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Abstract 

In this paper we report on a system which automati- 
cally designs realistic VLIW architectures highly optimized 
for one given application (the input for this system), while 
running all other code correctly. The system uses a product- 
quality compiler that generates very aggressive VLJW code. 
We retarget the compiler until we have found a VLJW archi- 
tecture idealized for the application on the basis of perfor- 
mance, a cost function and a hardware budget. 

We show that we can automatically select architectures 
that achieve large speedups on color and image process- 
ing codes. Specialization is shown to be very valuable: 
The differences between architectural choices, even among 
reasonable-seeming architectures having similar costs, can 
be very great, often a factor of 5 (andsometimes much more). 
We show also that specialization is also very dangerous. A 
reasonable choice of architecture to fit one algorithm can 
be a very poor choice for anothel; even in the same domain. 
There is sometimes an architecture, near in cost and per- 
formance to the best, that does much better on a second 
algorithm. 

1. Introduction: Custom-Fit Processors 

Many people had the same reaction upon first becoming 
aware of VLSI microprocessors: can we somehow design 
these chips by merely writing a program that describes what 
they are to do? This is the “silicon compiling“ problem in 
its full glory. Despite amazing progress in areas such as 
compiling control circuits using a “sea of gates” approach, 
and despite tremendous progress in the automation of many 
of the steps of design and production, we are very far from 
taking a functional description of a microprocessor and au- 
tomatically producing a silicon layout. 

Although silicon compiling is well beyond us, in this 
paper we consider an even more ambitious problem: rather 

than generating a microprocessor automatically from a high- 
level description, we would like to generate it from the appli- 
cations it will run. In particular, given an embedded proces- 
sor running on an “appliance” product, we call the general- 
purpose processor which is designed to scream on the em- 
bedded application a “Custom-Fit Processor”. The process 
we use to derive this processor design falls into the gen- 
eral class of technologies referred to as Hardwarelsoftware 
Codesign [18, 15, 16,201. 

Generating Custom-Fit Processors automatically is a su- 
perset of generating general-purpose processors, and is thus 
strictly harder still. When faced with such an overwhelm- 
ingly impossible task, there are two approaches generally 
taken: 

0 One can build a very small thing (e.g. synthesizing a 
4-bit adder) and hope to learn while approaching reality 
from below. 

One can build a “toy”, filled with unreality, and then 
try to make it successively more realistic, approaching 
reality from above. 

Here we suggest a third approach, and our research pro- 
gram is dedicated to canying this out: 

One can restrict the problem one is attacking, but then, 
within that restricted kamework, do something that 
is completely realistic and is an end-to-end solution. 
From that base, move towards a less-restricted solution. 
In a sense, this starts out being realistic, but approaches 
greater generality “from the side”. 

The restriction we impose is the following: We design 
a VLIW [ 111 architecture in which virtually all characteris- 
tics can be changed: memory sizes and hierarchy, register 
sizes and ports, the “cluster” structure of the architecture, 
the kinds of functional units and their repertoires, the laten- 
cies of the functional units, and the connection and com- 
munication topologies of all of these. At the same time, 
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the code transformations that are done as part of the hard- 
warelsoftware codesign process are applied. This adds to 
that mix the limitations of what the compiler is capable of. 
Any codesign system will have this latter restriction, almost 
always much more than we do. Unfortunately, this is almost 
never acknowledged in research results. 

Within this framework our methodology is easy to de- 
scribe, and similar to what has been described elsewhere 
(for example, in [14, 12, 13,2, 8, 19, 3,6,7]). For example 
De Gloria and Faraboschi [8] cany out almost exactly this 
framework, but using tools which are much less mature. 

This framework is particularly interesting right now, be- 
cause it is now practical to put enough millions of transistors 
on an inexpensive die to make a very powerful and general 
VLIW - witness the media processors now appearing from 
several vendors [9,21,4, 101. 

1.1. This Investigation 

We believe the work described below is unique in the 
following sense: 

0 We are doing it with a productized, ambitious compiler 
that exposes and schedules a lot of ILP. Previous studies 
have been done in environments in which very small 
percentage differences have been available; at best they 
have found small factor speedups. Instead, we find very 
large factor speedups, even between relatively similar 
cost, reasonable-seeming architectures. 

The experiments done here are a characterization of the 
effectiveness of tailoring ILP hardware to given applica- 
tions. We are attempting to shed light on the following 
broad questions: 

What is the performance of custom hardware at a given 
cost, when compared to more general hardware at that 
same cost? 

How does the hardware you would build differ for dif- 
ferent sections of code in similar application areas? 
How does it differ from hardware built for several rou- 
tines at the same time? 

