
Custom-Fit Processors:
Letting Applications Define Architectures

Joseph A. Fisher, Paolo Faraboschi and Giuseppe Desoli

Hewlett-Packard Laboratories Cambridge
1 Main Street, Cambridge, MA 02142

{jfisher,frb,desoli} @hpl.hp.com

Abstract

In this paper we report on a system which automati-
cally designs realistic VLIW architectures highly optimized
for one given application (the input for this system), while
running all other code correctly. The system uses a product-
quality compiler that generates very aggressive VLJW code.
We retarget the compiler until we have found a VLJW archi-
tecture idealized for the application on the basis of perfor-
mance, a cost function and a hardware budget.

We show that we can automatically select architectures
that achieve large speedups on color and image process-
ing codes. Specialization is shown to be very valuable:
The differences between architectural choices, even among
reasonable-seeming architectures having similar costs, can
be very great, often a factor of 5 (andsometimes much more).
We show also that specialization is also very dangerous. A
reasonable choice of architecture to fit one algorithm can
be a very poor choice for anothel; even in the same domain.
There is sometimes an architecture, near in cost and per-
formance to the best, that does much better on a second
algorithm.

1. Introduction: Custom-Fit Processors

Many people had the same reaction upon first becoming
aware of VLSI microprocessors: can we somehow design
these chips by merely writing a program that describes what
they are to do? This is the “silicon compiling“ problem in
its full glory. Despite amazing progress in areas such as
compiling control circuits using a “sea of gates” approach,
and despite tremendous progress in the automation of many
of the steps of design and production, we are very far from
taking a functional description of a microprocessor and au-
tomatically producing a silicon layout.

Although silicon compiling is well beyond us, in this
paper we consider an even more ambitious problem: rather

than generating a microprocessor automatically from a high-
level description, we would like to generate it from the appli-
cations it will run. In particular, given an embedded proces-
sor running on an “appliance” product, we call the general-
purpose processor which is designed to scream on the em-
bedded application a “Custom-Fit Processor”. The process
we use to derive this processor design falls into the gen-
eral class of technologies referred to as Hardwarelsoftware
Codesign [18, 15, 16,201.

Generating Custom-Fit Processors automatically is a su-
perset of generating general-purpose processors, and is thus
strictly harder still. When faced with such an overwhelm-
ingly impossible task, there are two approaches generally
taken:

0 One can build a very small thing (e.g. synthesizing a
4-bit adder) and hope to learn while approaching reality
from below.

One can build a “toy”, filled with unreality, and then
try to make it successively more realistic, approaching
reality from above.

Here we suggest a third approach, and our research pro-
gram is dedicated to canying this out:

One can restrict the problem one is attacking, but then,
within that restricted kamework, do something that
is completely realistic and is an end-to-end solution.
From that base, move towards a less-restricted solution.
In a sense, this starts out being realistic, but approaches
greater generality “from the side”.

The restriction we impose is the following: We design
a VLIW [111 architecture in which virtually all characteris-
tics can be changed: memory sizes and hierarchy, register
sizes and ports, the “cluster” structure of the architecture,
the kinds of functional units and their repertoires, the laten-
cies of the functional units, and the connection and com-
munication topologies of all of these. At the same time,

Authorized licensed use limited to: ULAKBIM UASL - Bilkent University. Downloaded on March 04,2021 at 09:44:00 UTC from IEEE Xplore. Restrictions apply.

mailto:hpl.hp.com

the code transformations that are done as part of the hard-
warelsoftware codesign process are applied. This adds to
that mix the limitations of what the compiler is capable of.
Any codesign system will have this latter restriction, almost
always much more than we do. Unfortunately, this is almost
never acknowledged in research results.

Within this framework our methodology is easy to de-
scribe, and similar to what has been described elsewhere
(for example, in [14, 12, 13,2, 8, 19, 3,6,7]). For example
De Gloria and Faraboschi [8] cany out almost exactly this
framework, but using tools which are much less mature.

This framework is particularly interesting right now, be-
cause it is now practical to put enough millions of transistors
on an inexpensive die to make a very powerful and general
VLIW - witness the media processors now appearing from
several vendors [9,21,4, 101.

1.1. This Investigation

We believe the work described below is unique in the
following sense:

0 We are doing it with a productized, ambitious compiler
that exposes and schedules a lot of ILP. Previous studies
have been done in environments in which very small
percentage differences have been available; at best they
have found small factor speedups. Instead, we find very
large factor speedups, even between relatively similar
cost, reasonable-seeming architectures.

The experiments done here are a characterization of the
effectiveness of tailoring ILP hardware to given applica-
tions. We are attempting to shed light on the following
broad questions:

What is the performance of custom hardware at a given
cost, when compared to more general hardware at that
same cost?

How does the hardware you would build differ for dif-
ferent sections of code in similar application areas?
How does it differ from hardware built for several rou-
tines at the same time?

How effective are search methods aimed at finding the
appropriate architecture?

2. Experimental Methodology and Infrastruc-
ture

2.1. The C Compiler

Our main tool in this investigation is the Hewlett-Packard
Laboratories Cambridge C Compiler. It is a direct descen-
dant of the Multiflow compiler, which has been reported

upon in detail elsewhere, particularly in [171. For our pur-
poses, it has the following qualities:

0 It is a productized, real-world, highly-optimizing com-
piler.

0 It generates ILP code as aggressively as any compiler
we have ever heard of; we think more than any other
compiler ever built.

0 It generates code from ta,ble-driven architectural de-
scriptions in the following sense: if you have a de-
scription of an architecture for which you are: generat-
ing good code, you can change most of the “normal”
architectural parameters to produce a new model, and
continue to generate good code.

We thus are able to use it to explore a design space of
architectures to fit a processor to a given application.

