
A Permutation-based Page Interleaving Scheme to Reduce Row-buffer
Conflicts and Exploit Data Locality

Zhao Zhang Zhichun Zhu Xiaodong Zhang
Department of Computer Science

College of William and Mary
Williamsburg, VA 23 187

{ zzhang, zzhu, zhang} @cs.wm.edu

Abstract

DRAM row-buffer conflicts occur when a sequence of
requests on different rows goes to the same memory bank,
causing much higher memory access latency than requests
to the same row or to different banks. In this paper, we an-
alyze the sources of row-buffer conflicts in the context of
superscalar processors, and propose a permutation-based
page interleaving scheme to reduce row-buffer conflicts
and to exploit data access locality in the row-buffer. Com-
pared with several existing schemes, we show that the
permutation-based scheme dramatically increases the hit
rates on DRAM row-buffers and reduces memory stall time
of the SPEC95 and TPC-C workloads. The memory stall
times of the workloads are reduced up to 68% and 50%,
compared with the conventional cache line and page inter-
leaving schemes, respectively.

1 Introduction
Concurrent accesses to multiple interleaved memory

banks are supported in modern computer systems, where
each bank has a row-buffer holding a page of data.’ With
the significant improvement in memory bandwidth, the
DRAM access speed is becoming more crucial to deter-
mine the memory stall time of a program execution [6].
One effective solution to address this issue is to utilize the
available concurrency among multiple DRAM banks, and
to exploit data locality available in the row-buffer of each
DRAM bank. However, conflicting performance benefits
exist between exploiting access concurrency and data lo-
cality in the row-buffer. Memory interleaving scheme de-
signs directly determine the effectiveness of the solution. A
conventional memory interleaving scheme allocates con-
secutively addressed data blocks to consecutive memory
banks using a modular mapping function. The size of the

‘For Direct Rambus DRAM, the row buffer size is one-half page, and
adjacent banks share half-page row buffers with each other.

interleaved data block can be a word, a cache line, multi-
ple cache lines, a page, or multiple pages. In general, using
larger interleaved data blocks leads to more data locality in
each DRAM row-buffer but lower concurrency among the
multiple banks.

Regarding the efforts of exploiting locality, people have
proposed techniques to take advantage of the row-buffer,
which serves as a natural “cache” with a large block size.
Some DRAM manufacturers even add SRAM caches into
the DRAM chips. With the improvement of DRAM row-
buffers in the accumulative size, exploiting row-buffer lo-
cality is becoming more and more effective for memory
system performance improvement. One major bottleneck
limiting this effort comes from DRAM row-buffer con-
flicts which occur when a sequence of requests on different
pages goes to the same bank, causing conflict misses in the
row-buffer. Frequent row-buffer misses can significantly
increase access latency and degrade overall performance.
Compared with a row-buffer hit, a row-buffer miss may
cause additional DRAM precharge time and DRAM row
access time, which will be tens of ns on a typical DRAM.
Thus, the row-buffer hit time could be 30% to 50% less
than a row-buffer miss time.

Regarding the efforts of utilizing concurrency among
the DRAM banks, one commonly used technique is to in-
terleave small data blocks among memory banks. How-
ever, this approach limits the ability to effectively exploit
spatial locality in the row-buffer. To consider the trade-offs
between large and small data block interleaving schemes,
several schemes are proposed. Block interleaving [101
is such an example used in vector supercomputers with
Cached DRAM.

In this paper, we analyze the sources of the row-
buffer conflicts in the context of superscalar processors.
Then we propose a memory interleaving scheme, called
permutation-based page interleaving, to accomplish both
the objectives of utilizing concurrency for reducing row-
buffer conflicts and of exploiting access locality for reusing

0-7695-0924-WOO $10.00 0 2000 IEEE 32

Authorized licensed use limited to: ULAKBIM UASL - Bilkent University. Downloaded on March 04,2021 at 09:42:51 UTC from IEEE Xplore. Restrictions apply.

mailto:cs.wm.edu

the data in the row-buffer. The strategy is to generate the
memory bank index by XOR-ing two portions of mem-
ory address bits. The hardware cost of the interleaving
scheme is trivial, and additional runtime overhead involved
is negligible. We evaluate the performance of the proposed
interleaving scheme for SPEC95 and TPC-C workloads
with execution-driven simulations. Compared with exist-
ing schemes, we show that the permutation-based scheme
dramatically increases the hit rates on DRAM row-buffers
and reduces memory stall time of the workloads. The
memory stall times of the workloads are reduced up to 68%
and 50%, and the execution times are reduced up to 38%
and 19%, compared with the conventional cache line and
page interleaving schemes, respectively.

We discuss some issues of memory system design in
section 2, and analyze the sources of row-buffer conflicts in
section 3. We propose a permutation-based page interleav-
ing scheme in section 4. After introducing our experimen-
tal environment in section 5 , we present performance com-
parisons between the permutation-based page interleaving
and three other existing schemes in section 6. Other related
work is discussed in section 7. Finally, we summarize the
work in section 8.

Parameter
m

Cache-related

2 Memory System Considerations
2.1 Open-page and Close-page Strategies

An access to DRAM consists of row access and column
access. During row access, a row of data (which is also
called a page of data) containing the desired data is loaded
into the row buffer. During column access, the data is read
or written according to its column address. The page can be
either open or closed after an access. Both strategies have
their advantages and limitations. In the open-page strategy,
if the next access to the same bank goes to the same page,
only column access is necessary.* However, if the next ac-
cess is a row-buffer miss, the DRAM precharge will not
start until the request arrives. The close-page strategy al-
lows the precharge to begin immediately after the current
access. Which strategy will win mainly depends on the ac-
cess patterns of applications. If the row-buffer hit rate is
high, the open-page strategy should be more beneficial.