How effective are search methods aimed at finding the 
appropriate architecture? 

2. Experimental Methodology and Infrastruc- 
ture 

2.1. The C Compiler 

Our main tool in this investigation is the Hewlett-Packard 
Laboratories Cambridge C Compiler. It is a direct descen- 
dant of the Multiflow compiler, which has been reported 

upon in detail elsewhere, particularly in [ 171. For our pur- 
poses, it has the following qualities: 

0 It is a productized, real-world, highly-optimizing com- 
piler. 

0 It generates ILP code as aggressively as any compiler 
we have ever heard of; we think more than any other 
compiler ever built. 

0 It generates code from ta,ble-driven architectural de- 
scriptions in the following sense: if you have a de- 
scription of an architecture for which you are: generat- 
ing good code, you can change most of the “normal” 
architectural parameters to produce a new model, and 
continue to generate good code. 

We thus are able to use it to explore a design space of 
architectures to fit a processor to a given application. 

2.2. Searching For A VLIW Architecture 

Our basic experimental method involves the following 
loop: 

0 Using some search method, search for a new candidate 
architecture 

0 Measure the cost of the architecture 

0 Build a version of our compiler that generates good 

0 Generate the code 

0 Measure the goodness of the code 

0 Repeat until satisfied 

code for that architecture 

In the past, many researchers have implemented simi- 
lar loops. They have typically concentrated upon search 
techniques, or upon the selection of special-purpose func- 
tional units to match the functionality needed in a loop. Our 
philosophy here is different. Following the RISCN’LIW re- 
ligion, we want to build simple hardware that does tlhe basic, 
simple operations, but uses lots of ILP to get a speedup. So 
we try to match the structures and sizes of the architecture 
to the application, rather than specific opcodes. 

Similarly, it is likely that search techniques to prune the 
space of architectures under consideration would be very 
successful. Here, instead, we searched exhaustively through 
a huge space: despite being real-world tools, our tools are 
fast enough and computers are now sufficiently fast enough 
to make this practical. We are confident that any good search 
technique could cut down significantly on our processing 
time (see Table 3) without greatly affecting the results re- 
ported upon here. 
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2.3. Benchmarks 
Benchmark 

GF 

GEF 

DH 

DHEF 

We were interested in measuring how different an 
application-specific microprocessor would be when tailored 
for different tasks within a single application domain. These 
seem like relevant questions: right now people build chips 
to do specifically one subtask of an application, when a 
general-purpose processor is not sufficient (e.g. for MPEG 
video compressioddecompression); additionally, we now 
have media processors, which are specialized for an appli- 
cation area, but not a single subtask. This makes intuitive 
sense, as the subtasks in a single application area often seem 
to have similar compute structures, as is the case in media 
processing. 

Description 
1D bilinear scaling followed by Floyd- 
Steinberg halftoning. 
1D bilinear scaling followed by E, a 
YUV-RGB color space conversion, 
followed by Floyd-Steinberg halftoning. 
RGB4YUV color space conversion fol- 
lowed by a 3x3 median filter. 
RGB-YUV color space conversionfol- 
lowed by a 3x3 median filter, followed 
by E, a YW+RGB color space con- 
version, followed by Floyd-Steinberg 
halftoning. 

Benchmark 
A 

C 

I [I, 221. 
D B  I Color conversion from the RGB to the 

Description 
FIR symmetrical filter implemented us- 
ing a 7x7 convolution kernel. 
Inverse DCT transform with dequantiza- 
tion of the DCT coefficients. The algo- 
rithm used is the Arai, Agui and Nakjima 
algorithm for scaled FDCTIIDCT, with 
some improvements, as described in 

F 

1D bilinear scaling by integral factors I 
along columns. 
3x3 median filter using the standard al- ! gorithms, not using a “smart” version of 

YCbCr color space (and vice versa, as 
described in the JPEG standard) 
Halftoning via standard Hoyd-Steinberg 
error diflision (no stochastic weights up- 
date). The benchmark produces triplets 
containing 1 bit halftoned Dixels. I 

I I I 

Table 1. The individual benchmarks. 

We picked color output routines, which are quite eas- 
ily available in the public domain, and are quite similar to 
those used in many media-processing applications. These 
routines often contain a large quantity of potential ILP. All 
the benchmarks except C have as input a row of a full color 
RGB image. We have converted all floating point to fixed, 
as is common in this kind of processing. Proper source 
code transformations have been applied to all benchmarks 
to expose ILP (loop transformations, if-conversion, etc.). 
These same transformations speed the code up on virtually 
all superscalar and VLIW architectures and implementa- 
tions. Table l describes the benchmarks we used. 