2.2. Searching For A VLIW Architecture

Our basic experimental method involves the following
loop:

0 Using some search method, search for a new candidate
architecture

0 Measure the cost of the architecture

0 Build a version of our compiler that generates good

0 Generate the code

0 Measure the goodness of the code

0 Repeat until satisfied

code for that architecture

In the past, many researchers have implemented simi-
lar loops. They have typically concentrated upon search
techniques, or upon the selection of special-purpose func-
tional units to match the functionality needed in a loop. Our
philosophy here is different. Following the RISCN’LIW re-
ligion, we want to build simple hardware that does tlhe basic,
simple operations, but uses lots of ILP to get a speedup. So
we try to match the structures and sizes of the architecture
to the application, rather than specific opcodes.

Similarly, it is likely that search techniques to prune the
space of architectures under consideration would be very
successful. Here, instead, we searched exhaustively through
a huge space: despite being real-world tools, our tools are
fast enough and computers are now sufficiently fast enough
to make this practical. We are confident that any good search
technique could cut down significantly on our processing
time (see Table 3) without greatly affecting the results re-
ported upon here.

325

Authorized licensed use limited to: ULAKBIM UASL - Bilkent University. Downloaded on March 04,2021 at 09:44:00 UTC from IEEE Xplore. Restrictions apply.

2.3. Benchmarks
Benchmark

GF

GEF

DH

DHEF

We were interested in measuring how different an
application-specific microprocessor would be when tailored
for different tasks within a single application domain. These
seem like relevant questions: right now people build chips
to do specifically one subtask of an application, when a
general-purpose processor is not sufficient (e.g. for MPEG
video compressioddecompression); additionally, we now
have media processors, which are specialized for an appli-
cation area, but not a single subtask. This makes intuitive
sense, as the subtasks in a single application area often seem
to have similar compute structures, as is the case in media
processing.

Description
1D bilinear scaling followed by Floyd-
Steinberg halftoning.
1D bilinear scaling followed by E, a
YUV-RGB color space conversion,
followed by Floyd-Steinberg halftoning.
RGB4YUV color space conversion fol-
lowed by a 3x3 median filter.
RGB-YUV color space conversionfol-
lowed by a 3x3 median filter, followed
by E, a YW+RGB color space con-
version, followed by Floyd-Steinberg
halftoning.

Benchmark
A

C

I [I, 221.
D B I Color conversion from the RGB to the

Description
FIR symmetrical filter implemented us-
ing a 7x7 convolution kernel.
Inverse DCT transform with dequantiza-
tion of the DCT coefficients. The algo-
rithm used is the Arai, Agui and Nakjima
algorithm for scaled FDCTIIDCT, with
some improvements, as described in

F

1D bilinear scaling by integral factors I
along columns.
3x3 median filter using the standard al- ! gorithms, not using a “smart” version of

YCbCr color space (and vice versa, as
described in the JPEG standard)
Halftoning via standard Hoyd-Steinberg
error diflision (no stochastic weights up-
date). The benchmark produces triplets
containing 1 bit halftoned Dixels. I

I I I

Table 1. The individual benchmarks.

We picked color output routines, which are quite eas-
ily available in the public domain, and are quite similar to
those used in many media-processing applications. These
routines often contain a large quantity of potential ILP. All
the benchmarks except C have as input a row of a full color
RGB image. We have converted all floating point to fixed,
as is common in this kind of processing. Proper source
code transformations have been applied to all benchmarks
to expose ILP (loop transformations, if-conversion, etc.).
These same transformations speed the code up on virtually
all superscalar and VLIW architectures and implementa-
tions. Table l describes the benchmarks we used.

We wanted to know how architectures which were op-
timized for those individual routines would compare with
architectures optimized for collections of the routines. Thus

we also ran combinations of the above, jammed into single
loops, avoiding the intermediate memory storenoad other-
wise needed. Table 2 shows a description of the ‘ t imed ‘ ’
benchmarks.

For example, figure 1 shows the D (Floyd-Steinberg error
diffusion) benchmark in C , implemented in the standard
form found in image processing literature.

2.4. Running the Experiment

The experiment was set up in such a way that we were
rebuilding a compiler for each architecture and then run-
ning the compilation for all benchmarks and for different
unrolling factors. When the compiler started spilling regis-
ter contents for a given unrolling, we stopped considering
that unrolling factor and all larger ones.

The performance of clustered architectures (see Section
3.1) was not computed for all possible combinations, to
avoid an exponential explosion of runtime and data. To
account for clustering, we computed a “correction value”
as a function of the number of clusters, by running a set of
separate experiments for a few significant architecture data
points in the defined space. In our experience, this approxi-
mation is enough to account for the effects of clustering.

For this experiment, we ran 5730 compilations of the
benchmarks, on 191 architectures (plus their associated clus-
tering values). The time to re-compile a customized com-
piler was relatively short (about 50 seconds), since only the
machine model needed to be re-linked into the executable.

The time to run a single compilation benchmark varied
significantly between a couple of seconds and a few min-
utes. On average, it took on the order of 28 seconds per
benchmark, adding up to about 48 hours of running time
for the whole experiment. The platform used for the ex-
periment was a 9000/770 HP workstation, lOOMHz clock,
256MB main memory.

326

Authorized licensed use limited to: ULAKBIM UASL - Bilkent University. Downloaded on March 04,2021 at 09:44:00 UTC from IEEE Xplore. Restrictions apply.