Most of our discussions in the rest of the paper are in
the context of the open-page strategy. We propose a mem-
ory interleaving scheme to improve the row-buffer hit rate.
Thus, the open-page strategy is a natural choice for our
purpose since it reduces the memory access time for page
hits.

2.2 Concurrent Memory Accesses
Most DRAM systems nowadays have multiple banks so

that DRAM access operations can be performed on differ-

write accesses.
cycle is normally required for bus tum-around between read and

Parameter descriptions
the length of the memory address in bits.
Parameter descrimions

b

t

the cache size in bytes.
the number of sets in the cache.
the number of blocks in a set.
the block size in bytes.
the length of the cache set index in bits.
s = l o g s = log C / (B N) .
the length of the cache block offset in bits.
b = log B.
the length of the cache tag in bits.

~

P

R
k

P
r

t = TTI - (S + b).
Memory-related Parameter descriptions

K the number of memory banks.
the page size in bytes, which is also the size
of the rowhuffer.
the number of pages (rows) in a memory bank.
the length of the memory bank index in bits.
IC = log K .
the length of the page offset in bits. p = log P.
the length of the page index in bits.
T = log R = m - (k + p) .

I " I
Memory-related I Parameter descriptions

K 1 the number of memory banks.

ent banks in parallel. Contemporary superscalar processors
exploit the instruction-level parallelism (ILP) aggressively
by performing out-of-order executions, speculative execu-
tions, and non-blocking loadlstore. A superscalar proces-
sor may issue multiple memory requests simultaneously.
Although the processor can keep running before the out-
standing memory requests are finished, its ability to toler-
ate long memory latency is still limited [22].

All concurrent memory accesses can be classified into
the following three categories:

1 . Accesses to the same page in the same bank. These
accesses fully exploit the spatial locality and can be
well pipelined. Precharge and row access are needed
to initiate the first access. Subsequent accesses only
require column access.

2. Accesses to direrent pages in different banks. Since
the accesses can be done in parallel, the correspond-
ing operations can also be well pipelined.

3. Accesses to different pages in the same bank. These
accesses cause row-buffer conflicts. Precharge and
row access are needed to initiate each access. The
operations cannot be pipelined. Thus, the access pat-
terns belonging to this category have much higher la-
tency than those belonging to the first two categories,
and only partially utilize the memory bandwidth.

2.3 Framework of Interleaving Schemes
A memory system is characterized by a group of pa-

rameters in Table l . Figure l shows the bit representations
of a memory address for conventional cache line and page

33

Authorized licensed use limited to: ULAKBIM UASL - Bilkent University. Downloaded on March 04,2021 at 09:42:51 UTC from IEEE Xplore. Restrictions apply.

cache-related
representation

cache line
inteleaving

page

Figure 1:

inteleaving page maex I ban* maex page anset

Bit rcDrescntations of a memorv addrcss for both cache ad-

1 - k

dressing and memory addressing with conventional cache line and page
interleaving schemes.

interleaving, and gives the relationship between the cache-
related representation and the memory-related representa-
tion for given memory hierarchical configuration.

The cache line interleaving scheme uses the k bits above
the low order b bits (L2 block offset) as the memory bank
index. In the uniprocessor system, the processor usually re-
quests data from the memory in a unit of an L2 cache line.
The cache line interleaving scheme attempts to access mul-
tiple memory banks uniformly (e.g. [5]) . However, since
continuous cache lines are distributed in different memory
banks, this scheme may not effectively exploit the data lo-
cality in the row buffer.

The conventional page interleaving scheme uses the k
bits above the low order p bits (page offset) as the bank
index. This balances between exploiting the data local-
ity in row buffer and referencing memory banks uniformly.
However, it may cause severe row buffer conflicts in some
typical cases which we will discuss next.

The high order interleaving scheme uses the high order
k bits as the bank index. This exploits higher data local-
ity than low order interleaving, but also makes accesses to
multiple banks less uniform. In addition, continuous ac-
cesses in DRAMS crossing the page boundary will incur
precharge and row access. Thus, there is no benefit to ex-
ploit spatial locality beyond the page size.

3 Sources of Row-buffer Conflicts
In the conventional page interleaving, there are three

major sources for row-buffer conflicts and conflict misses:
L2 cache conjlict misses, L2 cache writebacks, and specijic
memory access pattems.

3.1 L2 Conflict Misses
We will use the following example to show that data ac-

cess patterns causing L2 conflict misses will again cause
DRAM row-buffer conflicts and conflict misses under
some conditions.

double X I T I , Y [T l , sum;
f o r (i = 0 ; i < T; i ++)

sum += X [i l * Y [i l ;
Without losing generality, we assume the L2 cache is

direct mapped, arrays X and Y are contiguously allocated

in the memory, and the address distance between X[O] and
Y[O] is a multiple of the cache size. Then a pair of data
elements X [i] and Y [i] (i = 0 , . . . , T - 1) will map to the
same cache line. Specifically, if a cache line holds E el-
ements, the sequential accesses to X[O], Y[O], . . . , X [E -
11, Y [E - 11 will cause L2 conflict misses and generate the
following accesses to the main memory:

5, Y, 2951,. . . l X , Y

where z and y are the block addresses of X[i] and Y [i]
(i = 0 , . . . , E - l), respectively.