We wanted to know how architectures which were op- 
timized for those individual routines would compare with 
architectures optimized for collections of the routines. Thus 

we also ran combinations of the above, jammed into single 
loops, avoiding the intermediate memory storenoad other- 
wise needed. Table 2 shows a description of the ‘ t imed ‘ ’  
benchmarks. 

For example, figure 1 shows the D (Floyd-Steinberg error 
diffusion) benchmark in C ,  implemented in the standard 
form found in image processing literature. 

2.4. Running the Experiment 

The experiment was set up in such a way that we were 
rebuilding a compiler for each architecture and then run- 
ning the compilation for all benchmarks and for different 
unrolling factors. When the compiler started spilling regis- 
ter contents for a given unrolling, we stopped considering 
that unrolling factor and all larger ones. 

The performance of clustered architectures (see Section 
3.1) was not computed for all possible combinations, to 
avoid an exponential explosion of runtime and data. To 
account for clustering, we computed a “correction value” 
as a function of the number of clusters, by running a set of 
separate experiments for a few significant architecture data 
points in the defined space. In our experience, this approxi- 
mation is enough to account for the effects of clustering. 

For this experiment, we ran 5730 compilations of the 
benchmarks, on 191 architectures (plus their associated clus- 
tering values). The time to re-compile a customized com- 
piler was relatively short (about 50 seconds), since only the 
machine model needed to be re-linked into the executable. 

The time to run a single compilation benchmark varied 
significantly between a couple of seconds and a few min- 
utes. On average, it took on the order of 28 seconds per 
benchmark, adding up to about 48 hours of running time 
for the whole experiment. The platform used for the ex- 
periment was a 9000/770 HP workstation, lOOMHz clock, 
256MB main memory. 
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FSDline ( ubyte * linein, 
ubyte * lineout, 
int plane-size ) 

{ 
int i, color; 
intl6 *ep, Err[3], errTemp[3]; 
intl6 errTempOff131, oldErrl31; 
ubyte *dp, *op, out[3], bitmask; 

dp = linein; 
ep = errBuf + 3; 
op = lineout; 
Err[Ol = Err[ll = Err[2] = 0; 

errTemp101 = ep[-3 + 01; 
errTemp[ll = ep[-3 + 11; 
errTempC21 = ep[-3 + 21; 
bitmask = 0x80; 

for (i = 0; i < plane-size; i++) 
( 
for (color = 0; color < 3; color++) 
{ 
errTempOff[colorl = errTemp[colorl; 
errTemp[colorl = ep[colorl; 
oldErr[color] = Err[color]; 

#runs 57:30 

Err[colorl = 
(errTemp[colorl + ( (Err[colorl*7+8)>>4)+ 
((int) dp(color1 << ((2*8)-13))); 

out[colorl = 
((Err[colorl > (128 << ((2*8)-13))) 
? out[color] 1 bitmask : out[color]); 
((Err[color] > (128 << ((2*8)-13))) 
? Err[color] - (255 << ((2*8)-13)) 
: Err[colorl); 

Err[colorl = 

errTempOff[color] += ((Err[colorl*3+8)>>4); 
errTemp [color] = 

((Err[colorl * 5 + oldErr[colorl+8)>>4); 
ep[-3 + color] = errTempOff[colorl; 
op[colorl = out [color] ; 

1 
dp += 3, ep += 3; 
if (bitmask == 0) 

op = op + 3; 
out[O] = out[ll = out[2] = 0; 
bitmask = 0x80; 

? 
else 
bitmask = bitmask >> 1; 

Figure 1. The Floyd-Steinberg algorithm. 

Table 3 shows the basic data concerning the computation 
time of the experiment. 

3. Architecture Cost and Performance 

Computing the cost and performance of an architecture 
from a set of high-level parameters (such as number of 
ALUs, multipliers, registers, ports, etc.) is a nontrivial 
task. Several implementation choices exist and the trade- 
off between choices varies widely depending upon avail- 
able VLSI technology, target application, area and power 
requirements, design methodology and so on. 

In this paper we have simplified the problem and only 

# architectures 1!)1 
runtime per architecture 897s (15 IF 
compiler time per benchmark 28s 
compiler compile time per arch. 
total time 

50s 
171449s(48 h) - 

Table 3. Experiment computation tiime. 

P 

consider the cost of building the CPU datapath. Other fac- 
tors, such as pinout requirements and cost of the memory 
system, are not considered in the cost equations. Consid- 
ering these factors would affect the numbers we report, but 
probably would not materially affect our conclusions. 

