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Abstract 

DRAM row-buffer conflicts occur when a sequence of 
requests on different rows goes to the same memory bank, 
causing much higher memory access latency than requests 
to the same row or to different banks. In this paper, we an- 
alyze the sources of row-buffer conflicts in the context of 
superscalar processors, and propose a permutation-based 
page interleaving scheme to reduce row-buffer conflicts 
and to exploit data access locality in the row-buffer. Com- 
pared with several existing schemes, we show that the 
permutation-based scheme dramatically increases the hit 
rates on DRAM row-buffers and reduces memory stall time 
of the SPEC95 and TPC-C workloads. The memory stall 
times of the workloads are reduced up to 68% and 50%, 
compared with the conventional cache line and page inter- 
leaving schemes, respectively. 

1 Introduction 
Concurrent accesses to multiple interleaved memory 

banks are supported in modern computer systems, where 
each bank has a row-buffer holding a page of data.’ With 
the significant improvement in memory bandwidth, the 
DRAM access speed is becoming more crucial to deter- 
mine the memory stall time of a program execution [6]. 
One effective solution to address this issue is to utilize the 
available concurrency among multiple DRAM banks, and 
to exploit data locality available in the row-buffer of each 
DRAM bank. However, conflicting performance benefits 
exist between exploiting access concurrency and data lo- 
cality in the row-buffer. Memory interleaving scheme de- 
signs directly determine the effectiveness of the solution. A 
conventional memory interleaving scheme allocates con- 
secutively addressed data blocks to consecutive memory 
banks using a modular mapping function. The size of the 

‘For Direct Rambus DRAM, the row buffer size is one-half page, and 
adjacent banks share half-page row buffers with each other. 

interleaved data block can be a word, a cache line, multi- 
ple cache lines, a page, or multiple pages. In general, using 
larger interleaved data blocks leads to more data locality in 
each DRAM row-buffer but lower concurrency among the 
multiple banks. 

Regarding the efforts of exploiting locality, people have 
proposed techniques to take advantage of the row-buffer, 
which serves as a natural “cache” with a large block size. 
Some DRAM manufacturers even add SRAM caches into 
the DRAM chips. With the improvement of DRAM row- 
buffers in the accumulative size, exploiting row-buffer lo- 
cality is becoming more and more effective for memory 
system performance improvement. One major bottleneck 
limiting this effort comes from DRAM row-buffer con- 
flicts which occur when a sequence of requests on different 
pages goes to the same bank, causing conflict misses in the 
row-buffer. Frequent row-buffer misses can significantly 
increase access latency and degrade overall performance. 
Compared with a row-buffer hit, a row-buffer miss may 
cause additional DRAM precharge time and DRAM row 
access time, which will be tens of ns on a typical DRAM. 
Thus, the row-buffer hit time could be 30% to 50% less 
than a row-buffer miss time. 

Regarding the efforts of utilizing concurrency among 
the DRAM banks, one commonly used technique is to in- 
terleave small data blocks among memory banks. How- 
ever, this approach limits the ability to effectively exploit 
spatial locality in the row-buffer. To consider the trade-offs 
between large and small data block interleaving schemes, 
several schemes are proposed. Block interleaving [ 101 
is such an example used in vector supercomputers with 
Cached DRAM. 

In this paper, we analyze the sources of the row- 
buffer conflicts in the context of superscalar processors. 
Then we propose a memory interleaving scheme, called 
permutation-based page interleaving, to accomplish both 
the objectives of utilizing concurrency for reducing row- 
buffer conflicts and of exploiting access locality for reusing 
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the data in the row-buffer. The strategy is to generate the 
memory bank index by XOR-ing two portions of mem- 
ory address bits. The hardware cost of the interleaving 
scheme is trivial, and additional runtime overhead involved 
is negligible. We evaluate the performance of the proposed 
interleaving scheme for SPEC95 and TPC-C workloads 
with execution-driven simulations. Compared with exist- 
ing schemes, we show that the permutation-based scheme 
dramatically increases the hit rates on DRAM row-buffers 
and reduces memory stall time of the workloads. The 
memory stall times of the workloads are reduced up to 68% 
and 50%, and the execution times are reduced up to 38% 
and 19%, compared with the conventional cache line and 
page interleaving schemes, respectively. 