FSDline (ubyte * linein,
ubyte * lineout,
int plane-size)

{
int i, color;
intl6 *ep, Err[3], errTemp[3];
intl6 errTempOff131, oldErrl31;
ubyte *dp, *op, out[3], bitmask;

dp = linein;
ep = errBuf + 3;
op = lineout;
Err[Ol = Err[ll = Err[2] = 0;

errTemp101 = ep[-3 + 01;
errTemp[ll = ep[-3 + 11;
errTempC21 = ep[-3 + 21;
bitmask = 0x80;

for (i = 0; i < plane-size; i++)
(
for (color = 0; color < 3; color++)
{
errTempOff[colorl = errTemp[colorl;
errTemp[colorl = ep[colorl;
oldErr[color] = Err[color];

#runs 57:30

Err[colorl =
(errTemp[colorl + ((Err[colorl*7+8)>>4)+
((int) dp(color1 << ((2*8)-13)));

out[colorl =
((Err[colorl > (128 << ((2*8)-13)))
? out[color] 1 bitmask : out[color]);
((Err[color] > (128 << ((2*8)-13)))
? Err[color] - (255 << ((2*8)-13))
: Err[colorl);

Err[colorl =

errTempOff[color] += ((Err[colorl*3+8)>>4);
errTemp [color] =

((Err[colorl * 5 + oldErr[colorl+8)>>4);
ep[-3 + color] = errTempOff[colorl;
op[colorl = out [color] ;

1
dp += 3, ep += 3;
if (bitmask == 0)

op = op + 3;
out[O] = out[ll = out[2] = 0;
bitmask = 0x80;

?
else
bitmask = bitmask >> 1;

Figure 1. The Floyd-Steinberg algorithm.

Table 3 shows the basic data concerning the computation
time of the experiment.

3. Architecture Cost and Performance

Computing the cost and performance of an architecture
from a set of high-level parameters (such as number of
ALUs, multipliers, registers, ports, etc.) is a nontrivial
task. Several implementation choices exist and the trade-
off between choices varies widely depending upon avail-
able VLSI technology, target application, area and power
requirements, design methodology and so on.

In this paper we have simplified the problem and only

architectures 1!)1
runtime per architecture 897s (15 IF
compiler time per benchmark 28s
compiler compile time per arch.
total time

50s
171449s(48 h) -

Table 3. Experiment computation tiime.

P

consider the cost of building the CPU datapath. Other fac-
tors, such as pinout requirements and cost of the memory
system, are not considered in the cost equations. Consid-
ering these factors would affect the numbers we report, but
probably would not materially affect our conclusions.

We estimate the cost of the datapath in terms of silicon
real estate relative to a baseline configuration. The figures
that we use are derived from am analysis of existing designs
in current VLSI technology. They are certainly not close to
exact figures, but we believe are representative enough to
support the conclusions of this paper.

3.1. Clusters and Architectural Parameters

Our architecture template (Figure 2) is a multi-cluster
machine, composed of (nearly) identical clusters containing
functional units and local register banks. The coimmunica-
tion between clusters happens across a set of global con-
nections, and is explicitly scheduled by the compiler. The
Multiflow Trace [5] follows exactly this structure. The rea-
son for clusters, which are not independent, but rather share
a single long instruction, is to avoid register banks with too
many ports. Thus instead of a single register bank support-
ing, say, 8 ALUs, we might split it into 4 register banks,
each supporting two ALUs. In order to use an ALU, the
operands it requires must be in the associated register bank,
or must be moved there with an explicit move in a prior
instruction. The fact that the different clusters are (nearly)
identical makes the chip easier to fabricate as well. The
cluster differ in that the single branch unit resides on cluster
#O and is not duplicated in the others.

In addition to that, we consider a multi-level memory
system composed of a Level I Memory and a Level 2 Mem-
ory. Level 1 Memory is used to model the global memory
of the system, and has a fixed throuput for all the experi-
ments. Level 2 Memory varies in terms of number of parallel
accesses and latency.

Table 4 explains the parameters we take into account.
Some of the settings we used were completely determined by
our choice of the initial parameters. These include register
file ports, communication paths and cycle speed. Table 5
shows a description of these derived parameters.

327

Authorized licensed use limited to: ULAKBIM UASL - Bilkent University. Downloaded on March 04,2021 at 09:44:00 UTC from IEEE Xplore. Restrictions apply.

Figure 2. The architecture template

Parameter Description
Clusters
IALUs

1 Ranges between 1 and 16.
I Ranges between 1 and 16. All operations have latency of 1 cycle, except multiplications (2 cycles,

ALU Repertoire

Register Sizes
Memory System

pipelined).
We eliminated floating point units by hand before we started. These routines do little floating point,
and the cost function would have eliminated it in any case, so we saved the trouble.
Among the integer units, the only choice presented in this experiment is whether or not a given ALU
is capable of integer multiply. We allowed between 1/4 and 112 the ALUs to be IMULs, however at
least 1 IMUL was always present.
This methodology allows us to give any opcode choice to the compiler. We limited this experiment for
expository reasons, and because our philosophy in general is to design an architecture from building
blocks rather than synthesizing lower-lcvcl special- purpose hardware.
We allowed between 64 and 5 12 registers total (for all clusters).
We picked many different configurations for this experiment, but found that considering all of them
muddied the insights available in this paper, but did not change the results. We thus decided to
limit the exposition to only a few choices: always a single Level 1 Memory port and between 1
and 4 accesses to Level 2 Memory. The latency of an access to Level 1 Memory is always 3 cycles
(non-pipelined), while the latency to Level 2 Memory varies from 2 to 8 cycles (non-pipelined).

Table 4. The architecture parameters.

Parameter
Register Ports

Connectivity

Cycle Speed

Description
We varied these with the requirements of the other functional units. In a full system, it is useful to
consider this an independent variable, since it greatly affects the cost of the system.
As in the number of register ports, we varied the connectivity according to the needs of the functional
units, but it could have been allowed to be a more general parameter (and in the production of a chip
you will build, will be).
We used an approximation to quantify the effect of cycle speed of our architectural choices. This
is how we believe it best to treat cycle speed in a system like this, though sometimes it may be
considered an independent parameter, as in making silicon technology choices, or in area vs. speed
tradeoffs in designing functional blocks.

Table 5. The derived parameter settings.

328

Authorized licensed use limited to: ULAKBIM UASL - Bilkent University. Downloaded on March 04,2021 at 09:44:00 UTC from IEEE Xplore. Restrictions apply.

