIENCY
3.1 GC Overheads in Big Data Applications
Today’s big data processing applications with large heap often
suffer noticeable performance and power/energy cost due to GC.
Unlike traditional Java applications, big data processing applica-
tions often exhaust the heap due to massive amount of objects and
large volumes of data manipulation such as join or shuffle [6]. Even
worse, these objects cannot be reclaimed until all operations are
completely done, leaving a large number of long-lived objects to be
traversed during GC. While it is common to use most of the physi-
cal memory space in big data processing applications, traversing a
large number of live objects becomes the main bottleneck to spend
many CPU cycles for GC rather than useful computation.

Figure 2 shows the performance impact of GC over actual com-
putation time on a modern Intel i7 processor [23]. We first find the
minimum heap size that enables an application to finish without
an out-of-memory (OOM) error, which results from the insuffi-
cient heap size. Then, we overprovision the heap by 25%, 50%, and
100% to observe the GC overhead across varying degree of memory
over-provisioning. Even with a substantial overprovisioning (e.g.,
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Figure 4: Runtime breakdown of GC

allocating 2× memory than what is actually required), GC slows
down the application by 15%. And this overhead easily explodes
as the memory size approaches towards the minimum, actually
required heap size. In fact, the time spent on GC can exceed 365%
of the actual application runtime (i.e., mutator runtime). Further-
more, the trend of rapidly increasing dataset size and the compute
parallelism is likely to increase the minimum required memory size
faster than the increase of physical memory size; this indicates that
the GC is likely to take an even larger portion of the runtime in the
coming future.

3.2 GC Execution Time Breakdown
This section presents runtime breakdowns for MinorGC and Ma-
jorGC algorithms, which enable us to identify few key operations
that accounts for the large portion of the total GC time. For the
experiments here, we use an 8-core Intel i7-4790 Processor [23] 3.60
GHz and profile the multithreaded portion of parallel, throughput-
oriented GC collector (i.e., ParallelScavenge) on OpenJDK 7HotSpot
JVM [24].
Minor Garbage Collection (MinorGC). Figure 3(a) shows a sim-
plified operation flow of MinorGC. As the MinorGC starts, the
collector pushes the objects in the root set (e.g., local stack vari-
ables, global variables, etc.) into the object stack, where objects to be
traversed reside. After this step, the collector pops an object from
the stack (Pop object) and checks if this object is already processed.
If not, the collector marks it as live and copies to the other sur-
vivor space or promotes it to the Old generation space if it is aged
enough (Copy). Finally, the collector checks if this object references
other objects (Scan) and pushes those referenced objects to the
stack (Push). This process is repeated until the stack is completely
drained.

One complication here is that there may be live objects residing
in the Young generation, which are only referenced by an object(s)
in Old generation. Such objects are not connected to the default
root set for the MinorGC in the object graph and thus these objects
need to be tracked with a separate metadata (called card table in
HotSpot JVM). In addition to the root set mentioned in the above
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paragraph, the card table is scanned (Search) at the beginning of
MinorGC and objects referenced by other objects in Old Generation
are pushed to the stack (Push) as well.
MinorGC Runtime Breakdown. Figure 4(a) shows how much
time is spent on each operation inMinorGC. Both Spark andGraphC
hi applications spend most of GC execution time on a small number
of operations such as Search, Scan&Push, and Copy. These opera-
tions account for 71.42% (up to 81.48%) and 78.23% (up to 93.10%) of
total MinorGC time on Spark and GraphChi, respectively. Specifi-
cally, for Spark, Copy and Search accounts for the most of MinorGC
time. Similarly, the GC on GraphChi spends most time on Copy
and Scan&Push. The fact that Copy takes most time on MinorGC
is natural since big data analytics applications often manipulate
data in large-chunk partitions (i.e., RDDs in Spark and shards in
GraphChi). Since each object in such applications is large, relatively
less time is spent on traversal itself and much larger time is spent
on Copy.
Major Garbage Collection (MajorGC). Figure 3(b) shows a sim-
plified MajorGC operation flow. MajorGC in HotSpot JVM mainly
consists of two distinct phases: marking, and compaction2. As in
MinorGC, the MajorGC starts with the root set objects in the object
stack. In the marking phase, the collector pops an object from the
object stack (Pop object) and checks if it is already processed. If
not, the collector marks it as live, and scans and pushes all refer-
ences (Scan&Push) like in MinorGC, except that no copy operations
happen here.

In the compacting phase, the collector copies the live objects
scattered across heaps to sequential, contiguous memory space. For
each live object, the collector needs to calculate the destination
location it should be moved. This is basically done by summing up
the sizes of live objects that will be copied to the left of the current
object (e.g., objects that are currently located at the left of the
current object) when we view the heap space as a single large linear
space. For this computation, two bitmap data structures, called
begin and end bitmaps (Bitmap Count), are utilized in HotSpot
JVM. In these bitmap structures, a single bit represent the 64-bit
heap space (e.g., each bitmap is 256MB in size to cover the entire
16GB heap space). A set bit on the begin bitmap indicates that the
corresponding heap space for the bit is the starting address of a
live object. Similarly, a set bit on the end bitmap indicates that the
corresponding heap space for the bit is the end address of the live
object. By counting the distance between those two bits, the size of
that live object can be obtained as well. Utilizing this structure, the
collector identifies the destination address for an object and then
the object is copied to the address (Copy). This process is repeated
until all live objects (that needs to be moved) are copied. After
the compaction, the heap is densely packed on the left side, while
leaving a large, empty block on the right side.
MajorGC Runtime Breakdown. Figure 4(b) shows how much
time each application spends on MajorGC operations. We also
observe that both Spark and GraphChi applications spend most
GC execution time on a few key operations just like in MinorGC.
For both workloads, Copy takes a significant portion of the total
MajorGC time. These operations account for 74.13% (up to 82.93%)
2 Technically, there is a summary phase between the marking and the compaction
phase but this phase takes very little time (less than 0.03% of the MajorGC time) and
thus not a target for our accelerator.

and 79.06% (up to 87.21%) of the total MajorGC time for Spark and
GraphChi, respectively.