We discuss some issues of memory system design in 
section 2, and analyze the sources of row-buffer conflicts in 
section 3. We propose a permutation-based page interleav- 
ing scheme in section 4. After introducing our experimen- 
tal environment in section 5 ,  we present performance com- 
parisons between the permutation-based page interleaving 
and three other existing schemes in section 6. Other related 
work is discussed in section 7. Finally, we summarize the 
work in section 8. 

Parameter 
m 

Cache-related 

2 Memory System Considerations 
2.1 Open-page and Close-page Strategies 

An access to DRAM consists of row access and column 
access. During row access, a row of data (which is also 
called a page of data) containing the desired data is loaded 
into the row buffer. During column access, the data is read 
or written according to its column address. The page can be 
either open or closed after an access. Both strategies have 
their advantages and limitations. In the open-page strategy, 
if the next access to the same bank goes to the same page, 
only column access is necessary.* However, if the next ac- 
cess is a row-buffer miss, the DRAM precharge will not 
start until the request arrives. The close-page strategy al- 
lows the precharge to begin immediately after the current 
access. Which strategy will win mainly depends on the ac- 
cess patterns of applications. If the row-buffer hit rate is 
high, the open-page strategy should be more beneficial. 

Most of our discussions in the rest of the paper are in 
the context of the open-page strategy. We propose a mem- 
ory interleaving scheme to improve the row-buffer hit rate. 
Thus, the open-page strategy is a natural choice for our 
purpose since it reduces the memory access time for page 
hits. 

2.2 Concurrent Memory Accesses 
Most DRAM systems nowadays have multiple banks so 

that DRAM access operations can be performed on differ- 

write accesses. 
cycle is normally required for bus tum-around between read and 

Parameter descriptions 
the length of the memory address in bits. 
Parameter descrimions 

b 

t 

the cache size in bytes. 
the number of sets in the cache. 
the number of blocks in a set. 
the block size in bytes. 
the length of the cache set index in bits. 
s = l o g s  = log C / ( B N ) .  
the length of the cache block offset in bits. 
b = log B. 
the length of the cache tag in bits. 

~ 

P 

R 
k 

P 
r 

t = TTI - (S + b).  
Memory-related Parameter descriptions 

K the number of memory banks. 
the page size in bytes, which is also the size 
of the rowhuffer. 
the number of pages (rows) in a memory bank. 
the length of the memory bank index in bits. 
IC = log K .  
the length of the page offset in bits. p = log P. 
the length of the page index in bits. 
T = log R = m - ( k  + p ) .  

I " I 
Memory-related I Parameter descriptions 

K 1 the number of memory banks. 

ent banks in parallel. Contemporary superscalar processors 
exploit the instruction-level parallelism (ILP) aggressively 
by performing out-of-order executions, speculative execu- 
tions, and non-blocking loadlstore. A superscalar proces- 
sor may issue multiple memory requests simultaneously. 
Although the processor can keep running before the out- 
standing memory requests are finished, its ability to toler- 
ate long memory latency is still limited [22]. 

All concurrent memory accesses can be classified into 
the following three categories: 

1 .  Accesses to the same page in the same bank. These 
accesses fully exploit the spatial locality and can be 
well pipelined. Precharge and row access are needed 
to initiate the first access. Subsequent accesses only 
require column access. 

2. Accesses to direrent pages in different banks. Since 
the accesses can be done in parallel, the correspond- 
ing operations can also be well pipelined. 

3. Accesses to different pages in the same bank. These 
accesses cause row-buffer conflicts. Precharge and 
row access are needed to initiate each access. The 
operations cannot be pipelined. Thus, the access pat- 
terns belonging to this category have much higher la- 
tency than those belonging to the first two categories, 
and only partially utilize the memory bandwidth. 

2.3 Framework of Interleaving Schemes 
A memory system is characterized by a group of pa- 

rameters in Table l .  Figure l shows the bit representations 
of a memory address for conventional cache line and page 
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dressing and memory addressing with conventional cache line and page 
interleaving schemes. 

interleaving, and gives the relationship between the cache- 
related representation and the memory-related representa- 
tion for given memory hierarchical configuration. 

The cache line interleaving scheme uses the k bits above 
the low order b bits (L2 block offset) as the memory bank 
index. In the uniprocessor system, the processor usually re- 
quests data from the memory in a unit of an L2 cache line. 
The cache line interleaving scheme attempts to access mul- 
tiple memory banks uniformly (e.g. [ 5 ] ) .  However, since 
continuous cache lines are distributed in different memory 
banks, this scheme may not effectively exploit the data lo- 
cality in the row buffer. 