What will happen in the DRAM banks for this sequence
of memory accesses? To answer this question, we need
to look into the bit representations of these addresses. For
modern computer systems, the L2 cache size is much larger
than the row-buffer (page) size. In addition, the associativ-
ity of L2 cache and the number of memory banks are lim-
ited. Thus, the bank index is a part of the L2 set index, and
the page index comprises the L2 tag (refer to Figure 1).

Since x and y are block addresses mapped to the same
cache line, their set indices are the same. Thus, z and y
share the same bank index. On the other hand, since z and
y are different block addresses, their cache tags must be
different. Thus, their page indices are also different. So
block addresses z and y are mapped to the same bank but
on different pages. In this example, each L2 conflict miss
(except the first one) will again cause a DRAM row-buffer
conflict miss.

In summary, any L2 conflicting addresses (having the
same L2 set index but different L2 tags) are row-bufeer
conjicting (having the same bank index but different page
indices), providing that the L2 cache size divided by the L2
cache associativity is larger than the accumulated size of
all the DRAM row-buffers. For similar reason, in conven-
tional cache line interleaving, any L2 conflicting addresses
are also row-buffer conflicting.

3.2 L2 Writebacks
The writeback policy is commonly used in memory sys-

tems to preserve data consistency and system efficiency.
When an L2 cache miss happens, if the replaced cache
block is dirty, it must be written back to the memory or the
write buffer before the missed block is read from the mem-
ory. Since the read address and the write address belong
to different memory locations mapped to the same cache
set, they are L2 conflicting addresses. Consequently, they
cause a row-buffer conflict under page interleaving. Nor-
mally, programs have spatial locality. When a sequence
of replacement on dirty cache blocks happens, the reads
and writes conflict on the row-buffer and cause frequent
row-buffer conflict misses where the pages with the read
addresses or the write addresses are replaced and retrieved
back and forth.

34

Authorized licensed use limited to: ULAKBIM UASL - Bilkent University. Downloaded on March 04,2021 at 09:42:51 UTC from IEEE Xplore. Restrictions apply.

I_ , --.+ + ___d
I ! 1 c , -.-,-..I

Write buffers can be used to reduce processor stalls
waiting for memory writes [7, 201. The write buffer can -
be implemented with read bypass (read misses have higher
priority than writes) or with no-bypass. The write buffer
with no-bypass will not change the access patterns causing
row-buffer conflicts. The write buffer with read bypass can
alleviate row buffer conflicts by postponing the writebacks
and grouping consecutive reads together. The effective-
ness of the write buffer depends not only on its size, but
also on when the buffered data are written to the memory.
One write policy for reducing the row-buffer conflicts is to
write the buffered data to memory only when the number Figure 2: The permutation-based page interleaving scheme

pending writes reaches a threshold. However, since write-
backs are not issued immediately when the memory sys-
tem is free, the delayed writebacks may compete with sub-
sequent reads and increase their latencies. Another write
policy is to write the buffered data to main memory when-
ever there are no outstanding reads. However, the mem-
ory access patterns do not change so much in this case. In
Section 6, we will show with experiments that using write
buffers may reduce row-buffer miss rates but fails to reduce
memory stall time effectively.

3.3 Specific Memory Access Patterns
Some specific memory access patterns may cause row-

buffer conflicts. For example, when the distance of mem-
ory locations between consecutive data elements being ac-
cessed is a multiple of the accumulative size of all row
buffers of the memory banks, each element is stored in a
different page of the same memory bank. Thus, continu-
ous accesses will cause row-buffer conflicts.

4 A Permutation-based Page Interleaving
In order to address the problem of row-buffer conflicts

caused by the three sources discussed in the previous sec-
tion, we introduce a new memory interleaving scheme
which generates different bank indices by retaining spatial
locality and by reducing row-buffer conflicts. An attrac-
tive technique of generating bit patterns used in memory
addressing is to XOR the original bit pattern with another
bit pattern [141. Our interleaving scheme is based on this
technique.

pages among banks for exploiting concurrency. Other de-
sign choices could be used with the same mapping princi-
ple. We will discuss these later.

Let (um-lum-2 . . . uo) be the binary representation of
a memory address A. Then the bank index under the con-
ventional page interleaving, I , is (U ~ + ~ - I . . . u p) . The new
bank index after applying the permutation-based page in-
terleaving scheme, I f , is

U: = ai CB um-t+iPp (I)
This interleaving scheme has the following properties,

which are useful in achieving the objectives of exploiting
both the concurrency and the data locality:

1. L2-conflict addresses are distributed onto different
bunks.
Given any two L2-conflict addresses, their bank in-
dices in conventional page interleaving are identi-
cal, but their t-bit L2 tags are different. As long as
the low order k bits of the two tags are different,
the k-bit XOR function will produce two different
bank indices. Figure 3 shows an example of map-
ping four L2-conflict addresses onto 16 banks. All
the four addresses are mapped onto the same bank
in conventional page interleaving. After applying the
permutation-based page interleaving scheme, they are
distributed onto four different banks.