We estimate the cost of the datapath in terms of silicon 
real estate relative to a baseline configuration. The figures 
that we use are derived from am analysis of existing designs 
in current VLSI technology. They are certainly not close to 
exact figures, but we believe are representative enough to 
support the conclusions of this paper. 

3.1. Clusters and Architectural Parameters 

Our architecture template (Figure 2) is a multi-cluster 
machine, composed of (nearly) identical clusters containing 
functional units and local register banks. The coimmunica- 
tion between clusters happens across a set of global con- 
nections, and is explicitly scheduled by the compiler. The 
Multiflow Trace [5 ]  follows exactly this structure. The rea- 
son for clusters, which are not independent, but rather share 
a single long instruction, is to avoid register banks with too 
many ports. Thus instead of a single register bank support- 
ing, say, 8 ALUs, we might split it into 4 register banks, 
each supporting two ALUs. In order to use an ALU, the 
operands it requires must be in the associated register bank, 
or must be moved there with an explicit move in a prior 
instruction. The fact that the different clusters are (nearly) 
identical makes the chip easier to fabricate as well. The 
cluster differ in that the single branch unit resides on cluster 
#O and is not duplicated in the others. 

In addition to that, we consider a multi-level memory 
system composed of a Level I Memory and a Level 2 Mem- 
ory. Level 1 Memory is used to model the global memory 
of the system, and has a fixed throuput for all the experi- 
ments. Level 2 Memory varies in terms of number of parallel 
accesses and latency. 

Table 4 explains the parameters we take into account. 
Some of the settings we used were completely determined by 
our choice of the initial parameters. These include register 
file ports, communication paths and cycle speed. Table 5 
shows a description of these derived parameters. 
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Figure 2. The architecture template 

Parameter Description 
Clusters 
IALUs 

1 Ranges between 1 and 16. 
I Ranges between 1 and 16. All operations have latency of 1 cycle, except multiplications (2 cycles, 

ALU Repertoire 

Register Sizes 
Memory System 

pipelined). 
We eliminated floating point units by hand before we started. These routines do little floating point, 
and the cost function would have eliminated it in any case, so we saved the trouble. 
Among the integer units, the only choice presented in this experiment is whether or not a given ALU 
is capable of integer multiply. We allowed between 1/4 and 112 the ALUs to be IMULs, however at 
least 1 IMUL was always present. 
This methodology allows us to give any opcode choice to the compiler. We limited this experiment for 
expository reasons, and because our philosophy in general is to design an architecture from building 
blocks rather than synthesizing lower-lcvcl special- purpose hardware. 
We allowed between 64 and 5 12 registers total (for all clusters). 
We picked many different configurations for this experiment, but found that considering all of them 
muddied the insights available in this paper, but did not change the results. We thus decided to 
limit the exposition to only a few choices: always a single Level 1 Memory port and between 1 
and 4 accesses to Level 2 Memory. The latency of  an access to Level 1 Memory is always 3 cycles 
(non-pipelined), while the latency to Level 2 Memory varies from 2 to 8 cycles (non-pipelined). 

Table 4. The architecture parameters. 

Parameter 
Register Ports 

Connectivity 

Cycle Speed 

Description 
We varied these with the requirements of the other functional units. In a full system, it is useful to 
consider this an independent variable, since it greatly affects the cost of the system. 
As in the number of register ports, we varied the connectivity according to the needs of the functional 
units, but it could have been allowed to be a more general parameter (and in the production of a chip 
you will build, will be). 
We used an approximation to quantify the effect of cycle speed of our architectural choices. This 
is how we believe it best to treat cycle speed in a system like this, though sometimes it may be 
considered an independent parameter, as in making silicon technology choices, or in area vs. speed 
tradeoffs in designing functional blocks. 

Table 5. The derived parameter settings. 
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3.2. The “Baseline” System 

We used as our baseline system one with 1 ALU, which 
could do IMUL, 1 reference to Level I Memory and 1 to 
Level 2 Memory (8 cycle latency), and 64 registers, all in 
1 cluster. Our costs and performance models, explained in 
the following sections, are scaled to make this system cost 
1 unit. 

Note that this system is capable of a great deal of ILP, 
due to its multiple issue capability, and its pipelining. 