Spark and GraphChi demonstrate different application-level be-
haviors in that Scan&Push takes a large portion in GraphChi. Spark
tends to allocate large objects to memory with few references, while
GraphChi allocates many long-lived objects with many references.
Thus, Spark spends a lot more time on copying the objects, while
GraphChi spends more time on other primitives such as Scan and
Bitmap Count. ALS in GraphChi is an exception as the algorithm
is different from the other two in that it takes a very large matrix
data as a single object, which results in a huge copy.

3.3 Key GC Primitives for Offloading
The runtime breakdown in Figure 4(a) and 4(b) suggests that the
total GC time is dominated by a handful of key primitives. This
section takes a closer look at these primitives from a near-memory
processing perspective.

Figure 4(a) shows three small primitives (i.e., Search, Copy, Scan&
Push) dominate the MinorGC time in HotSpot JVM. Similarly, an
overlapping set of three primitives (i.e., Scan&Push, Bitmap Count,
Copy) accounts for over 75% of the MajorGC time. Most of these
primitives perform memory operations without much computation.
Unfortunately, a general-purpose processor is not well-suited for
this type of workloads for its limited MLP due to the limited instruc-
tion window and load/store queue size. For example, Scan&Push
and Bitmap Count primitives traverse the object graph sequen-
tially with limited parallelism. Thus, GC algorithms often utilize
multithreading to improve throughput.

Even in a case where a general-purpose processor can achieve
high MLP, its performance is often limited by the off-chip mem-
ory bandwidth. Even worse, the key primitives of GC often do not
have temporal or spatial locality. For example, a Copy primitive
often touches a large memory region without any temporal reuse.
A Scan&Push primitive — which traverses the list of referenced
objects from a given object and pushes them to the stack — involves
indirect memory accesses, which lead to poor locality (i.e., most of
the fetched cache lines remain unused). With such data accesses
with low data locality, a cache hierarchy of a general purpose pro-
cessor cannot effectively alleviate memory latency and bandwidth
bottleneck.

This motivates us to offload those key primitives to the near-
memory logic layer of a 3D stacked DRAM. The stacked memory
uncovers intriguing opportunities for GC offloading with abundant
memory bandwidth that can be fully utilized by specialized pro-
cessing units to maximize MLP and/or minimize operation latency.
However, not all operations can benefit from offloading. For exam-
ple, we found that offloading other operations in GC like traverse
linked list gives relatively small benefits because of limited paral-
lelism and latency-bound characteristics of the linked list traversal.
Also, other operations like allocate and check mark in MajorGC
are essentially single atomic instructions whose potential benefits
from offloading are outweighed by the overheads due to their small
offloading granularities.

Excluding those operations, we propose to offload three key
primitives for each of MinorGC (Copy, Search, and Scan&Push) and
MajorGC (Copy, Bitmap Count and Scan&Push). The next section
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provides descriptions of these primitives and howwe optimize them
for specialized processing units implemented on a near-memory
processing logic layer.

4 CHARON ARCHITECTURE
4.1 Overview
Figure 5 is an overview of Charon architecture. We assume Hy-
brid Memory Cube (HMC) [9] as the baseline platform for its high
internal bandwidth and energy efficiency, although non-HMC plat-
forms can be flexibly supported by placing Charon elsewhere (e.g.,
memory controller, buffer-on-board [10]). In our setup, the host
processor is directly connected to a single HMC cube, and other
HMC cubes are connected to each other with a certain topology
so that cubes can communicate each other without going through
the host. While we use four HMC cubes connected in star topol-
ogy, multiple HMC cubes are connected around the central cube
as shown in Figure 5(a) throughout the paper, note that our ar-
chitecture is not necessarily tied to a specific topology. For each
HMC cube in the system, there is a logic layer beneath the stack
of DRAMs. We implement Charon in the logic layer of each cube
as shown in Figure 5(b). We base our design on ParallelScavenge
in HotSpot JVM, but the primitives can be employed to accelerate
other GC algorithms.
Host-Charon Interface. Charon provides two intrinsics for the
host to interface. The first one is initialize(), which is called
once at program launch. It sets constants and addresses of globally
accessed data structures, such as start addresses of the heap and
bitmap. Those configuration values are passed to memory mapped
registers for each processing unit. The second one generates an
offloading request and takes the following form:

val offload(val type, addr src, addr dst, val arg)

Once invoked, the HMC controller generates a packet, which is
forwarded to the destination cube based on the type and address of
the request. The offload request packet is 48B in size and consists of
i) standard HMC header/tail (16B) including a destination cube id,
ii) type of offloaded primitive (4 bits), and iii) two addresses (16B),
and iv) extra operands (up to 124 bits). Once the offload request
packet reaches the destination cube through the existing inter-HMC
routing logic, it is first buffered in the command queue and then
forwarded to the appropriate per-primitive command queue as in
Figure 5(b). Unless all processing units are busy, the offloading
request packet is moved to the available processing unit, and the
unit will start execution. During the execution of an offloaded
primitive in Charon, the host thread remains blocked until the
offloaded primitive returns a packet back. This return packet is 32B
in size when the response contains a return value; if not, it is 16B.
Memory Accesses from Processing Units. Processing units lo-
cated at the logic layer access both their local and remote stacks.
When a processing unit needs to access memory, it passes the ad-
dress of the memory location to the memory access interface (MAI)
(of the cube where the processing unit resides) along with its unit
id, and an optional request metadata, which a processing unit wants
to buffer in the MAI until the response returns. MAI finds an empty
space in its request buffer and stores the unit id and the request
metadata. MAI then issues an access request — whose request tag is
the index of the request buffer — to memory, which will be routed
to the appropriate destination cube depending on the request ad-
dress. Once the request is finished, the response packet is handled
by MAI, which retrieves the requested unit id and metadata, and
forwards the response packet along with the request metadata to
the requester. The role of MAI is similar to what MSHR (Miss Status
Handling Register) does in host cores. Note that all the memory
accesses from MAI go through virtual-to-physical address trans-
lation via an accelerator-side TLB (detailed in Section 4.6). Also,
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1 void copy(ByteAddr *src, ByteAddr *dst, int size)