3.2. The “Baseline” System

We used as our baseline system one with 1 ALU, which
could do IMUL, 1 reference to Level I Memory and 1 to
Level 2 Memory (8 cycle latency), and 64 registers, all in
1 cluster. Our costs and performance models, explained in
the following sections, are scaled to make this system cost
1 unit.

Note that this system is capable of a great deal of ILP,
due to its multiple issue capability, and its pipelining.

3.3. Computing Architecture Cost

The cost function for an architecture is computed as fol-
lows:

- c is the number of clusters
- a is the number of ALUs per cluster
- m is the number of ALUs per cluster able to do

- T is the number of registers per cluster
- 1 is the number of memory accesses per cluster
- p is the number of ports of the register file in a

cluster, computed as a function of the ALUs (a),
andthememoryports(I): p (a , I) = (3 . a) + (2 . I)

- x d p (T , p) is the datapath width of a cluster, com-
puted as: Xdp(p) = kl . p

- YTeg (T , p) is the register file height for a cluster,
computed as: Yres (P, p) = P . (k2 . p + %3)

- Y0l,(a) is the height of the ALUs for a cluster,
computed as: Yaru (a) = IC4 . a

- Y,, J (m) is the height of the MULs for a cluster,
computed as: Y,,r(m) = k5 . m

- IC, . . IC5 in the above equations are fitting pa-
rameters computed from observation of existing
designs.

integer MULs

The costs range from 1.0 (for the baseline) to about 100
for the most ambitious architectures (16 ALUs, 8 MULs,
512 registers, 4 memory ports, 1 cluster). For example,
Table 6 shows the cost of some of the architectures that we
have considered in our experiments.

These numbers are certainly approximate, but we believe
they are realistic enough to allow one to generalize from the
results of this study.

3.4. Cycle Speed

The complexity of an architecture impacts the cycle time,
a factor we must take into account in any realistic evalua-
tion. In this experiment, we have tried to come up with

[IALU IMUL L2MEM REGS Clusters I

128 6.5
4 2 1 128 2 3.6
8 4 1 2.56 1

512
16 512 38.4
16 512 4 19.0
16 8 1 512

Table 6. Examples of the cost of some of the
architectures considered in the experiments.
Costs are expressed as relative ratios ver-
sus the cost of the baseline configuration (the
first line of the table). L2MEM is the nuimber
of level2 memory ports.

a reasonable derating factor (vs. the baseline architecture)
that applies a cycle time increase as a function of the regis-
ter file ports. The underlying assumption is that, as in most
designs, the read stage of the pipeline is the limiting factor
for cycle speed.

The function that we use assumes a quadratic relationship
between cycle time and number of ports, and, for example,
Table 7 gives the following values for some of the “chitec-
tures we considered:

I IALU L2MEM Clusters 1 Cycle I
1 1.0 I

1

I :: i i 1 ;:; 1
16 1.1

Table 7. Examples of cycle speed derating
factors for different architecture configura-
tions. Again, values are relative to the base-
line configuration (the first line of the table).

4. Results

The performance of the benchmarks (“su”) and the cost
(“c”) of the architectures are displayed on Tables 8, 9, 10

329

Authorized licensed use limited to: ULAKBIM UASL - Bilkent University. Downloaded on March 04,2021 at 09:44:00 UTC from IEEE Xplore. Restrictions apply.

and Figures 3,4.

of a n-uple of 6 parameters:
In our experiments, we describe architectures by means

(a , m, T, P2,12 , .>
where

- a is the total number of ALUs

- m is the total number of ALUs capable of exe-

- r is the total number of registers
- p2 is the total number of parallel accesses to Level

- 12 is the latency in cycles of accesses to Level 2

- c is the number of clusters

cuting an integer MUL

2 Memory

Memory

So, for instance, the description (4 2 256 1 4 4) (first
line of Table 8) identifies an architecture with 4 ALUs (1
per cluster), 2 of them capable of a MUL, 256 registers (64
per cluster), 1 port to Level 2 memory with a 4-cycle access
latency and 4 clusters.

The basic unit of measure for our experiments is called
“Speedup”, and it represents the factor performance im-
provement that the given architecture gets on the benchmark
in question, compared to the running time of that benchmark
on the baseline system. Note that this is not the speedup due
to instruction-level parallelism. The baseline system al-
ready offers a significant amount of ILP. In this paper we
wanted to avoid the “maxpar wars”, and just concentrate on
the relative evaluation of the choices we had.

4.1. Architectural Performance Vs. Cost

Figure 3 is a scatter diagram that shows the cost and
speedup for each of the 191 architectures (after the best
cluster arrangement had been selected) for each of the in-
dividual algorithm benchmarks (A, C, D, F, G, H), while
Figure 4 shows the same for the jammed benchmarks. The
line in each scatter diagram is drawn through all of the best
cost/performance alternatives for each benchmark.

Note that most of the diagrams contain various perfor-
mance levels in which several points are approximately in a
straight horizontal line. In those cases, the apparent expla-
nation is that the increasing costs as one goes to the right are
due to the addition of features to the leftmost architecture
that are not helping it achieve much better performance on
the given benchmark. Sometimes a feature is very relevant
to a benchmark, and then a new plateau is reached with sev-
eral points in a higher performance level straight line as that
feature is added.

4.2. Design For One Algorithm, Run Another

One of the things we most wanted to find out in this
experiment was this: when you design for one application or
algorithm and run on another, what happens? In particular,
one might expect to run into these situations:

1.

2.

3.

Perhaps specialization hardly matters at all. Architec-
tures for a given application all perform pretty much the
same, with small percentage differences among them,
as long as one considers only “reasonable” architec-
tures. Or,

Perhaps architectures differ a lot, but there is some in-
dependent measure of goodness for them that does not
vary much with the benchmarks (except in the grossest
of choices, such as whether to include floating point
hardware). Architectures built for applications in a
narrow domain are more-or-less “well ordered” That
is, for any two architectures, the same one is virtually
always better than the other across the applications. Or,

Perhaps the architectures optimized for different al-
gorithms differ a lot, and how good they are heavily
depends upon which algorithm was used to guide the
choice.