3.3. Computing Architecture Cost 

The cost function for an architecture is computed as fol- 
lows: 

- c is the number of clusters 
- a is the number of ALUs per cluster 
- m is the number of ALUs per cluster able to do 

- T is the number of registers per cluster 
- 1 is the number of memory accesses per cluster 
- p is the number of ports of the register file in a 

cluster, computed as a function of the ALUs (a), 
andthememoryports(I): p ( a ,  I )  = ( 3 . a ) + ( 2 . I )  

- x d p  ( T ,  p )  is the datapath width of a cluster, com- 
puted as: Xdp(p)  = kl . p  

- YTeg (T ,  p )  is the register file height for a cluster, 
computed as: Yres (P, p )  = P . (k2 . p + %3) 

- Y0l,(a) is the height of the ALUs for a cluster, 
computed as: Yaru (a )  = IC4 . a 

- Y,, J (m) is the height of the MULs for a cluster, 
computed as: Y,,r(m) = k5 . m 

- IC, . . IC5 in the above equations are fitting pa- 
rameters computed from observation of existing 
designs. 

integer MULs 

The costs range from 1.0 (for the baseline) to about 100 
for the most ambitious architectures (16 ALUs, 8 MULs, 
512 registers, 4 memory ports, 1 cluster). For example, 
Table 6 shows the cost of some of the architectures that we 
have considered in our experiments. 

These numbers are certainly approximate, but we believe 
they are realistic enough to allow one to generalize from the 
results of this study. 

3.4. Cycle Speed 

The complexity of an architecture impacts the cycle time, 
a factor we must take into account in any realistic evalua- 
tion. In this experiment, we have tried to come up with 

[ IALU IMUL L2MEM REGS Clusters I 

128 6.5 
4 2 1 128 2 3.6 
8 4 1 2.56 1 

512 
16 512 38.4 
16 512 4 19.0 
16 8 1 512 

Table 6. Examples of the cost of some of the 
architectures considered in the experiments. 
Costs are expressed as relative ratios ver- 
sus the cost of the baseline configuration (the 
first line of the table). L2MEM is the nuimber 
of level2 memory ports. 

a reasonable derating factor (vs. the baseline architecture) 
that applies a cycle time increase as a function of the regis- 
ter file ports. The underlying assumption is that, as in most 
designs, the read stage of the pipeline is the limiting factor 
for cycle speed. 

The function that we use assumes a quadratic relationship 
between cycle time and number of ports, and, for example, 
Table 7 gives the following values for some of the “chitec- 
tures we considered: 

I IALU L2MEM Clusters 1 Cycle I 
1 1.0 I 

1 

I :: i i 1 ;:; 1 
16 1.1 

Table 7. Examples of cycle speed derating 
factors for different architecture configura- 
tions. Again, values are relative to the base- 
line configuration (the first line of the table). 

4. Results 

The performance of the benchmarks (“su”)  and the cost 
(“c”)  of the architectures are displayed on Tables 8, 9, 10 
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and Figures 3,4. 

of a n-uple of 6 parameters: 
In our experiments, we describe architectures by means 

( a ,  m, T, P2,12 ,  .> 
where 

- a is the total number of ALUs 

- m is the total number of ALUs capable of exe- 

- r is the total number of registers 
- p2 is the total number of parallel accesses to Level 

- 12 is the latency in cycles of accesses to Level 2 

- c is the number of clusters 

cuting an integer MUL 

2 Memory 

Memory 

So, for instance, the description (4 2 256 1 4 4) (first 
line of Table 8) identifies an architecture with 4 ALUs (1 
per cluster), 2 of them capable of a MUL, 256 registers (64 
per cluster), 1 port to Level 2 memory with a 4-cycle access 
latency and 4 clusters. 

The basic unit of measure for our experiments is called 
“Speedup”, and it represents the factor performance im- 
provement that the given architecture gets on the benchmark 
in question, compared to the running time of that benchmark 
on the baseline system. Note that this is not the speedup due 
to instruction-level parallelism. The baseline system al- 
ready offers a significant amount of ILP. In this paper we 
wanted to avoid the “maxpar wars”, and just concentrate on 
the relative evaluation of the choices we had. 

4.1. Architectural Performance Vs. Cost 

Figure 3 is a scatter diagram that shows the cost and 
speedup for each of the 191 architectures (after the best 
cluster arrangement had been selected) for each of the in- 
dividual algorithm benchmarks (A, C, D, F, G, H), while 
Figure 4 shows the same for the jammed benchmarks. The 
line in each scatter diagram is drawn through all of the best 
cost/performance alternatives for each benchmark. 

Note that most of the diagrams contain various perfor- 
mance levels in which several points are approximately in a 
straight horizontal line. In those cases, the apparent expla- 
nation is that the increasing costs as one goes to the right are 
due to the addition of features to the leftmost architecture 
that are not helping it achieve much better performance on 
the given benchmark. Sometimes a feature is very relevant 
to a benchmark, and then a new plateau is reached with sev- 
eral points in a higher performance level straight line as that 
feature is added. 