2 for(i=0; i<size; i++)

3 *(dst+i) = *(src+i);

4 bool search(ByteAddr *start, ByteAddr *end)

5 for(i=start; i<end; i+= block_size)

6 if(*i != -1)

7 return true;

8 return false;

Figure 7: Pseudocode of Copy and Search primitives

processing units send clflush to the host cache hierarchy (for both
reads and writes) to avoid leaving a stale copy of the data in the
cache or retrieving a stale copy of the data from memory. However,
not all memory accesses trigger a host cache probe. For example,
no clflush is necessary while executing Bitmap Count because i)
all memory accesses are reads from the bitmap and ii) it is never
updated by the host-side GC code.

4.2 Copy/Search Unit
Primitive. Figure 7 shows a pseudocode for both Copy and Search
primitives sharing the same processing unit. A Copy primitive
is used to move objects from one space of the heap to another.
Specifically, in MinorGC, a Copy primitive moves objects from Eden
and one Survivor space (From) to the other Survivor space (To) or
Old generation. In MajorGC, a Copy primitive is used to compact
regions. In addition to a Copy primitive, the unit can also perform
a Search operation, which is used during MinorGC to check the
existence of Old-to-Young objects (described in Section 3.2) within
the specified range (Line 5). This unit receives two addresses (source
and destination) and an integer (size) for Copy and two addresses
(start and end of the range) for Search. When the host processor
offloads either a Copy or Search primitive, it is scheduled to a cube
that houses the source (Copy) or the start address (Search). This is
to exploit an abundant internal bandwidth of HMC.
Implementation and Optimization. Figure 6(a) shows a block
diagram of the Copy/Search unit. To achieve the best performance
it is crucial to maximize MLP (i.e., the number of in-flight memory
requests). Since the Copy primitive (Line 2) and Search are embar-
rassingly parallel, a whole memory copy/search operation can be
executed in parallel.

Exploiting this abundant parallelism, the unit starts to send read
requests at a 256B granularity (maximum granularity supported by
HMC) every cycle as soon as it receives an offloading command
packet from the host. This continues as long as i) the MAI can
accept the requests and ii) end condition is not triggered. When a
load response returns, it either issues a store request for Copy or
performs the comparison for Search. Note that increasing MLP does
not always result in an increase in throughput due to the limited
memory bandwidth on a conventional memory system. In contrast,
Charon exploits the huge internal bandwidth of the stacked DRAM
to achieve greater speedups.

4.3 Bitmap Count Unit
Primitive. This primitive is heavily used in the compacting phase
of MajorGC. During compaction, the collector relocates live objects
to a new location. Bitmap Count is a primitive used to find the new

1 int live_words_in_range(ByteAddr *range_start, ByteAddr *range_end)

2 BitAddr *begMap = range_start;

3 BitAddr *endMap = range_start + OFFSET;

4 int num_bits = (range_end - range_start) * 8;

5 int begIdx = 0, endIdx = 0, count = 0;

6 while (begIdx < num_bits)

7 if(begMap[begIdx] == 1)

8 endIdx = begIdx;

9 endIdx++;

10 while (endIdx < num_bits)

11 if(endMap[endIdx] == 1)

12 count += endIdx - begIdx + 1;

13 begIdx = endIdx;

14 break;

15 endIdx++;

16 if(endIdx == num_bits)

17 begIdx = num_bits;

18 begIdx++;

19 return count;

Figure 8: Pseudocode of Bitmap Count primitive
0 1 0 0 1 0 0 0 0 1 0 0

0 0 1 0 0 0 0 1 0 0 0 1

begMap

endMap

2 bits

0 1 0 0 1 0 0 0 0 1 0 0begMap

(a) Base example for Bitmap Count

count

(b) Example run of the proposed algorithm

CountSetBits(begMap – endMap) + CountSetBits(begMap)=9

4 bits 3 bits

0 0 1 0 0 0 0 1 0 0 0 1⎯ endMap
2 bits

0 0 1 0 0 1 1 1 0 0 1 1

4 bits 3 bits

begMap
⎯ endMap

Figure 9: Bitmap Count primitive example

location by summing up the size of live objects within a certain
memory range (live_words_in_range in HotSpot JVM (Figure 8)).
This primitive reads two bitmaps: begMap and endMap (Line 2 and
3). A set bit in the begMap and endMap represents the start and end
location of an object, respectively. As shown in Figure 9(a), the
number of bits between a pair of set bits in begMap and endMap

represent the size of a live object (in 8-byte words). What this
primitive computes is the sum of those words occupied by the live
objects within the specified range.

The unit receives two addresses marking the start and end of the
range. These addresses are used for begMap, and the corresponding
addresses in endMap can be derived by adding a constant OFFSET to
it (Line 3). This constant is configured at program launch as static.
This primitive is scheduled to the cube on which the bitmap address
falls to exploit an abundant internal bandwidth of HMC like the
Copy primitive.
Implementation and Optimization. The original software ver-
sion simply iterates over begMap and endMap at a bit granularity
(shown in Figure 8), which is very slow.

Charon optimizes this primitive, and Figure 6(b) shows our im-
plementation. We first modified the algorithm (explained in the
next paragraph) to be much more efficient. Besides, the processing
unit identifies the exact amount of data that it needs to read at the
beginning and issues memory requests as soon as the unit starts.
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Figure 10: Example of object traversal
The processing unit further improves performance by employing
a bitmap cache (detailed in Section 4.5) for the accesses to a small
range of the bitmap frequently with ample temporal locality. Ac-
cording to our evaluation, the bitmap cache has a hit rate of about
90%. By doing so, the unit not only hides the long memory latency
but also significantly reduces the latency of the primitive itself.
Optimized Algorithm. The processing unit utilizes an optimized
algorithm based on the following expression.