2. The spatial locality of memory references is pre-
served.
All addresses in the same page are still in the same

fo r i = p , . . . , IC + p - 1

4.1 The Scheme and its Properties page after applying our interleaving scheme.

Our memory interleaving scheme, called permutation-
based page interleaving, is shown in Figure 2. The low
order k bits of the L2 tag and the original bank index are
used as the input to a k-bit bitwise XOR logic to generate
the new bank index. The page index and the page offset
are unchanged. The selection of k bits from the bank index
under the conventional page interleaving scheme keeps the
same degree of data locality, while the selection of k bits
from the L2 tag attempts to make a wide distribution of

3. Pages are uniformly mapped onto multiple memory
banks.
The permutation-based page interleaving scheme still
uniformly maps continuous pages onto multiple mem-
ory banks, since the conventional bank index informa-
tion is used in the mapping. Figure 4 gives an example
to show that continuous pages are uniformly mapped
onto four memory banks by both the conventional and
the permutation-based page interleaving schemes.

35

Authorized licensed use limited to: ULAKBIM UASL - Bilkent University. Downloaded on March 04,2021 at 09:42:51 UTC from IEEE Xplore. Restrictions apply.

..
m11
0,M
0101
0110

I I 1.. /'. -.

"ry tp-

Figure 3: An example of mapping four memory addresses with the con-
ventional page interleaving and the permutation-based page interleaving
schemes. Only the k-bit bank index and the low order k-bit of L2 tag are
shown for each address.

One would think that spatial locality of memory refer-
ences could be maintained and page conflicts could be re-
duced by using only the low order k bits of the L2 tag as the
bank index, thus avoiding the XOR operation. The limit of
this approach is that it maps a large fraction of the mem-
ory space (of the L2 cache size) onto the same bank. This
would create hot spots on some memory banks and intro-
duce a new source of page conflicts.

There are several alternatives to the selection of k bits
among the t-bit L2 tag. Since programs have data local-
ity, it is more likely that higher order bits of L2-conflict
addresses are the same. Our experiments show that choos-
ing the low order k bits achieves or approaches the lowest
row-buffer miss rate for all the benchmark programs used.

Other operations such as "add" and "subtract" can also
be used to generate the bank index for reducing row-buffer
conflicts. However, since this operation is done for each
memory access, it should be executed as fast as possible.

We will later show in the paper that the risk for the XOR
operation to cause more row-buffer conflicts is very small
in practice. A major reason for this is discussed as follows.
The memory space can be divided into segments in the unit
of the cache size. The XOR operation uses the same k-bit
L2 tag for the addresses in each segment. Thus, it does
not change the conflicting relationship between any pair
of addresses in each segment, which is defined as whether
the pair is mapped onto the same row-buffer or not. Our
analysis also shows that the XOR operation may increase
the chance of conflicts only for addresses in some specific
segment boundaries. Since the cache size is sufficiently
large in current computer systems, these addresses form a
very small subset in the entire memory address space.

4.2 Correctness of the Scheme
The mapping function of a memory interleaving scheme

must satisfy the one-to-one property [lS]. For a given
memory address A, we can obtain its memory location A'

-. . ..
L2 tag

M

01

10

11

Bank0 Bank? Bank 3 Bank 1 Bar*? Bank3

Figure 4: An example of mapping continuous pages onto 4 memory
banks under the conventional and the permutation-based page interleav-
ing schemes, where L is the number of pages the L2 cache can hold.

using the permutation-based interleaving scheme by com-
puting its bank index I' using equation (1). Conversely,
for a given memory location A', we can obtain its ad-
dress A by computing (uk+,-~...a,) as U: @ aA-t+i-p
for i = p , . . . , k + p - 1. In modern computer sys-
tems, it is always true that (s + b) > (k + p) . Thus, for
i = p , . . . , k + p - 1,

- U: e aA-t+i-, - (ai e am--t+i-p) @ am-t+i--p = ai.
(2)

Thus, the permutation-based mapping function has the
one-to-one property.

4.3 Comparisons with the Swapping Scheme
Zurawski, Murray, and Lemmon [28] present an inter-

leaving scheme that swaps partial bits of the L2 tag and
partial bits of the page offset, which is used in the Al-
phastation 600 5-series workstations. We call i t the swap-
ping scheme in this paper. Wong and Baer [27] study the
performance of the swapping scheme for selected SPEC92
benchmark programs by finding the optimal number of bits
to be swapped for these programs.

Figure 5 describes the swapping scheme. This scheme
maps every 2" L2 conflict addresses (with the same

. . . a,-,)) to the same page. Thus, if two L2 con-
flict misses have the same high order n bits in their page
offsets, they will cause page hits. However, if two L2 con-
flict misses have different high order n bits in their page
offsets, they will still cause page conflicts. In addition,
the swapping scheme may degrade the spatial locality of
memory references because the block size of continuous
addresses inside a page is decreased from 2, to 2 P P n . The
more bits that are swapped using this method, the more
conflict misses can be removed, but the less spatial locality
is retained. In contrast, the permutation-based scheme re-
duces page conflicts and preserves data locality at the same
time.

The swapping scheme attempts to convert accesses to
different pages in the same bank into accesses to the same
page. The permutation-based scheme attempts to convert
accesses to different pages in the same bank into accesses

36

Authorized licensed use limited to: ULAKBIM UASL - Bilkent University. Downloaded on March 04,2021 at 09:42:51 UTC from IEEE Xplore. Restrictions apply.

I c

CPU Clock rate
L1 inst. cache
L 1 data cache

page index page onset

Figure 5: The swapping scheme

500 MHz
32 Kbytes, 2-way, 32-byte block
32 Kbytes, 2-way. 32-byte block

to different banks. The permutation-based scheme not only
reduces the row-buffer conflicts of current accesses, but
also potentially increases the row-buffer hit rates for sub-
sequent accesses.

row buffer size
DRAM precharge time
DRAM row access time
DRAM column access time

5 Experimental Environment
Performance evaluation is based on execution-driven

simulations. We use the SPEC95 [23] and the TPC-C [24]
as workloads, and use Simplescalar [2] as the base sim-
ulator. The database system we have used to support the
TPC-C workload is the PostgreSQL (version 6.5) [121.