To answer these questions in the context of the experi-
ment done here, we decided to set up several situations in
which a designer might choose an architecture. We allowed
the following two degrees of freedom:

e An upper bound on the cost of the architecture. We
arbitrarily chose costs of 5, 10, and 15 as constraints
a designer might be working with. We call these low,
medium, and high cost architectures, respectively.

e The degree to which the designer would be willing to
select an architecture that was not the absolute best
for the algorithms for which the architecture was opti-
mized, in order to perform better on the other applica-
tions.

In particular, in Tables 8, 9, 10 we considered, for each
algorithm, the architecture that would do best without ex-
ceeding the COST parameter.

When the RANGE parameter was 0, the architecture was
chosen without considering the other applications at all, and
the table (in this case the (Runge=O%) portion of the Tables)
shows, in the rows across, how well that architecture per-
formed on each application. However, what if the hardware
designer wanted to optimize for a given algorithm, but knew
something about the domain and was willing to factor in, at
least somewhat, other algorithms? In the middle portion of
the Tables we show what happens when the designer does
the following: For each algorithm, attempt to pick the best

330

Authorized licensed use limited to: ULAKBIM UASL - Bilkent University. Downloaded on March 04,2021 at 09:44:00 UTC from IEEE Xplore. Restrictions apply.

A.C

1C

14

12

IC

f 6
6

4

2

0

0 5 10 15 20 25 30
Copt

D.c

....................,., , , ,

.................. :,...

.......................... i ... :

................. ...,........... ~ ~(................,.

..+@ * 1 j , ;
I % ' $ I f j . :

i*$O 8 Q 0 : $! e

5 15 20 25
lo cost

0.c

16

14

12

10

4
j 8

6

4

2

0

0 5 15 20 25 30
lo Msl

F.c

5
-

10 15 20 25
cost

H.c

Figure 3. Cost/Speedup scatter diagrams for the original benchmarks

33 1

Authorized licensed use limited to: ULAKBIM UASL - Bilkent University. Downloaded on March 04,2021 at 09:44:00 UTC from IEEE Xplore. Restrictions apply.

0 5 10 15 20 25 30
cost

L3iEF.c
16 I

..................... 1 ~ 1 1 ; -.

6 ~ .- i?-4 c " ~ - T " - ~ O _ * ~ - . ~ -...... l...
4% s e O i I p ! * € . * * e O I O O ; a 0

0 5 i o 15 20 25 30
Cost

GEF.c

.................

......... * " *
. .

$ 8 I *.. ; ..

......... 1 ~,~~ ~; i

6 :

s i

0 5 10 15 20 25 30
cor1

Figure 4. CosffSpeedup scatter diagrams for the jammed benchmarks

architecture, but be willing to back off by as much as 10%
of performance (the RANGE parameter) in order to make
the average of the other applications better. For the medium
cost models, in fact, it is also instructive to see what happens
when the designer is willing to give up as much as 50% of
the performance to make the others better.

For example, in the medium cost tables, the architecture
chosen as the best for algorithm GEF executed that appli-
cation with a speedup over the baseline of 8.93. But when
the RANGE is allowed to go to 50%, the selection mecha-
nism decides to give up 8 of its ALUs, and with that budget
buy back another 128 registers (and make some other small
changes). This has the effect of lowering the GEF speedup
over the baseline from 8.93 down to 5.97. However, in so
doing, it makes the overall performance go from an average
of 3.9 up to 5.8, and it makes A go from a pathological .89
speedup to 6.82. (Note that in the original model chosen for
GEF, there were too many ALUs and too few registers for

an algorithm like A. The compiler gets greedy and gets into
trouble. This is a known problem, and one hard to avoid with
schedulers of this nature. The revised architecture choice
gets back to a more balanced system).

Finally, we looked at the question of which architecture
minimized the total running time of all the applications at
a given cost. Since we used the same mechanism as the
above (but with the RANGE set to infinity), we reproduced
the result as the same sort of table. However, in that case
all the architectures make the same decision, so we only
show a single line, at the bottom of each table, giving the
performance of the architecture on the given application.

.

Again following the medium cost model picking an ar-
chitecture for GEF, the picker gives back just a little more
performance than it had at the 50% RANGE (by making
changes that are "at the noise level") but improves the over-
all average from 5.8 to 6.1.

332

Authorized licensed use limited to: ULAKBIM UASL - Bilkent University. Downloaded on March 04,2021 at 09:44:00 UTC from IEEE Xplore. Restrictions apply.

Cost=5.0 Range=O%
ArchDescl(su,c)I A.c C.c D.c Ec G.c H.c GEc GEEc DH.c DHEE(

A(42256 1 4 4)

C(82128 1 4 4)

D(82 128 1 4 4)

F(8 2 128 1 4 4)

G(82128144)(3.84.8)

H(82 128 1 4 4)

GF(8 2 128 1 4 4)

GEF(82128 1 8 4)
DH(82 128 1 4 4)

(3.73.6) 3.60 3.52 3.54 3.43 3.58 3.53 3.52 3.56 3.60

(3.84.8) 1.05 4.09 6.00 5.72 6.35 6.16 5.86 6.33 6.38

(3.84.8) 1.05 3.93 @ 6.00 5.72 6.35 6.16 5.86 6.33 6.38

(3.84.8) 1.05 3.93 4.09 16001 5.72 6.35 6.16 5.86 6.33 6.38

1.05 3.93 4.09 6.00 (5721 6.35 6.16 5.86 6.33 6.38

(3.84.8) 1.05 3.93 4.09 6.00 5.72 6.16 5.86 6.33 6.38

(3.84.8) 1.05 3.93 4.09 6.00 5.72 6.35 16161 5.86 6.33 6.38
(3.54.8) 1.04 3.93 4.09 4.53 5.72 6.15 6.14 6.31 6.36