CountSetBits(begMap-endMap) + CountSetBits(begMap)

It first subtracts endMap from begMap, where both are interpreted as
binary numbers. Then, we count the number of set bits in the result-
ing binary number, which is equal to CountSetBits(begMap-endMap).
We also count the number of set bits in the begMap and add it to the
previous result to obtain the final outcome. Figure 9(b) illustrates
this with an example. Here, we assume a simple case, where both
begMap and endMap have 3 set bits. Intuitively, subtracting endMap

from begMap yields all 1’s between paired set bits in begMap and
endMap, except for the position of the 1 in begMap. In this example,
counting the total set bits of the outcome gives us a bit count that
is 3 less than the outcome of the original algorithm in Figure 8
as the set bits in begMap are not accounted for. To compensate
for this, we add one for every pair of set bits. This is equal to the
CountSetbits(begMap). Note that our implementation does handle
corner cases (i.e., where the number of 1’s differ between begMap

and endMap), but the descriptions of how to handle these cases are
omitted due to limited space.

4.4 Scan&Push Unit
Primitive. This primitive performs object graph traversal, which
is one of the most common operations in GC. As shown in Fig-
ure 10, this primitive scans an object’s fields and pushes non-static
references (i.e., reachable objects) to the object stack. By keeping
track of object graph recursively, the collector identifies all the live
objects in the heap. This primitive is utilized in both MinorGC and
MajorGC.

In MinorGC, this unit covers push_contents in HotSpot JVM as
shown in Figure 11. When MinorGC starts, the collector ❶ pops
an object from the object stack (minor_stack). Then the collector
marks the object as live and copies it to one of the two Survivor
spaces (i.e., To). Then this unit ❷ iterates inside the object and ❸

scans the references one by one. If the loaded object is not traversed
(marked) yet (i.e., is_unmarked is True), the unit ❹ pushes the
object to the minor_stack to process it later (Line 11). Otherwise,
the unit only updates the object metadata (i.e., card table for Old-
to-Young object) and skips the push (Line 13). In this way, the
collector recursively processes the minor_stack until it is empty,

1 // each type has a distinct iterate strategy

2 void iterate_object(ObjectPtr[] references)

3 for(objptr: references)

4 if(MinorGC)

5 push_contents(objptr);

6 else // MajorGC

7 follow_contents(objptr);

8 void push_contents(Object *objptr)

9 Object obj = *objptr;

10 if(is_unmarked(obj))

11 minor_stack.push(obj);

12 else

13 update_metadata(obj);

14 void follow_contents(Object *objptr)

15 Object obj = *objptr;

16 if(is_unmarked(obj))

17 mark_obj(obj); // atomic Read-modify-write

18 major_stack.push(obj);

Figure 11: Pseudocode of Scan&Push primitive

and eventually, all live objects will be marked as live and copied
over to the Survivor space.

In MajorGC, this unit covers follow_contents in HotSpot JVM
used in a marking phase as shown in Figure 11 again. The collec-
tor ❶ pops an object from the object stack (major_stack). Then the
unit ❷ traverses object’s fields and ❸ scans all reachable objects in
it. If they are not marked yet (i.e., is_unmarked is True), the unit
sets the corresponding bit in the bitmap (i.e., mark_obj) (Line 17)
and ❹ puts the newly marked object to major_stack (Line 18). In
this way, the collector recursively processes major_stack until it
is totally drained, and eventually, all live objects will be marked.

Since there are 15 different class metadata types in HotSpot JVM
(e.g., instanceKlass, objArrayKlass, etc.) which has distinct class
metadata layout, scanning inside the objects requires different it-
eration strategies for each type. For the simplicity of the design,
our design focus on handling a few dominant types (i.e., data class
types). The host processor only needs to provide a type of the corre-
sponding object and start/end addresses of the object’s metadata
region. Then the unit chooses the right iteration strategy based on
the type.

Charon always schedules this primitive to the central cube (i.e.,
HMC 0 of Figure 5). It is because this unit has random data access
patterns (e.g., reading the contents of objects referenced by the
input object) and thus processing it at the central location often
minimizes the overall delay and the bandwidth usage.
Implementation and Optimization. As shown in Figure 11, an
object iterator generates a stream of sequential load requests (Line
3) from a set of references of inside the object layout in question.
In the original control flow, the unit waits until the memory load
request for a referenced object arrives. Then, it performs other
memory operations (Line 11 or 13, Line 17 and 18) on arrival of
the request. This type of indirect memory access sequences of-
ten result in very poor performance on a conventional CPU with
the limited instruction window size. Specifically, the dependent
instructions to the initial load easily clog the instruction window
if it misses at a cache, which often leads to a core stall during
the cache miss. In contrast, Charon amortizes the latency of the
initial loads by exploiting MLP. The processing unit knows how
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many memory load requests there will be to fetch referenced ob-
jects (Line 3) based on start and end addresses. Thus, once started,
it generates a batch of memory load requests— every one cycle.
When the first response comes back, it performs appropriate actions
based on the response, performing either minor_stack.push(obj)
(Line 11) or update_metadata(obj) (Line 13) for MinorGC and
is_unmarked(obj) (Line 16) for MajorGC. Finally, in MajorGC,
if a response from is_unmarked(obj) comes back, it performs
mark_obj(obj) and major_stack.push(obj) (Line 17 and 18).

4.5 Bitmap Cache
Reading a specified range of the bitmap frommemory is an essential
part of Bitmap Count. There are benefits of caching the entire bitmap
for two reasons. First, Bitmap Count is often called in a loop of
multiple bitmap ranges or objects scanning iterations, performed
for all objects in the Old generation. In this case bitmap accesses in
Bitmap Count frequently happen during MajorGC to demonstrate
good temporal locality. Second, a specified range of Bitmap Count
typically overlaps with the previous range and is small enough to
fit in the cache.

Besides, mark_obj operations (Line 17 in Figure 11) can also
benefit from a bitmap cache. It performs an atomic read-modify-
write (RMW) on a single 8B block in the bitmap. Although the
processing unit only requires a single block from the bitmap, it
always has to fetch 16B as the minimummemory access granularity
to cause an overfetching problem without a cache.