4.2. Design For One Algorithm, Run Another 

One of the things we most wanted to find out in this 
experiment was this: when you design for one application or 
algorithm and run on another, what happens? In particular, 
one might expect to run into these situations: 

1. 

2. 

3. 

Perhaps specialization hardly matters at all. Architec- 
tures for a given application all perform pretty much the 
same, with small percentage differences among them, 
as long as one considers only “reasonable” architec- 
tures. Or, 

Perhaps architectures differ a lot, but there is some in- 
dependent measure of goodness for them that does not 
vary much with the benchmarks (except in the grossest 
of choices, such as whether to include floating point 
hardware). Architectures built for applications in a 
narrow domain are more-or-less “well ordered” That 
is, for any two architectures, the same one is virtually 
always better than the other across the applications. Or, 

Perhaps the architectures optimized for different al- 
gorithms differ a lot, and how good they are heavily 
depends upon which algorithm was used to guide the 
choice. 

To answer these questions in the context of the experi- 
ment done here, we decided to set up several situations in 
which a designer might choose an architecture. We allowed 
the following two degrees of freedom: 

e An upper bound on the cost of the architecture. We 
arbitrarily chose costs of 5, 10, and 15 as constraints 
a designer might be working with. We call these low, 
medium, and high cost architectures, respectively. 

e The degree to which the designer would be willing to 
select an architecture that was not the absolute best 
for the algorithms for which the architecture was opti- 
mized, in order to perform better on the other applica- 
tions. 

In particular, in Tables 8, 9, 10 we considered, for each 
algorithm, the architecture that would do best without ex- 
ceeding the COST parameter. 

When the RANGE parameter was 0, the architecture was 
chosen without considering the other applications at all, and 
the table (in this case the (Runge=O%) portion of the Tables) 
shows, in the rows across, how well that architecture per- 
formed on each application. However, what if the hardware 
designer wanted to optimize for a given algorithm, but knew 
something about the domain and was willing to factor in, at 
least somewhat, other algorithms? In the middle portion of 
the Tables we show what happens when the designer does 
the following: For each algorithm, attempt to pick the best 
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Figure 3. Cost/Speedup scatter diagrams for the original benchmarks 
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Figure 4. CosffSpeedup scatter diagrams for the jammed benchmarks 

architecture, but be willing to back off by as much as 10% 
of performance (the RANGE parameter) in order to make 
the average of the other applications better. For the medium 
cost models, in fact, it is also instructive to see what happens 
when the designer is willing to give up as much as 50% of 
the performance to make the others better. 

For example, in the medium cost tables, the architecture 
chosen as the best for algorithm GEF executed that appli- 
cation with a speedup over the baseline of 8.93. But when 
the RANGE is allowed to go to 50%, the selection mecha- 
nism decides to give up 8 of its ALUs, and with that budget 
buy back another 128 registers (and make some other small 
changes). This has the effect of lowering the GEF speedup 
over the baseline from 8.93 down to 5.97. However, in so 
doing, it makes the overall performance go from an average 
of 3.9 up to 5.8, and it makes A go from a pathological .89 
speedup to 6.82. (Note that in the original model chosen for 
GEF, there were too many ALUs and too few registers for 

an algorithm like A. The compiler gets greedy and gets into 
trouble. This is a known problem, and one hard to avoid with 
schedulers of this nature. The revised architecture choice 
gets back to a more balanced system). 

Finally, we looked at the question of which architecture 
minimized the total running time of all the applications at 
a given cost. Since we used the same mechanism as the 
above (but with the RANGE set to infinity), we reproduced 
the result as the same sort of table. However, in that case 
all the architectures make the same decision, so we only 
show a single line, at the bottom of each table, giving the 
performance of the architecture on the given application. 

. 

Again following the medium cost model picking an ar- 
chitecture for GEF, the picker gives back just a little more 
performance than it had at the 50% RANGE (by making 
changes that are "at the noise level") but improves the over- 
all average from 5.8 to 6.1. 
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Cost=5.0 Range=O% 
ArchDescl(su,c)I A.c C.c D.c Ec G.c H.c GEc GEEc DH.c DHEE( 

A(42256 1 4 4 )  

C(82128 1 4 4 )  

D(82 128 1 4 4 )  

F(8 2 128 1 4 4 )  

G(82128144)(3.84.8) 

H(82 128 1 4 4 )  

GF(8 2 128 1 4 4 )  

GEF(82128 1 8 4 )  
DH(82 128 1 4 4 )  