The conventional page interleaving scheme uses the k 
bits above the low order p bits (page offset) as the bank 
index. This balances between exploiting the data local- 
ity in row buffer and referencing memory banks uniformly. 
However, it may cause severe row buffer conflicts in some 
typical cases which we will discuss next. 

The high order interleaving scheme uses the high order 
k bits as the bank index. This exploits higher data local- 
ity than low order interleaving, but also makes accesses to 
multiple banks less uniform. In addition, continuous ac- 
cesses in DRAMS crossing the page boundary will incur 
precharge and row access. Thus, there is no benefit to ex- 
ploit spatial locality beyond the page size. 

3 Sources of Row-buffer Conflicts 
In the conventional page interleaving, there are three 

major sources for row-buffer conflicts and conflict misses: 
L2 cache conjlict misses, L2 cache writebacks, and specijic 
memory access pattems. 

3.1 L2 Conflict Misses 
We will use the following example to show that data ac- 

cess patterns causing L2 conflict misses will again cause 
DRAM row-buffer conflicts and conflict misses under 
some conditions. 

double X I T I ,  Y [ T l  , sum; 
f o r  ( i  = 0 ;  i < T;  i ++)  

sum += X [ i l  * Y [ i l ;  
Without losing generality, we assume the L2 cache is 

direct mapped, arrays X and Y are contiguously allocated 

in the memory, and the address distance between X[O] and 
Y[O] is a multiple of the cache size. Then a pair of data 
elements X [ i ]  and Y [i] (i = 0 ,  . . . , T - 1) will map to the 
same cache line. Specifically, if a cache line holds E el- 
ements, the sequential accesses to X[O], Y[O], . . . , X [ E  - 
11, Y [ E  - 11 will cause L2 conflict misses and generate the 
following accesses to the main memory: 

5, Y, 2951,. . . l X ,  Y 

where z and y are the block addresses of X[i] and Y [ i ]  
(i = 0 ,  . . . , E - l), respectively. 

What will happen in the DRAM banks for this sequence 
of memory accesses? To answer this question, we need 
to look into the bit representations of these addresses. For 
modern computer systems, the L2 cache size is much larger 
than the row-buffer (page) size. In addition, the associativ- 
ity of L2 cache and the number of memory banks are lim- 
ited. Thus, the bank index is a part of the L2 set index, and 
the page index comprises the L2 tag (refer to Figure 1). 

Since x and y are block addresses mapped to the same 
cache line, their set indices are the same. Thus, z and y 
share the same bank index. On the other hand, since z and 
y are different block addresses, their cache tags must be 
different. Thus, their page indices are also different. So 
block addresses z and y are mapped to the same bank but 
on different pages. In this example, each L2 conflict miss 
(except the first one) will again cause a DRAM row-buffer 
conflict miss. 

In summary, any L2 conflicting addresses (having the 
same L2 set index but different L2 tags)  are row-bufeer 
conjicting (having the same bank index but different page 
indices), providing that the L2 cache size divided by the L2 
cache associativity is larger than the accumulated size of 
all the DRAM row-buffers. For similar reason, in conven- 
tional cache line interleaving, any L2 conflicting addresses 
are also row-buffer conflicting. 

3.2 L2 Writebacks 
The writeback policy is commonly used in memory sys- 

tems to preserve data consistency and system efficiency. 
When an L2 cache miss happens, if the replaced cache 
block is dirty, it must be written back to the memory or the 
write buffer before the missed block is read from the mem- 
ory. Since the read address and the write address belong 
to different memory locations mapped to the same cache 
set, they are L2 conflicting addresses. Consequently, they 
cause a row-buffer conflict under page interleaving. Nor- 
mally, programs have spatial locality. When a sequence 
of replacement on dirty cache blocks happens, the reads 
and writes conflict on the row-buffer and cause frequent 
row-buffer conflict misses where the pages with the read 
addresses or the write addresses are replaced and retrieved 
back and forth. 
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Write buffers can be used to reduce processor stalls 
waiting for memory writes [7, 201. The write buffer can - 
be implemented with read bypass (read misses have higher 
priority than writes) or with no-bypass. The write buffer 
with no-bypass will not change the access patterns causing 
row-buffer conflicts. The write buffer with read bypass can 
alleviate row buffer conflicts by postponing the writebacks 
and grouping consecutive reads together. The effective- 
ness of the write buffer depends not only on its size, but 
also on when the buffered data are written to the memory. 
One write policy for reducing the row-buffer conflicts is to 
write the buffered data to memory only when the number Figure 2: The permutation-based page interleaving scheme 