Thus, we add a small writeback cache (8KB, 8-way, 32B block
size) dedicated to the bitmap accesses, used by both Bitmap Count
and Scan&Push units. Since Bitmap Count happens during the com-
pacting phase in MajorGC (only reads), and Scan&Push happens
during the marking phase in MajorGC, there is no chance of both ac-
cessing the bitmap cache simultaneously. Also, we flush this cache
right after completing either of the two primitives in MajorGC for
coherence.

4.6 System-level Issues and Discussion
Applicability.We base our analysis and design on the throughput
oriented GC (ParallelScavenge) in HotSpot JVM. However, many of
these primitives represent fundamental operations of GC and thus
they are also commonly utilized in other collectors. For example,
Table 1 shows the applicability of Charon primitives to popular
collectors in HotSpot JVM. As shown in the table, primitives like
Copy and Scan&Push are key operations of most GC algorithms
and thus applicable to latency-oriented Concurrent Mark Sweep
(CMS) GC or latency/throughput co-optimized Garbage-First (G1)
GC. The processing unit for Bitmap Count can also be used in G1
GC scheme with slight modifications to the G1 code, where it scans
the bitmap to identify the state of the entire heap.

While the Charon primitives are readily applicable, concurrent
GCs pose additional challenges to maintain a consistent memory
view between mutators and the collector. To this end, a short se-
quence of code (called barrier in JVM terminology) is executed
at every read or write in the mutator, which incurs a significant
runtime overhead (e.g., 15% for ZGC [70]). While orthogonal to
Charon, this issue should be also carefully addressed for high effi-
ciency [38, 42].

Copy/
Search

Scan&
Push

Bitmap
Count Remarks

ParallelScavenge ✓✓ ✓✓ ✓✓ High throughput
G1 ✓✓ ✓✓ ✓ Low latency
CMS ✓✓ ✓✓ × No compaction

✓✓: applicable as is, ✓: applicable with minor fix, ×: not applicable
Table 1: Applicability of Charon Primitives

Programmer Effort. Offloading the Charon primitives requires
minimal programmer effort, which is a major advantage over full
offloading. It takes only 37 lines of modifications from the original
HotSpot JVM code to replace the three primitives in Figure 7, 8, and
11 with the Charon intrinsic calls (plus initialization). This makes
it much easier to port, verify, and deploy Charon for various GC
algorithms.
Virtual Memory and Multi-Process Support. The processing
units in Charon require an efficient mechanism for virtual-to-physic
al address translation. For this purpose, we utilize huge pages,
NUMA support and memory locking, which are well supported by
the mainstream Intel/AMD architectures.

At application launch, JVM allocates 1GB huge pages for the
entire heap space and pins down those pages using mlock() sys-
tem call. To facilitate this, HotSpot JVM supports configurable
options like -XX:+UseLargePage and -XX:+AlwaysPretouch. The
huge pages are interleaved over different cubes using numa_alloc_o
nnode(), which was originally used for allocating memory at a
specific NUMA node. The remaining memory space (e.g., code, off-
heap) uses 4KB pages with the conventional demand paging. Note
that nearly all API functions for controlling memory allocation are
already introduced to Linux for NUMA support. Then, Charon can
leverage the virtual memory system for efficient address translation
and protection by maintaining the just enough number of duplicate
TLB entries on the DRAM side to cover those pinned-down huge
pages. Note that it is a common practice to pre-allocate a large heap
within the physical memory size (with no oversubscription) in a
managed runtime like JVM [21, 53, 68], which otherwise would
significantly increase the cost of demand paging and GC. Thus,
pinned-down pages are maintained throughout the execution of
the program with no TLB misses or page faults.

To support multiple JVM processes Charon counts on the stan-
dard protection mechanism from virtual memory. The mainstream
x86 architecture already supports distinct process identifiers (PCID
[4, 11]) in TLB, thus it is a straightforward extension. Note that
Charon currently does not allow oversubscription of physical mem-
ory as an attempt to pin down a huge page would fail beyond
the capacity of physical memory, which effectively serves as an
admission control mechanism for Charon.
Scaling Capacity of 3D Stacked DRAM. While we evaluate the
proposed architecture with a single processor system paired with
four HMCs, nothing prevents us from applying the proposed ar-
chitecture for multi-processor, multi-stacked DRAM systems when
higher memory capacity is desired. Recent studies [31, 51, 54]
demonstrate that HMC-like stacked DRAM can provide terabytes
of capacity by interconnecting multiple processors and DRAMmod-
ules, and the latency penalty and/or bandwidth contention can be
effectively alleviated with efficient topologies and data placement
for big data applications [71]. For a less scalable technology like
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HBM the memory capacity can be scaled by utilizing conventional
DDRx DIMM as backing storage. In such a system Charon can be
integrated as the CPU-side accelerator sitting near the memory
controller. Section 5.2 demonstrates the effectiveness of Charon as
a CPU-side accelerator.
Scalability of Charon. An increase in HMC count naturally al-
lows us to put more processing units so that the GC throughput
increases even further as the memory size increases. Potential bot-
tlenecks among Charon structures are a bitmap cache and TLBs.
Currently, Charon employs a 4-cube star topology and thus we
utilize a single bitmap cache at the center cube. However, it is pos-
sible to scale this structure by employing well-known proposals
such as owner cache [15], where each cube has a cache slice to
hold its local data only. Similarly, a TLB slice at each cube can
cache only those mappings associated with its local pages. Note
that a memory request can be sent to the right cube just with the
virtual address (VA) as OS maps a VA region to a specific cube with
numa_alloc_onnode(). We demonstrate the scalability of Charon
with an increasing number of primitive units in Section 5.2.
Effect on Host Cache. Our design flushes the cache at the begin-
ning of a GC so that our near-memory processing units can obtain
its data from memory, rather than a host cache. This can techni-
cally cause a degradation of the application thread’s performance
after GC; however, at least in our target workloads, the amount of
memory regions touched during the GC substantially exceeds the
cache size (e.g., for running Copy), and thus it is very unlikely for a
useful cache line (for application threads) to remain in the cache
after GC finishes. Note that such a bulk flush can fully utilize HMC
bandwidth and thus incur a relatively small overhead. For example,
flushing 24MB LLC takes only 300µs with 80GB/sec HMC band-
width while the average GC duration in our experiments exceeds
hundreds of milliseconds.