(3.73.6) 3.60 3.52 3.54 3.43 3.58 3.53 3.52 3.56 3.60 

(3.84.8) 1.05 4.09 6.00 5.72 6.35 6.16 5.86 6.33 6.38 

(3.84.8) 1.05 3.93 @ 6.00 5.72 6.35 6.16 5.86 6.33 6.38 

(3.84.8) 1.05 3.93 4.09 16001 5.72 6.35 6.16 5.86 6.33 6.38 

1.05 3.93 4.09 6.00 (5721 6.35 6.16 5.86 6.33 6.38 

(3.84.8) 1.05 3.93 4.09 6.00 5.72 6.16 5.86 6.33 6.38 

(3.84.8) 1.05 3.93 4.09 6.00 5.72 6.35 16161 5.86 6.33 6.38 
(3.54.8) 1.04 3.93 4.09 4.53 5.72 6.15 6.14 6.31 6.36 

(334.8) 1.05 3.93 4.09 6.00 5.72 6.35 6.16 5.86 6.38 
~ 

lHEF(82128 144)l(3.84.8)1 1.05 3.93 4.09 6.00 5.72 6.35 6.16 5.86 6.33 
Cnsk5.0 Ranee=lO% 

ArchDesc (su,~)  
A(42256144)(3.73.6) 

C(82128 144)  (3.84.8) 

D(8 2 128 1 4 4 )  (3.84.8) 

F(82 128 1 4 4 )  (3.84.8) 

G(8 2 128 1 4 4 )  (3.84.8) 

H(82 128 1 4 4 )  (3.84.8) 

GF(8 2 128 1 4 4 )  (3.84.8) 
GEF(82128144)(3.84.8) 

DH(82128144)(3.84.8) 
tHEF(82128 1 4 4 )  (3.84.8) 

w- ~ ~~~~~~ 

A.c C.c D.c F.c G.c H.c GF.c GEEc DH.c DHEEc 
6.12 3.60 3.52 3.54 3.43 3.58 3.53 3.52 3.56 3.60 

4.09 6.00 5.72 6.35 6.16 5.86 6.33 6.38 

1.05 3.93 6.00 5.72 6.35 6.16 5.86 6.33 6.38 

1.05 3.93 4.09 16001 5.72 6.35 6.16 5.86 6.33 6.38 

1.05 3.93 4.09 6.00 6.35 6.16 5.86 6.33 6.38 

1.05 3.93 4.09 6.00 5.72 6.16 5.86 6.33 6.38 

1.05 3.93 4.09 6.00 5.72 6.35 16161 5.86 6.33 6.38 
1.05 3.93 4.09 6.00 5.72 6.35 6.16 a 6.33 6.38 

1.05 3.93 4.09 6.00 5.72 6.35 6.16 5.86 6.38 
1.05 3.93 4.09 6.00 5.72 6.35 6.16 5.86 6.33 

all(82 128 1 4 4 )  (3.84.8) 11.05 I 3.93 I 4.09 6.00 1 5.72 I 6.35 6.16 5.86 1 
Table 8. Speedup results for low cost (c 5.0) architectures. 

6.33 6.38 

5. Conclusions 

From the above examples, we can see that, when using 
a real-world compiler and code that contains a lot of ILP, 
the architecture choices we make are quite sensitive to the 
application being tailored to. 

By allowing the designer a little freedom to pick less than 
the absolute best implementation for the target applications, 
we can often make dramatic improvements in how that im- 
plementation will process other applications. This certainly 
flies in the face of the concept of “Custom-Fit Processing”, 
especially when we see dramatic losses in performance of 
the original target algorithm that are made to satisfy the 
overall picture. This can be seen most dramatically in the 
medium-cost models, in which several of the algorithms run 
at 60-70% of their performance on a more tailored architec- 
ture, and on the low-cost model, in which one application 
gets into pathologically bad trouble and runs at about 17% 
of its performance on the architecture made for it. 

We believe that, given the maturity and real-world prop- 
erties of the tools we are using, this is probably a realistic 
assessment of what designers will face in doing high-level 
synthesis. If and when the cost of individual chip design 
becomes very much lower than it is today, it will make a lot 

of sense to build chips for the narrowest of embedded appli- 
cations. Today, that seems like a dangerous route to attempt 
without a very strong apriori knowledge of what will run on 
the chip. 
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Cost=lO.O Range=O% 
ArchDescI ( su ,~ )  I A.c C.c D.c Ec G.c H.c GF.c GEEc DH.c DHEFA 
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C( 8 2 256 144)  

D( 8 2 256 1 44) 
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G( 8 2 256 1 4 4) 

H(164128148) 

GF(164 128 148)  

GEF(164 128 148)  

DH(164128148) 