(334.8) 1.05 3.93 4.09 6.00 5.72 6.35 6.16 5.86 6.38
~

lHEF(82128 144)l(3.84.8)1 1.05 3.93 4.09 6.00 5.72 6.35 6.16 5.86 6.33
Cnsk5.0 Ranee=lO%

ArchDesc (su,~)
A(42256144)(3.73.6)

C(82128 144) (3.84.8)

D(8 2 128 1 4 4) (3.84.8)

F(82 128 1 4 4) (3.84.8)

G(8 2 128 1 4 4) (3.84.8)

H(82 128 1 4 4) (3.84.8)

GF(8 2 128 1 4 4) (3.84.8)
GEF(82128144)(3.84.8)

DH(82128144)(3.84.8)
tHEF(82128 1 4 4) (3.84.8)

w- ~ ~~~~~~

A.c C.c D.c F.c G.c H.c GF.c GEEc DH.c DHEEc
6.12 3.60 3.52 3.54 3.43 3.58 3.53 3.52 3.56 3.60

4.09 6.00 5.72 6.35 6.16 5.86 6.33 6.38

1.05 3.93 6.00 5.72 6.35 6.16 5.86 6.33 6.38

1.05 3.93 4.09 16001 5.72 6.35 6.16 5.86 6.33 6.38

1.05 3.93 4.09 6.00 6.35 6.16 5.86 6.33 6.38

1.05 3.93 4.09 6.00 5.72 6.16 5.86 6.33 6.38

1.05 3.93 4.09 6.00 5.72 6.35 16161 5.86 6.33 6.38
1.05 3.93 4.09 6.00 5.72 6.35 6.16 a 6.33 6.38

1.05 3.93 4.09 6.00 5.72 6.35 6.16 5.86 6.38
1.05 3.93 4.09 6.00 5.72 6.35 6.16 5.86 6.33

all(82 128 1 4 4) (3.84.8) 11.05 I 3.93 I 4.09 6.00 1 5.72 I 6.35 6.16 5.86 1
Table 8. Speedup results for low cost (c 5.0) architectures.

6.33 6.38

5. Conclusions

From the above examples, we can see that, when using
a real-world compiler and code that contains a lot of ILP,
the architecture choices we make are quite sensitive to the
application being tailored to.

By allowing the designer a little freedom to pick less than
the absolute best implementation for the target applications,
we can often make dramatic improvements in how that im-
plementation will process other applications. This certainly
flies in the face of the concept of “Custom-Fit Processing”,
especially when we see dramatic losses in performance of
the original target algorithm that are made to satisfy the
overall picture. This can be seen most dramatically in the
medium-cost models, in which several of the algorithms run
at 60-70% of their performance on a more tailored architec-
ture, and on the low-cost model, in which one application
gets into pathologically bad trouble and runs at about 17%
of its performance on the architecture made for it.

We believe that, given the maturity and real-world prop-
erties of the tools we are using, this is probably a realistic
assessment of what designers will face in doing high-level
synthesis. If and when the cost of individual chip design
becomes very much lower than it is today, it will make a lot

of sense to build chips for the narrowest of embedded appli-
cations. Today, that seems like a dangerous route to attempt
without a very strong apriori knowledge of what will run on
the chip.

References

[11 Y. Arai, T. Agui, and M. Nakajima. A fast DCT-SQ scheme
for images. Trans. ofthe IEICE, 71(11):1095,Nov. 1988.

[2] M. Auguin, E Boeri, and C. Carriere. Automatic explo-
ration of VLIW processor architectures from a designer’s
experience based specification. In 3rd Int. Workshop on
Hardware/Sojiware Codesign, pages 108-1 15, Sept. 22-23,
Grenoble, September 1994.

[3] A. Capitanio, N. Dutt, and A. Nicolau. Partitioned register
files for VLIWs: A preliminary analysis of tradeoffs. In
Proceedings of the 25th Annual International Symposium on
Microarchitecture, pages 292-300, Portland, Oregon, De-
cember 14 ,1992. IEEE Computer Society TC-MICRO and
ACM SIGMICRO. SIG MICRO Newsletter 23(1-2), De-
cember 1992.

[4] B. Case. First TriMedia chip boards PCI bus. Microprocessor
Report, 9(15):22-28, November 1995.

[5] R. P. Colwell, R. P. Nix, J. J. O’Donnell, D. P. Papworth,
and P. K. Rodman. A VLIW architecture for a trace schedul-
ing compiler. In Proceedings of the Second International

333

Authorized licensed use limited to: ULAKBIM UASL - Bilkent University. Downloaded on March 04,2021 at 09:44:00 UTC from IEEE Xplore. Restrictions apply.

Cost=lO.O Range=O%
ArchDescI (su ,~) I A.c C.c D.c Ec G.c H.c GF.c GEEc DH.c DHEFA

C(8 2256 144)
D(84256144)(6.17.4)

F(82256144)(6.16.6)
G(8 2256 144)

H(164 128 148)

GF(164 128 148)

GEF(164 128 148)

DH(164 128 1 4 8)

)HEF(164 128 148)

A (8 4 2 5 6 1 4 4) (6 . 1 7 , 4) ~ 5.84 4.42 6.13 5.42 6.35 6.16 5.86 6.31 6.38
(6.1 6.6) 9.38 16151 4.33 6.13 5.72 6.35 6.16 5.86 6.33 6.38

9.94 5.84 6.13 5.42 6.35 6.16 5.86 6.31 6.38

9.38 6.15 4.33 16131 5.72 6.35 6.16 5.86 6.33 6.38

(6.1 6.6) 9.38 6.15 4.33 6.13 6.35 6.16 5.86 6.33 6.38
(3.98.7) 0.89 3.54 3.83 5.14 5.41 8.39 8.93 10.09 9.61