5 EVALUATION
5.1 Methodology
EvaluationModel.We extend zsim [58] to model the performance
impact of our proposal. Table 2 shows the configuration of the
host processor and the HMC main memory in zsim. We use mem-
ory channel interleaving [row:col:bank:rank:ch] for DDR4 and
[row:cube[31:30]:row:col:bank:rank:vault] for HMC to use 1GB
huge pages effectively. For the power and energy evaluation of the
host processor, we integrate McPAT [34] to the zsim. For the power,
energy, and area evaluation of Charon hardware structures, we
implement such structures using Chisel3 [7], which were function-
ally verified using realistic test inputs, and synthesize them using
Synopsys Design Compiler with TSMC 40nm standard cell library.
Lastly, we use CACTI [65] under 45nm technology to estimate the
power/area cost of some buffer/queue structures (e.g., command
queue, bitmap cache, etc.) in Charon.
Workloads.We run Spark 2.1.0 [69] and GraphChi 0.2.2 [33] (with
HotSpot JVM from OpenJDK 1.7.0 [52]) on our proposed frame-
work. We carefully pick a different set of applications from each
framework with very different object characteristics and hence very
different GC behaviors. Specifically, we run three machine-learning
workloads with Spark (i.e., naive-bayes, k-means clustering, and lo-
gistic regression), two graph algorithms and one machine learning

Host Processor

Core 8 × 2.67 GHz Westmere OoO core
36-entry IW/ 128-entry ROB / 4-way issue

TLB L1I/D 64-entry per core
Shared L2 1024-entry

L1I/D Cache 32KB, 4-way, 3-cycle / 32KB, 8-way, 4-cycle
L2 Cache 256KB, 8-way, 12-cycle
L3 Cache 8MB, 16-way, 28-cycle

DDR4 Main Memory System
Organization 32GB, 2 channels, 4 ranks per channel,

4Gb 8 banks per rank
Timing tCK=0.937ns, tRAS=35ns, tRCD=13.50ns

tCAS=13.50ns , tWR=15ns, tRP=13.50ns
Bandwidth/Energy 34GB/s (17GB/s per channel) / 35pJ/bit [35]

HMCMain Memory System
Organization 32GB, 4 cubes, 32 vaults per cube

Timing tCK = 1.6ns, tRAS = 22.4ns, tRCD = 11.2ns
tCAS = 11.2ns, tWR = 14.4ns, tRP = 11.2ns

Bandwidth/Energy 320GB/s per cube / 21pJ/bit [59]
Serial Links Total 80GB/s per link, 3ns latency

Charon Configuration
Copy/Search 8 units (2 units per cube)
Bitmap Count 8 units (2 units per cube)
Scan&Push 8 units (8 units on a single cube)

Bitmap Cache 8KB, 8-way, 32B block size
MAI / TLB 8KB, 32B block size / 32 entries per cube

Table 2: Architectural parameters for evaluation

algorithm based workload with GraphChi (i.e., connected compo-
nents, PageRank, and alternating least square). For evaluation, we
specifically focus on how Charon improves GC performance and
energy consumption. Thus, we set a region of interest (ROI) for
the GC events only that occur during the run. Our experiments
use default HotSpot JVM heap sizing policy (Young:Old = 1:2) and
set the max heap size of each application to 1.25-2× of the mini-
mum heap size with which the application can reliably run without
encountering out-of-memory (OOM) error. Table 3 summarizes
workloads with the corresponding input dataset and heap size.

5.2 Performance Results
Overall Speedups. Figure 12 compares the throughput of the GC
across four different platforms: the host processor with the con-
ventional DDR4 memory system (DDR4), the host processor with
the hybrid memory cube (HMC), the host processor paired with
Charon in the logic layer of the hybrid memory cube (Charon), and
the imaginary, ideal scenario where the host processor is paired
with an ideal offloading device which can execute the offloaded
primitives in zero cycle (Ideal). As shown in the figure, the host
processor can achieve a speedup of 1.21× simply by replacing its
DDR4-based memory system to HMC-based memory system which
offers more off-chip memory bandwidth. However, this does not
mean that the host processor is fully exploiting benefits of the HMC.
Even though the HMC memory system offers more bandwidth, the
host system has limited memory level parallelism (despite having 8
cores) and thus cannot fully utilize the available bandwidth. Even
further, although the HMC memory system offers higher off-chip
bandwidth from its high-speed serial links, the host processor alone
cannot utilize the abundant internal bandwidth (i.e., bandwidth
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Workload Input Heap

Spark
Bayesian Classifier (BS) KDD 2010 [28, 29] 10GB
k-means Clustering (KM) KDD 2010 [28, 29] 8GB
Logistic Regression (LR) URL Reputation [36] 12GB

Graphchi
Connected Components

(CC)
R-MAT Scale 22 [44] 4GB

PageRank (PR) R-MAT Scale 22 [44] 4GB
Alternating Least
Squares (ALS)

Matrix Market
Format (15000x15000)

[55]