)HEF(164 128 148)  
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9.38 

9.38 
9.38 

9.38 

0.89 

0.89 3.54 3.83 5.14 5.41 9.45 8.93 10.09 

0.89 3.54 3.83 5.14 5.41 9.45 8.39 10.09 

0.89 3.54 3.83 5.14 5.41 9.45 8.39 8.93 110091 
0.89 3.54 3.83 5.14 5.41 9.45 8.39 8.93 10.09 I 9.61 

U 

(6.1 6.6) 

(6.1 6.6) 

(6.1 6.6) 

(6.1 6.6) 

(3.98.7) 

(3.98.7) 

(3.98.7) 

(3.98.7) 
(3.98.7) 

16151 
6.15 
6.15 

6.15 

3.54 

44) 

44) 

44) 

44) 

44) 

84) 

48) 

4.33 

pJ 
4.33 

4.33 

3.83 

U 

(6.1 6.6) 9.38 6.15 E 
(6.1 6.6) 9.38 6.15 4.33 

(6.1 6.6) 9.38 6.15 4.33 

(6.1 6.6) 9.38 6.15 4.33 

(6.1 6.6) 9.38 6.15 4.33 

(5.8 6.6) 6.82 6.15 4.33 

(3.98.7) 0.89 3.54 3.83 

6.13 

6.13 16131 
6.13 

5.14 

)HEF(164 128 148)  

5.72 

5.72 
5.72 

pJ 
5.41 

~ 

(3.98.7) 0.89 3.54 3.83 5.14 5.41 9.45 8.39 8.93 10.09 9.61 

6.35 

6.35 

6.35 

6.35 m 

all( 82256 144)  (6.1 6.6) 

6.16 

6.16 
6.16 

6.16 

8.39 

9.38 I 16.15 I 4.33 I 6.13 I 5.72 6.35 6.16 1 5.86 I 6.33 I 6.38 

5.86 

5.86 
5.86 

5.86 

8.93 

6.33 

6.33 

6.33 

6.33 

10.09 

6.38 

6.38 
6.38 

6.38 

9.61 

9.61 

9.61 

9.61 
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Cost=lO.O RangeSO% 
Arch Descl ( s u , ~ )  I A.c C.c D.c Ec G.c H.c GF.c GEF.c DH.c DHEEi 
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G( 8 2 256 

H( 8 2 256 

GF( 8 2 256 
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Cost=15.0 Range=O% 
Arch Descl ( su ,~ )  1 A.c C.c D.c Ec G.c H.c GEc GEEc DH.c DHEEi 
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9.60 
10.61 

6.3 1: 

6.31 

6.33 

10.58 
10.61 

10.61 

DH(164512 1 4 8 )  

iHEF(168256 1 4 8 )  

ArchDesc 
A(164256248)(6.813.0) 

C(l64512 1 4 8 )  

D(84512 144)  

F(164256248) 

9.14 
9.88 

6.38 

6.38 

6.38 

9.74 

9.88 

9.88 

(7.214.1) 11.04 7.46 3.86 5.25 5.41 10.50 8.39 8.93 E] 9.88 
(7.1 12.2) 10.54 6.43 3.86 5.25 5.41 10.50 8.39 8.93 10.55 10.06 

Cost=15.0 Range=lO% 
( su ,~ )  A.c C.c D.c Ec G.c H.c GEc GEEc DH.c DHEEi 

13.06 5.88 3.52 5.63 4.95 9.68 8.13 8.65 9.60 9.14 

(7.2 14.1) % 3.86 5.25 5.41 10.50 8.39 8.93 10.61 9.88 

(6.1 11.0) 10.72 6.07 6.13 5.42 6.35 6.16 5.86 6.31 6.38 

(6.813.0) 13.06 5.88 3.52 4.95 9.68 8.13 8.65 9.60 9.14 

G(164512148) 

H(1645121 48)  
GF(164512 1 4 8 )  

GEF(1645121 48)  
DH(164512 1 4 8 )  

HEF(164512 1 4 8 )  

L 

(7.214.1) 11.04 7.46 3.86 5.25 

(7.214.1) 11.04 7.46 3.86 5.25 

(7.2 14.1) 11.04 7.46 3.86 5.25 

(7.2 14.1) 11.04 7.46 3.86 5.25 

(7.2 14.1) 11.04 7.46 3.86 5.25 

(7.2 14.1) 11.04 7.46 3.86 5.25 

I 5.41 I 10.50 8.39 8.93 10.61 9.88 

all(164512 1 4 8)1(7.2 14.1) 1 11.04 I 17.46 I I 3.86 I I 5.25 I 5.41 10.50 1 8.39 I 8.93 I I 10.61 I I 9.88 

Table 10. Speedup results for high cost (< 15.0) architectures. 
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