(3.98.7) 0.89 3.54 3.83 5.14 5.41 9.45 8.93 10.09 9.61

(3.98.7) 0.89 3.54 3.83 5.14 5.41 9.45 8.39 10.09 9.61

(3.98.7) 0.89 3.54 3.83 5.14 5.41 9.45 8.39 8.93 110091 9.61

(3.98.7) 0.89 3.54 3.83 5.14 5.41 9.45 8.39 8.93 10.09

C(8 2 256 144)

D(8 2 256 1 44)
F(8 2 256 1 4 4)

G(8 2 256 1 4 4)

H(164128148)

GF(164 128 148)

GEF(164 128 148)

DH(164128148)

)HEF(164 128 148)

I

9.38

9.38
9.38

9.38

0.89

0.89 3.54 3.83 5.14 5.41 9.45 8.93 10.09

0.89 3.54 3.83 5.14 5.41 9.45 8.39 10.09

0.89 3.54 3.83 5.14 5.41 9.45 8.39 8.93 110091
0.89 3.54 3.83 5.14 5.41 9.45 8.39 8.93 10.09 I 9.61

U

(6.1 6.6)

(6.1 6.6)

(6.1 6.6)

(6.1 6.6)

(3.98.7)

(3.98.7)

(3.98.7)

(3.98.7)
(3.98.7)

16151
6.15
6.15

6.15

3.54

44)

44)

44)

44)

44)

84)

48)

4.33

pJ
4.33

4.33

3.83

U

(6.1 6.6) 9.38 6.15 E
(6.1 6.6) 9.38 6.15 4.33

(6.1 6.6) 9.38 6.15 4.33

(6.1 6.6) 9.38 6.15 4.33

(6.1 6.6) 9.38 6.15 4.33

(5.8 6.6) 6.82 6.15 4.33

(3.98.7) 0.89 3.54 3.83

6.13

6.13 16131
6.13

5.14

)HEF(164 128 148)

5.72

5.72
5.72

pJ
5.41

~

(3.98.7) 0.89 3.54 3.83 5.14 5.41 9.45 8.39 8.93 10.09 9.61

6.35

6.35

6.35

6.35 m

all(82256 144) (6.1 6.6)

6.16

6.16
6.16

6.16

8.39

9.38 I 16.15 I 4.33 I 6.13 I 5.72 6.35 6.16 1 5.86 I 6.33 I 6.38

5.86

5.86
5.86

5.86

8.93

6.33

6.33

6.33

6.33

10.09

6.38

6.38
6.38

6.38

9.61

9.61

9.61

9.61

I

Cost=lO.O RangeSO%
Arch Descl (s u , ~) I A.c C.c D.c Ec G.c H.c GF.c GEF.c DH.c DHEEi

D(8 2 256

F(8 2 256

G(8 2 256

H(8 2 256

GF(8 2 256

GEF(8 2 256

DH(164 128

6.13 5.72 6.35 6.16 5.86 6.33 6.38

6.13 5.72 6.35 6.16 5.86 6.33 6.38
6.13 5.72 6.35 6.16 5.86 6.33 6.38 16131 5.72 6.35 6.16 5.86 6.33 6.38

6.13 6.35 6.16 5.86 6.33 6.38

6.13 5.72 6.16 5.86 6.33 6.38

6.13 5.72 6.35 16161 5.86 6.33 6.38

4.64 5.72 6.35 6.14 a 6.31 6.36

5.14 5.41 9.45 8.39 8.93 110091 9.61 -

Conference on Architectural Support for Programming Lan-
guages and Operating Systems, pages 180-192, Palo Alto,
Califomia, October 5-8,1987. ACM SIGARCH, SIGPLAN,
SIGOPS, and the IEEE Computer Society. Computer Ar-
chitecture News, 15(5), October 1987; Operating Systems
Review, 21(4), October 1987; SIGPLANNotices, 22(10), Oc-
tober 1987.

[6] T. M. Conte and W. Mangione-Smith. Determining cost-
effective multiple issue processor designs. In Proc. I993
Int’l. Con$ on Computer Design, pages 94-101, Cambridge,
MA, October 1993.

[7] T. M. Conte, K. N. P. Menezes, and S . W. Sathaye. A tech-
nique to determine power-efficient, high-performance super-
scalarprocessors. In Proc. 28th Hawaii Int’l. Con$ on System

Sciences, volume 1, pages 324-333,Maui, HI, January 1995.
[SI A. De Gloria and P. Faraboschi. An evaluation system for

application specific architectures. In Proceedings of the 23th
Annual International Workshop on Microarchitecture and
Microprogramming, pages 80-89, Orlando, Florida, Novem-
ber 27-29 1990. IEEE Computer Society TC-MICRO and
ACM SIGMICRO.

191 D. Epstein. Chromatic raises the multimedia bar. Micropro-
cessor Report, 9(14):23-28, October 1995.

101 D. Epstein. IBM extends DSP performance with Mfast. Mi-
croprocessor Report, 9(16): 1,6-8, December 1995.

111 J. A. Fisher. Very long instruction word architectures and
the ELI-512. In Proceedings of the 10th Annual Intema-
tional Symposium on ComputerArchitecture, pages 140-1 50,

334

Authorized licensed use limited to: ULAKBIM UASL - Bilkent University. Downloaded on March 04,2021 at 09:44:00 UTC from IEEE Xplore. Restrictions apply.