4GB

Table 3: Workloads
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Figure 12: NormalizedGCperformance ofCharon compared
with the host CPU-only execution

between the logic layer and its DRAM stacks) an HMC can provide.
As shown in the third bar, Charon overcomes this limitation and
fully exploits these benefits to achieve 3.29× average speedup over
the host system with DDR4 DRAM or 2.70× average speedup over
the host system with HMC DRAM. Comparing Charon and the
ideal scenario performance shows that Charon indeed handles the
offloaded primitives in a very efficient way and takes very little
time to process them. Note that Charon’s speedup varies across
different workloads as well as the type of GCs. This is because
the portion of offloaded primitives can be substantially different
for different workloads as demonstrated in Section 3. For example,
Charon benefits best on ALS since the Copy primitive accounts for
the large portion of the runtime which Charon benefits the most.
Bandwidth Analysis. Figure 13 (bar graph) shows the bandwidth
usage of GC across different platforms. Without Charon, the only
way for the host system to access memory is to utilize the off-
chip links whether they are paired with the conventional DDR4
memory system or the HMC memory system. On the other hand,
with Charon, each processing unit in the logic layer can utilize high-
bandwidth TSV (Through-Silicon via) to access data in memory
with higher internal bandwidth. In addition, Charon processing
units also access remote cube through serial links connecting cubes.
While this traffic does not exploit the internal high-bandwidth
provided by TSV links, such accesses do not have to spend off-chip
bandwidth between the host and the hybrid memory cubes and
thus can be beneficial. Figure 13 shows that Charon effectively
utilizes much higher bandwidth than the available off-chip memory
bandwidth (i.e., 80GB/s on HMC) and other baselines. The figure
also shows that over 70% of memory requests are serviced locally for
most cases, to reserve sizable headroom for external link bandwidth.
LR and CC are exceptions to have about a half of the memory
requests are directed to a remote note; however, both are not as
bandwidth-intensive as the other applications, hence alleviating
the problem.
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Figure 13: Utilized bandwidth during GC and ratio of local
accesses

Per-Primitives Analysis. Figure 14 shows how much average
speedup over the CPUwith DDR4memory system Charon achieved
on each key primitive. As shown here, Charon achieves up to 26.15×
maximum speedup (10.17× on average) on Copy (for both MinorGC
and MajorGC) and up to 4.09× (2.90× on average) on Search primi-
tive by exploiting the abundant internal bandwidth of HMC with
maximized memory-level parallelism and large-granularity mem-
ory accesses. In addition to Copy and Search primitives, Scan&Push
primitive achieves a maximum speedup of 1.86× (1.20× in average)
with its additional memory-level parallelism as well. On the other
hand, speedups of Bitmap Count primitive come from a combina-
tion of our novel algorithm and specialized hardware design for
the particular primitive. With these changes, Charon improves the
throughput of Bitmap Count primitive by up to 6.11× (5.63× on
average) over the DDR4 memory systems. Since Charon offloads
the minimal, relatively simple primitives to avoid requiring invasive
changes to the software and the hardware, Charon does not handle
the whole GC process. However, with only a handful of offloading
primitives, Charon achieves a substantial speedup.

Scan&Push primitive shows relatively low speedup (or even de-
grades) in some applications like BS, KM, LR, and ALS. Those ap-
plications are based on machine learning algorithms that allocate a
small number of large size objects which i) have very few references
within them (e.g., large matrix, key-value pairs in a large table as
objects) and ii) have short lifetime since such objects are usually
discarded once they are used. In this case, where each object has
very few references, the amount of parallelism is very low and thus
Charon achieves low throughput.

However, Charon obtains more benefit from other primitives
(e.g., Copy) for those applications because those applications ma-
nipulate large objects that generate a large number of memory
accesses, which can benefit from an excessive MLP of Charon. Mod-
est speedups of CC and PR are also explainable in a similar manner.
CC and PR are based on graph algorithms and traverse a large
number of nodes (i.e., objects) through edges (i.e., references). Thus,
those objects have a long life cycle with many references, which
can utilize and benefit from sufficient MLP in Scan&Push primitives.
GC Scalability.Multiple HMCs can be chained to scale capacity,
allowing us to put more Charon primitives to their logic layers.
To evaluate GC scalability, we scale the number of corresponding
Charon primitive units as we increase the number of GC threads.
We compare the scalability of both the unified design (i.e., a single
bitmap cache and TLB on the center cube shared by all cubes)
and distributed design (i.e., slices of the bitmap cache and TLB
distributed across all cubes) as we discuss in Section 4.6.
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Figure 15: GC throughput scalability

Figure 15 shows performance scalability with an increasing num-
ber of GC threads. First, Charon scales significantly better than
DDR4 based system by utilizing plenty of internal bandwidth, while
the DDR4 system hardly scales due to limited memory bandwidth
(max 34GB/s). Second, Charon with distributed structures generally
scales better than the unified design as contentions at the center
cube are alleviated. MajorGC in GraphChi-CC is an exception as
memory pressure is relatively low (thus, contentions are less of
an issue), while penalizing the distributed design for remote TLB
accesses. Finally, performance scalability can be further improved
by adopting bandwidth-scalable HMC topology [71] and locality-
improving page interleaving policy to reduce remote traffic [17].
Charon as CPU-side Accelerator. Charon primitives are flexi-
ble enough and thus can also be utilized on a system other than
the HMC-based ones. For example, Charon can be used in the
HBM-like system as a CPU-side accelerator. Figure 16 compares
the throughput of three different configurations: a CPU with the
DDR4 memory system, Charon located on the CPU side paired with
the HMC memory system, and Charon located on the logic die of
the HMC memory system. Charon on the CPU side achieves better
performance than baseline processor from its aggressive use of MLP
and optimized bitmap operations. However, Charon on the CPU-
side also misses out the abundant internal DRAM bandwidth at the
HMC logic layer and thus its throughput is about 37% less than
the Charon as a near-memory accelerator. While this bandwidth
bottleneck might be partly alleviated using high-bandwidth DRAM
technologies like HBM, placing Charon on the DRAM side still has
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Figure 16: Memory-side implementation speedup over CPU-
side on-chip implementation

some advantages for energy efficiency, scalability (of the logic area),
and less bandwidth contentions at the memory controller.