In order to compare different interleaving schemes, we
have modified two programs in the Simplescalar tool set:
sim-cache and sim-outorder. We use the modified sim-
cache to measure the row buffer miss rate to compare dif-
ferent interleaving schemes on different memory system
configurations at a small simulation cost. This allows us to
investigate a wide range of choices. We use sim-outorder
to measure the execution time and collect detailed statis-
tics of workloads. In addition to the DRAM, the memory
controller and a bus with contention are emulated. Bank
contention, DRAM precharge, DRAM refresh, and proces-
sorlbus synchronization are also considered in the simula-
tion.

We have used sim-outorder to configure an 8-way pro-
cessor, to set the loadstore queue size to 32, and to set the
register update unit size to 64 in the simulation. The pro-
cessor allows up to 8 outstanding memory requests, and the
memory controller has the ability to accept up to 8 concur-
rent memory requests. Reads are allowed to bypass writes.
The outstanding writes are scheduled to memory modules
as soon as there are no outstanding reads. Table 2 gives the
major architectural parameters. The 500 MHz processor
and the 256-bit (32 bytes), 83 MHz data bus are used in
Compaq Workstation XPlOOO [4]. All times are converted
into processor cycles in the simulation.

6 Performance Evaluation
Using execution-driven simulations with the SPEC95

and TPC-C workloads, we have evaluated the permutation-
based page interleaving scheme by comparing it with three

2-8 Kbytes
36 ns
36 ns
24 ns

LI cache hit time
L2 cache
L2 cache hit time
memory bus width 32 bytes
memorv bus clock rate 83 MHz

2 Mbytes, 2-way. 64-byte block

I number of memorv banks I 4 ~ 2 5 6 1

Table 2: Architectural parameters of simulation

other interleaving schemes: cache line interleaving, page
interleaving, and swapping.

6.1 Comparisons of Row-buffer Miss Rates
Figure 6 presents the row buffer miss rates of SPEC95

benchmark programs and the TPC-C workload among
the four interleaving schemes: the cache line interleaving
(cache line), the page interleaving (page), the swapping
interleaving (swap), and our permutation-based page inter-
leaving (permutation) schemes. The memory system con-
tains 32 memory banks. The row-buffer size of each bank
is 2KB. This is a representative high performance memory
system configuration [131.

We have following observations based on our experi-
ments:

Most programs using cache line interleaving have the
highest row buffer miss rates compared with three
other interleaving schemes. The row-buffer miss rates
of ten benchmark programs out of the total nineteen
programs are higher than 90% using cache line in-
terleaving. Since cache line interleaving is normally
associated with the close-page mode, the high row-
buffer miss rates do not necessarily mean poor overall
performance.
All the programs except su2cor using page interleav-
ing have lower miss rates than those using cache line
interleaving. However, the miss rate reductions are
not significant for most programs.
Our experiments show that the swapping scheme
reduces the row-buffer miss rates for most of the
benchmark programs compared with page interleav-
ing. However, the row-buffer miss rates of six pro-
grams using the swapping scheme are higher than
those using page interleaving. This is because the
swapping scheme could make programs exploit less
locality than page interleaving, as we have discussed
in Section 4.
For almost all programs, our permutation-based in-
terleaving scheme obtains the lowest row-buffer miss

31

Authorized licensed use limited to: ULAKBIM UASL - Bilkent University. Downloaded on March 04,2021 at 09:42:51 UTC from IEEE Xplore. Restrictions apply.

Figure 6: Row buffer miss rates for different interleaving schemes when the number of banks is 32, and the row buffer size is 2KB. The left figure
contains SPECfp95 programs, and the right figure contains SPECint95 programs and TPC-C workload.

rates compared with the other three interleaving
schemes. The only exception is m88ksim whose
miss rate is 6% higher than that using the swap-
ping scheme. Our experiments show the permutation-
based interleaving scheme significantly reduces the
row-buffer miss rates. For example, compared with
the best performed interleaving scheme among the
other three for each program, the permutation-based
interleaving scheme can further reduce the row-buffer
miss rate by more than 80% for five programs, and by
more than 50% for eight programs.

6.2 Effects of Memory Organization Variations
Changing the number of memory banks and the row-

buffer size of each memory bank, we have evaluated the
effects of memory system organization variations on the
interleaving schemes and on memory performance. Due to
the page limit, we only present the performance of selected
program applu, which is memory intensive and well repre-
sentative for the group of workloads. Figure 7 shows the
row-buffer miss rates of the program using the four inter-
leaving schemes as the number of banks varies from 4 to
256 and the row-buffer size varies from 2 KB to 8 KB.

For each memory system variation, our experiments
show that the permutation-based page interleaving scheme
reduces the row-buffer miss rate dramatically. For exam-
ple, when the number of memory banks is 16 and the row-
buffer size is 4 KB, the permutation-based interleaving
scheme reduces row-buffer miss rates by 82%, 75%, and
72%, compared with the cache-line interleaving, the page
interleaving, and the swapping schemes, respectively. We
also show that the permutation-based scheme reduces row-
buffer miss rate more closely proportional to the increase
in the number of memory banks than the other three inter-
leaving schemes. The reason this scheme scales well with
the number of memory banks is related to its bank index
generation, which is able to widely distribute the conflicted

pages among the memory banks. The larger the number
of memory banks, the more effective of the permutation-
based bank index generation.