Cost=15.0 Range=O%
Arch Descl (su ,~) 1 A.c C.c D.c Ec G.c H.c GEc GEEc DH.c DHEEi

A(164256248)
C(164512 1 4 8)
D(84512144)(6.111.0)

F(84512144)(6.111.0)

G(82256144)(6.16.6)

H(164512 1 8 8)
GF(1645121 48)

GEF(1645121 48)

(6.813.0) 11306(5.88 3.52 5.63 4.95 9.68 8.13 8.65
(7.2 14.1) 11.04 3.86 5.25 5.41 10.50 8.39 8.93

10.72 6.07 6.13 5.42 6.35 6.16 5.86

10.72 6.07 4.42 (6131 5.42 6.35 6.16 5.86

9.38 6.15 4.33 6.13 6.35 6.16 5.86

(6.2 14.1) 5.95 7.46 3.86 3.98 5.41 110521 5.75 6.79

(7.214.1) 11.04 7.46 3.86 5.25 5.41 10.50 8.93

(7.214.1) 11.04 7.46 3.86 5.25 5.41 10.50 8.39

9.60
10.61

6.3 1:

6.31

6.33

10.58
10.61

10.61

DH(164512 1 4 8)

iHEF(168256 1 4 8)

ArchDesc
A(164256248)(6.813.0)

C(l64512 1 4 8)

D(84512 144)

F(164256248)

9.14
9.88

6.38

6.38

6.38

9.74

9.88

9.88

(7.214.1) 11.04 7.46 3.86 5.25 5.41 10.50 8.39 8.93 E] 9.88
(7.1 12.2) 10.54 6.43 3.86 5.25 5.41 10.50 8.39 8.93 10.55 10.06

Cost=15.0 Range=lO%
(su ,~) A.c C.c D.c Ec G.c H.c GEc GEEc DH.c DHEEi

13.06 5.88 3.52 5.63 4.95 9.68 8.13 8.65 9.60 9.14

(7.2 14.1) % 3.86 5.25 5.41 10.50 8.39 8.93 10.61 9.88

(6.1 11.0) 10.72 6.07 6.13 5.42 6.35 6.16 5.86 6.31 6.38

(6.813.0) 13.06 5.88 3.52 4.95 9.68 8.13 8.65 9.60 9.14

G(164512148)

H(1645121 48)
GF(164512 1 4 8)

GEF(1645121 48)
DH(164512 1 4 8)

HEF(164512 1 4 8)

L

(7.214.1) 11.04 7.46 3.86 5.25

(7.214.1) 11.04 7.46 3.86 5.25

(7.2 14.1) 11.04 7.46 3.86 5.25

(7.2 14.1) 11.04 7.46 3.86 5.25

(7.2 14.1) 11.04 7.46 3.86 5.25

(7.2 14.1) 11.04 7.46 3.86 5.25

I 5.41 I 10.50 8.39 8.93 10.61 9.88

all(164512 1 4 8)1(7.2 14.1) 1 11.04 I 17.46 I I 3.86 I I 5.25 I 5.41 10.50 1 8.39 I 8.93 I I 10.61 I I 9.88

Table 10. Speedup results for high cost (< 15.0) architectures.

Stockholm, Sweden, June 13-17,1983. Computer Architec-
ture News, 11(3), June 1983.

[12] M. Flynn and R. Winner. ASIC microprocessors. In Pro-
ceedings of the 22th Annual International Workshop on
Microarchitecture and Microprogramming, pages 237-243,
Dublin, Ireland, September 1989. IEEE Computer Society
TC-MICRO and ACM SIGMICRO. SIG MICRO Newslet-
ter 20(3), September 1989.

[I31 B. Holmer and A. Despain. Viewing instruction set design
as an optimization problem. In Proceedings of the 24th An-
nual International Workshop on Microarchitecture and Mi-
croprogramming, pages 153-162, Albuquerque, New Mex-
ico, November 18-21 1991. IEEE Computer Society TC-
MICRO and ACM SIGMICRO.

[14] I.-J. Huang and A. M. Despain. High level synthesis of
pipelined instruction set processors and back-end compilers.
In Proceedings of the 29th ACMLEEE Design Automation

[15] A. Kalavade and E. A. Lee. A hardwarehoftware codesign
methodology for DSP applications. IEEE Design and Test,
10(3):16-28, September 1993.

[16] M. Langevin, J. Wilberg, P. Ploger, and H.-T. Vierhaus. A
codesign methodology for high performance embedded sys-
tems. In V. Van Dongen, editor, Proceedings of the High
Performance Computing Symposium '95, Canada S Ninth
Annual International High Perjormance Computing Confer-

\Conference, pages 135-140. ACM Press, June 1992.

ence and Exhibition, pages 353-364, Montrkal, Qukbec, July
10-12,1995. Centre de Recherchehformatique de Montrkal.

[I71 J. Lowney, S . Freudenberger, T. Karzes, W. Lichtenstein,
R. Nix, J. O'Donnel, and J. Ruttenberg. The Multiflow
trace scheduling compiler. The Journal of Supercomputing,
7(1/2):51-142, May 1993.

[181 G. D. Micheli. Computer-aided hardware-software codesign.
IEEE Micro, 14(4):10-16, August 1994.

[I91 J. M. Mulder, R. J. Portier, A. Srivastava, andR. in 't Velt. An
architecture framework for application-specific and scalable
architectures. In Proceedings of the 16th Annual Interna-
tional Symposium on Computer Architecture, pages 362-369,
Jerusalem, Israel, May 28-June 1, 1989. IEEE Computer So-
ciety TCCA and ACM SEARCH. Computer Architecture
News, 17(3), June 1989.

I201 S . Note, W. Geurts, E Catthoor, and H. D. Man. Cathedral-111:
Architecture-driven high-level synthesis for high throughput
DSP applications. In Proceedings of the 28th AClM/lEEE
Design Automation Conference, pages 597-602. ACM Press,
June 1991.

[21] M. Slater. Microunity lifts veil on media processor. Micro-
processorReport, 9(14):11-18, October 1995.

[22] G. Wallace. The JPEG still picture compression standard.
Commun. ACM, 34(4):30-44, Apr. 1991.

335

Authorized licensed use limited to: ULAKBIM UASL - Bilkent University. Downloaded on March 04,2021 at 09:44:00 UTC from IEEE Xplore. Restrictions apply.