5.3 Energy/Area and Thermal Analysis
Figure 17 shows the normalized energy consumption of Charon
during GCs compared with the host-only execution case. While
Charon shows a substantial improvement of throughput, it only
increases moderate power consumption leading to a substantial
reduction in energy consumption. As shown in Figure 17, Charon
achieves 60.7% of energy reduction over the host system with DDR4
main memory on average and 51.6% of energy reduction over the
host system with the HMC baseline across all workloads. Note that
energy consumption of general components (i.e., queues, metadata
arrays, TLB, and bitmap cache) is negligible compared to the total
energy consumption of Charon (maximum 3.18% for ALS).

Table 4 shows the area usage of each component and the total
area of Charon. The total area of Charon is only about 1.95mm2

and thus the average area per cube is around 0.49mm2. Assuming
that the area of Hybrid Memory Cube logic layer as 100mm2 [22],
Charon takes only 0.49% of the total logic layer area, indicating that
Charon on the HMC logic layer incurs little area overhead.

Regarding thermal issues, the primitive units of Charon do very
simple computation with lots of memory accesses, thus its impact
on thermal constraint is negligible. Our evaluation indicates the
average power consumption is 2.98W for all workloads (maximum
4.51W for ALS). This is much lower than previous proposals to
place computation logic in the HMC stacks [1, 16, 56]. Therefore,
the maximum power density of the logic die is 45.1mW/mm2, which
is much lower than the maximum allowable power density of a
low-end passive heat sink [12].

6 RELATEDWORK
GC Optimizations Using Accelerators. The idea of accelerat-
ing GC using specialized hardware has been proposed for decades
to overcome GC overhead in conventional processors. [27, 38, 61,
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Figure 17: Energy consumption of Charon on GC compared
with the host CPU-only execution

Component Per-unit
Area (mm2)

# of
Units

Total
Component
Area (mm2)

General Components
Command Queue 0.0049 4 0.0196
Request Queue(R) 0.0015 4 0.0060
Request Queue(W) 0.0162 4 0.0648
Metadata Array 0.0805 4 0.3220
Bitmap Cache 0.1562 1 0.1562

TLB 0.0706 4 0.2824
Processing Units

Copy/Search 0.0223 8 0.1784
Bitmap Count 0.0427 8 0.3416
Scan&Push 0.0720 8 0.5760

Total Area: 1.9470mm2 / Average Area per Cube: 0.4868mm2

Table 4: Total area usage of Charon for whole cubes

66, 67]. Active Memory Processor (AMP) [61] integrates a bitmap-
based processor with a standard 2D DRAM array to improve the
performance and predictability of dynamic memory management
functions including allocation, reference counting, and GC. Joao
et al. [27] proposed hardware GC accelerator based on a refer-
ence counting algorithm. Their hardware collector coexists with
conventional GC algorithms which complement the limitations
of reference counting GC such as cyclic dependencies. However,
their accelerator design is tightly coupled with the host processor,
which requires invasive changes to the host processor. As the most
similar work to Charon, Maas et al. [38] propose a hardware GC
technique that fully offloads the mark-sweep GC of JikesRVM to
on-chip accelerator located near memory. While this work also
utilizes abundant MLP using specialized hardware for GC, their GC
algorithm is hard-wired at design time to have limited applicability.
In particular, their design cannot fully offload the generational GC,
which is widely used in production (including HotSpot), as it re-
quires a copying collector among semispaces (generations). Their
design and Charon demonstrate tradeoffs between specialization
and flexibility. Our primitive-based approach likely has a bit of
efficiency loss for Jikes RVM which their design is targeting, but
has much broader applicability. Moreover, Charon is the first pro-
posal to leverage 3D stacked memory for higher internal memory
bandwidth and addresses design issues for DRAM-side offloading.
Near-Memory Processing on 3D stacked DRAM. With an in-
troduction of 3D stackedDRAM technologies, many prior researches
have proposed various near-memory processing architectures or

techniques [3, 19, 32, 47, 48]. Several studies focus on hardware
architecture to accelerate a wide variety of applications such as
graph processing [1, 2, 46], vector operations [22, 26], deep learn-
ing [16, 30], MapReduce computation [20, 57]. They aim to leverage
ample internal DRAM bandwidth, massive parallelism, and reduce
data movement overheads in the conventional CPU memory hier-
archy. Our work also shares these goals in that utilizing high levels
of memory parallelism for key algorithmic primitives with energy
efficient hardware, but is the first to present a concrete proposal
for offloading GC to the stacked DRAM.
GCOptimizations for Emerging Applications. There has been
a lot of interest in optimizing GC for emerging applications like big
data analytics which has a large memory footprint in a distributed
environment. Facade [50] and Yak [49] re-structure the heap space
and optimize the GC algorithm for the epochal behavior of modern
big data analytics frameworks by utilizing separate spaces for con-
trol and data objects. NumaGiC [17] presents a distributed design
for improving object locality on a cache coherent NUMA machine
by ensuring a GC thread to only processes objects located on its
own memory space. Taurus [37] advocates a holistic approach to
coordinate GCs (and JITs) among all runtimes to improve perfor-
mance. Choi et al. [8] propose a biased reference counting algorithm
(BRC), which reduces the execution time of non-deferred reference
counting (RC) by allowing RC operations partially non-atomically,
thus achieving low-latency RC. Our proposal complements these
software-based optimizations by providing fine-grained offloading
primitives which can potentially work together with some of these
proposals.

7 CONCLUSION
This paper presents Charon, a novel near-memory accelerator for
offloading GC. Although adoption of hardware-based GC has been
scarce due to various limitations, we believe its time has finally
come with the arrival of 3D stacked memory. To support various
GC algorithms, we first perform performance analysis of the full-
production HotSpot JVM in detail. Through this analysis, we iden-
tify three key algorithmic primitives, memory Copy/Search, Bitmap
Count, and Scan&Push, which are commonly used in tracing GC
algorithms. Then we design a specialized processing unit placed
in the logic layer of 3D stacked memory, which executes these
primitives efficiently with a low area/energy cost. Our evaluation
using the full-production HotSpot JVM with two big data analytics
frameworks, Apache Spark and GraphChi, demonstrates substantial
performance and energy efficiency gains over the general-purpose
CPU, without requiring intrusive software changes.
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