6.3 Effects of Write Buffers
Among the nineteen programs we studied, four pro-

grams do not have memory write operations. For the rest
fifteen programs, the ratios of the number of memory stores
to the number of memory loads range from 0.26 to 0.84.
Using SPEC95 programs mgrid and applu as examples,
we show the effects of write buffers with different write
policies on the row-buffer miss rates. The performance of
the other workloads is consistent with that of these two.
Figure 8 shows the row-buffer miss rates of mgrid and ap-
p h on a memory system of 32 banks with the row-buffer
size of 2KB in each bank. We have compared the follow-
ing three write policies: write with no-bypass (reads are not
allowed to bypass writes), write after reaching the thresh-
old (writes are scheduled to memory banks only when the
number of outstanding writes reaches a threshold - four
in our experiments), and write when memory is idle (writes
are scheduled to memory banks whenever there are no out-
standing reads).

As we have discussed in Section 3, postponing writes
using write buffers could reduce the row-buffer miss
rate. However, our experiments show that the existence
of write buffers cannot reduce the row-buffer miss rate
as effectively as the permutation-based page interleaving
scheme does. For example, when the write after reach-
ing the threshold policy is used for program applu, the
permutation-based scheme can still reduce the row-buffer
miss rates by 87%, 65%, and 74%, compared with cache
line interleaving, page interleaving, and swapping, respec-
tively.

Although workloads scheduled by the write after reach-
ing threshold policy normally get lower row-buffer miss
rates than those scheduled by the policy of write when
memory is idle, the write after reaching threshold policy

38

Authorized licensed use limited to: ULAKBIM UASL - Bilkent University. Downloaded on March 04,2021 at 09:42:51 UTC from IEEE Xplore. Restrictions apply.

. $6 12 64 12s *%

Figure 7: Row buffer miss rates of program applu using four interleaving schemes: the cache line, the page, the swapping, and the permutation-based
interleaving. The number of memory banks changes from 4 to 256. The performance results in the left figure, the middle one, and the right one correspond
to row buffer sizes of 2KB, 4KB, and 8KB, respectively

Figure 8: Row buffer miss rates using the three write policies: write
with no-bypuss (no-bypass), write after reaching the rhreshold (thresh-
old), and wrire when memory is idle (idle). The upper figure corresponds
to mgnd, and the bottom one corresponds to applu. The number of mem-
ory banks is 32, the row buffer size is 2KB.

may cause higher total execution time due to longer mem-
ory stall time. For example, our experiments show that
program mgrid scheduled by the write after reaching the
threshold policy reduces the row-buffer miss rate using
page interleaving scheme by 48% compared with the pol-
icy of write when memory is idle, but its total execution
time is 12% longer. For this reason, the policy of write
when memory is idle is used for comparing the overall per-
formance of different interleaving schemes in our study.

6.4 Comparisons of Memory Stall Times
We have measured the memory access portions of CPIs

of the SPEC95 programs and the TPC-C workload to com-

pare the four interleaving schemes. In order to show the
memory stall portion in each program, we used a method
similar to that presented in [I] and [6]. We simulated a
system with an infinitely large L2 cache to eliminate all
main memory accesses. The difference between the exe-
cution time on this "perfect" system and that on a system
using the investigated interleaving scheme is defined as the
memory stall portion of the program on the system using
the interleaving scheme.

We have only studied the SPECfp95 programs and the
TPC-C workload because memory accesses only account
for a negligible portion in the total execution time for the
SPECint95 programs. Figure 9 presents the memory stall
portion of the SPECfp95 programs and the TPC-C work-
load using the four interleaving schemes: the cache line,
the page, the swapping, and the permutation-based inter-
leaving schemes. The close-page mode is used for cache
line interleaving, while the open-page mode is used for the
other three schemes.

Compared with page interleaving, our permutation-
based interleaving scheme is able to reduce the memory
stall time of these programs by 16% to 50%. The aver-
age memory stall time reduction for all the SPECfp95 pro-
grams and the TPC-C workload is 37%. Compared with
the swapping scheme, our scheme can reduce the memory
stall time of these programs by 14% to 53%. The average
memory stall time reduction is 33%.

Compared with cache line interleaving, the permutation
based interleaving scheme is able to reduce the memory
stall time of these programs by 21% to 68%. The only
exception is for program su2cor, where the memory stall
time is increased by 11%. The average memory stall time
reduction is 36%. Here is the reason for the exception.
Although the permutation-based scheme does reduce the
row-buffer miss rate by 8% for su2cor compared with the
cache line interleaving scheme, the row-buffer miss rate is
still as high as 70%. Because cache line interleaving is
combined with close-page mode, the precharge can begin

39

Authorized licensed use limited to: ULAKBIM UASL - Bilkent University. Downloaded on March 04,2021 at 09:42:51 UTC from IEEE Xplore. Restrictions apply.

Figure 9: Normalized memory stall portion of the SPECfp95 programs
and the TPC-C workload using the four interleaving schemes. All the
stall time values are normalized to that using the cache line interleaving
scheme. The number of memory banks is 32, and the row buffer size is
2KB.

earlier than in the open-page mode for a row-buffer miss.
When the row-buffer miss rate is so high, the benefit of
a row-buffer hit cannot offset the penalty caused by late
precharge in open-page mode. Thus cache line interleaving
outperforms the other schemes which use the open-page
mode for this program.

We have also made performance comparisons between
cache line interleaving and page interleaving. Among the
nine programs we have studied, cache line interleaving out-
performs.page interleaving for seven programs.

The swapping scheme performs better than cache line
interleaving for four programs but worse for five programs.
For those four programs, the swapping scheme effectively
reduces the row-buffer miss rate so that open-page mode is
more beneficial than close-page mode. For most programs,
the swapping scheme performs better than page interleav-
ing because the swapping scheme reduces row-buffer con-
flicts. But for two of these nine programs, the swapping
scheme achieves worse performance than page interleaving
because data locality cannot be retained after the “swap-
ping”.

7 Other Related Work
Hsu and Smith propose and study several memory in-

terleaving schemes which can both increase data locality
and avoid hot banks in vector supercomputers with Cached
DRAM [IO]. There are several other research papers deal-
ing with the bank conflict problem of vector accesses in
vector supercomputers. Authors in [8] and [19] attempt
to use the prime memory systems to address the conflict
issues. Other papers focus on the memory interleaving
schemes on vector systems [3, 15, 17, 18, 21, 251. Au-
ttiors in [9], [3], and [I71 study the skew schemes. Rau,

Schlansker, and Yen propose a pseudo-random interleav-
ing technique using the XOR function to randomize the
mapping of references to memory modules in [151. Their
scheme can eliminate the occurrence of long clusters due to
structured data access. Sohi studies permutation-based in-
terleaving schemes which can improve memory bandwidth
for a wide range of access patterns for vector computers
[21]. Valero, Lang, and Ayguadt [25] divide the mem-
ory address into several portions according to the width of
bank index, then XOR all the address portions to gener-
ate the bank index. Their method can avoid bank conflict
due to power-of-two strides in vector machines. Seznec
and Lenfant [181 propose the Interleaved Parallel Scheme,
which uses the XOR operation and parameters related to
the numbers of processors, logical memory banks, and
physical memory banks to induce more equitable distribu-
tion over memory banks for a wider set of vectors than the
normal mappings.

In contrast to above cited interleaving schemes, our
major objective is to reduce the conflicts of DRAM row-
buffers. Concurrent accesses to the same bank can be well
pipelined in a contemporary DRAM system as long as they
hit the row-buffer. In vector machines, concurrent accesses
to the same bank always cause bank conflicts and cannot
be pipelined.

Besides memory bank interleaving techniques, there are
other approaches to address the memory latency problem,
such as blocking-free cache, prefetching, thread changing,
and data prediction and speculation [26].

8 Conclusion
We have shown that the conflicts and conflict misses

of DRAM row-buffers significantly increase memory stall
times. We have analyzed their sources in the context of su-
perscalar processors with two levels of caches. Our study
indicates that the miss rates of row-buffers are mainly de-
termined by the ways data are interleaved among the mem-
ory banks. Conventional schemes, such as cache line and
page interleaving, could not effectively exploit both the
concurrency of multiple banks and data locality in the row-
buffer of each bank. Aiming at achieving the both objec-
tives, we have proposed a memory interleaving scheme,
called permutation-based page interleaving. By using the
fast exclusive-OR operation to generate the bank index,
our scheme can dramatically reduce the row buffer miss
rates for SPEC95 and TPC-C workloads compared with the
two conventional interleaving schemes and an existing op-
timized commercial scheme. Our execution-driven simula-
tions show that the permutation-based scheme outperforms
the cache line interleaving, the page interleaving, and the
swapping schemes by reducing the average memory stall
times of the workloads by 36%, 37%, and 33%, respec-
tively, In terms of overall performance, the permutation-

40

Authorized licensed use limited to: ULAKBIM UASL - Bilkent University. Downloaded on March 04,2021 at 09:42:51 UTC from IEEE Xplore. Restrictions apply.

based scheme reduces the average execution times of the
workloads by 12%, lo%, and 8%, compared with the cache
line interleaving, the page interleaving, and the swapping
schemes, respectively.

The potential performance penalty of the permutation-
based scheme is the exclusive-OR operation for generating
each memory bank index. For a modern computer system
with multiple levels of caches, this operation is not in the
critical path, and can be overlapped with operations above
this level in the memory hierarchy. Our experiments show
that the additional runtime overhead involved is negligible
compared with effective reductions of memory stall times.
For example, when using the permutation-based page inter-
leaving scheme, the average memory access latency of the
workloads is around 50 CPU cycles, while the exclusive-
OR operation only takes about one cycle [113.

Using memory access scheduling techniques to exploit
row-buffer locality and concurrency is another attractive
approach (e.g. [161). We believe the combination of access
scheduling and the permutation-based interleaving scheme
can further improve memory performance.

Acknowledgment:
We appreciate the helpful comments from the anonymous
referees. We thank Bill Bynum for reading the paper and
for his constructive suggestions. This work is supported
in part by the National Science Foundation under grants
CCR-94007 19 and CCR-98 12 1 87, and EIA-9977030, by
the Air Force Office of Scientific Research under grant
AFOSR-95- 1-02 15, and by Sun Microsystems under grant

\

EDUE-NAFO-980405.

References

D. Burger, J . R. Goodman, and A. Kagi. Memory bandwidth lim-
itations of future microprocessors. In Proc. of the 23nd Annual
Internutionul Synrposium on Computer Architecture, pages 78-89,
1996.
D. C. Burger and T. M. Austin. The SimpleScalar Tool Set, Version
2.0. Technical Report CS-TR- 1997- 1342, University of Wisconsin,
Madison, June 1997.
C.-L. Chen and C.-K. Liao. Analysis of vector access performance
on skewed interleaved memory. In Proc. ufthe 16th Annual Inter-
national Symposium on Computer Architecture, pages 387-394,
1989.
Compaq Computer Corp. Technology ,for performance: Compuq
prujessionul workstation XPIOOO, Jan. 1999. White paper (docu-
ment number ECG050/0199).
V. Cuppu and B. Jacob. Organizational design trade-offs at the
DRAM, memory bus, and memory controller level: Initial results.
Technical Report UMD-SCA-TR- 1999.2, University of Maryland,
Nov. 1999.
V. Cuppu, B. Jacob, B. Davis, and T. Mudge. A performance com-
parison of contemporary DRAM architectures. In Proc. ufthe 26th
Annual International Symposium on Computer Architecture, pages
222-233, May 1999.
J. S. Emer and D. W. Clark. A characterization of processor per-
formance in the VAX-I 1/780. In Proc. u f f h e 11th Annual Inter-

national Symposium on Cumputer Architecture, pages 301-3 IO,
1984.

[8] Q. S . Gao. The Chinese remainder theorem and the prime memory
system. In Proc. of the 20th Annual International Symposium on
Computer Architecture, pages 337-340, May 1993.

[9] D. T. Harper 111 ahd J. R. Jump. Performance evaluation of vector
accesses in parallel memories using a skewed storage scheme. In
Proc. (f the 13th Annual International Symposium on Computer
Architecture, pages 324-328, 1986.

[IO] W.-C. Hsu and J . E. Smith. Performance of cached DRAM oga-
nizations in vector supercomputers. In Proc. of the 20th Annual
International Symposium on Computer Architecture, pages 327-
336, May 1993.

[I I] W. L. Lynch, G. Lauterbach, and J. 1. Chamdani. Low load la-
tency through sum-addressed memory (SAM). In Pruc. ofthe 25th
Annual International Symposiunr on Conrputer Architecture, pages

[121 PostgreSQL Inc. PustgreSQL 6.5. http:Nwww.postgresql.org.
[131 Rambus Inc. 256D88-Mbit Direcr RDRAM, 2000.

http://www.rambus.com/developer/downloads/rdram~256s~~60~1O.pdf.
[141 B. R. Rau. Pseudo-randomly interleaved memory. In Proc. uf the

18th Annual International Symposium on Computer Architecture,
pages 74-83, 1991.

[IS] B. R. Rau. M. S . Schlansker, and D. W. L. Yen. The CYDRA 5
stride-insensitive memory system. In Pruc. of the I989 Interna-
tional Conference on Parallel Processing, volume I , pages 242-
246, 1989.

[I61 S. Rixner, W. J . Dally, U. J. Kapasi, P. Mattson, and J . D. Owens.
Memory access scheduling. In Proc. uf the 27th Annual lnter-
national Symposium on Computer Architecture, pages 128-138,
2000.

[I71 T. Sakakibara, K. Kitai, T. Isobe, S. Yazawa, T. Tanaka, Y. In-
agami, and Y. Tamaki. Scalable parallel memory architecture with
a skew scheme. In Proc. of the 1993 International Conference on
Superconiputing, pages 157- 166, 1993.

[181 A. Seznec and J. Lenfant. Interleaved parallel schemes: Improv-
ing memory throughput on supercomputers. In Proc. of the 19th
Annual Internutionul Symposium on Computer Architecture, pages
246255, 1992.

[I91 A. Seznec and J . Lenfant. Odd memory systems may be quite
interesting. In Proc. o f the 20th Annual International Symposium
on Computer Architecture, pages 341-350, May 1993.

[20] K. Skadron and D. W. Clark. Design issues and tradeoffs for write
buffers. In Proc. ofthe 3rd International Symposium on High Per-
formance Computer Architecture, pages 144-1 55, Feb. 1997.

[21] G. S. Sohi. High-bandwidth interleaved memories for vector pro-
cessors - a simulation study. Technical Report CS-TR-1988-790,
University of Wisconsin - Madison, Sept. 1988.

[22] S . T. Srinivasan and A. R. Lebeck. Load latency tolerance in dy-
namically scheduled processors. In Proceedings cfthe 31st Inter-
nurionul Sjnrposiunr on Microarchitecture, 1998.

[23] Standard Performance Evaluation Corporation. SPEC CPU95 Ver-
sion 1.10, May 1997.

[24] Transaction Processing Performance Council. TPC Benchmark C
Standard Specifictition. Revision 3.3.3, Apr. 1998.

[25] M. Valero, T. Lang, and E. Ayguade. Conflict-free access of vec-
tors with power-of-two strides. In Proc. of the 1992 International
Conference on Supercompuiing, pages 149-1 56, 1992.

[26] M. V. Wilkes. The memory gap, Keynote Address. In Workshop
on Solving the M e m o y Wull Problem, June 2000.

[27] W. Wong and J.-L. Baer. DRAM on-chip caching. Technical Re-
port UW CSE 97-03-04, University of Washington, Feb. 1997.

[28] J. H. Zurawski, J . E. Murray, and P. J. Lemmon. The design and
verification of the Alphastation 600 5-series workstation. Digital
Technical Journal, 7(1):89-99, 1995.

369-379, 1998.

41

Authorized licensed use limited to: ULAKBIM UASL - Bilkent University. Downloaded on March 04,2021 at 09:42:51 UTC from IEEE Xplore. Restrictions apply.

http:Nwww.postgresql.org