pending writes reaches a threshold. However, since write- 
backs are not issued immediately when the memory sys- 
tem is free, the delayed writebacks may compete with sub- 
sequent reads and increase their latencies. Another write 
policy is to write the buffered data to main memory when- 
ever there are no outstanding reads. However, the mem- 
ory access patterns do not change so much in this case. In 
Section 6, we will show with experiments that using write 
buffers may reduce row-buffer miss rates but fails to reduce 
memory stall time effectively. 

3.3 Specific Memory Access Patterns 
Some specific memory access patterns may cause row- 

buffer conflicts. For example, when the distance of mem- 
ory locations between consecutive data elements being ac- 
cessed is a multiple of the accumulative size of all row 
buffers of the memory banks, each element is stored in a 
different page of the same memory bank. Thus, continu- 
ous accesses will cause row-buffer conflicts. 

4 A Permutation-based Page Interleaving 
In order to address the problem of row-buffer conflicts 

caused by the three sources discussed in the previous sec- 
tion, we introduce a new memory interleaving scheme 
which generates different bank indices by retaining spatial 
locality and by reducing row-buffer conflicts. An attrac- 
tive technique of generating bit patterns used in memory 
addressing is to XOR the original bit pattern with another 
bit pattern [ 141. Our interleaving scheme is based on this 
technique. 

pages among banks for exploiting concurrency. Other de- 
sign choices could be used with the same mapping princi- 
ple. We will discuss these later. 

Let (um-lum-2 . . . uo) be the binary representation of 
a memory address A. Then the bank index under the con- 
ventional page interleaving, I ,  is ( U ~ + ~ - I  . . . u p ) .  The new 
bank index after applying the permutation-based page in- 
terleaving scheme, I f ,  is 

U: = ai CB um-t+iPp ( I )  
This interleaving scheme has the following properties, 

which are useful in achieving the objectives of exploiting 
both the concurrency and the data locality: 

1. L2-conflict addresses are distributed onto different 
bunks. 
Given any two L2-conflict addresses, their bank in- 
dices in conventional page interleaving are identi- 
cal, but their t-bit L2 tags are different. As long as 
the low order k bits of the two tags are different, 
the k-bit XOR function will produce two different 
bank indices. Figure 3 shows an example of map- 
ping four L2-conflict addresses onto 16 banks. All 
the four addresses are mapped onto the same bank 
in conventional page interleaving. After applying the 
permutation-based page interleaving scheme, they are 
distributed onto four different banks. 

2. The spatial locality of memory references is pre- 
served. 
All addresses in the same page are still in the same 

fo r i  = p ,  . . . , IC + p - 1 

4.1 The Scheme and its Properties page after applying our interleaving scheme. 

Our memory interleaving scheme, called permutation- 
based page interleaving, is shown in Figure 2. The low 
order k bits of the L2 tag and the original bank index are 
used as the input to a k-bit bitwise XOR logic to generate 
the new bank index. The page index and the page offset 
are unchanged. The selection of k bits from the bank index 
under the conventional page interleaving scheme keeps the 
same degree of data locality, while the selection of k bits 
from the L2 tag attempts to make a wide distribution of 

3. Pages are uniformly mapped onto multiple memory 
banks. 
The permutation-based page interleaving scheme still 
uniformly maps continuous pages onto multiple mem- 
ory banks, since the conventional bank index informa- 
tion is used in the mapping. Figure 4 gives an example 
to show that continuous pages are uniformly mapped 
onto four memory banks by both the conventional and 
the permutation-based page interleaving schemes. 
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Figure 3: An example of mapping four memory addresses with the con- 
ventional page interleaving and the permutation-based page interleaving 
schemes. Only the k-bit bank index and the low order k-bit of L2 tag are 
shown for each address. 

One would think that spatial locality of memory refer- 
ences could be maintained and page conflicts could be re- 
duced by using only the low order k bits of the L2 tag as the 
bank index, thus avoiding the XOR operation. The limit of 
this approach is that it maps a large fraction of the mem- 
ory space (of the L2 cache size) onto the same bank. This 
would create hot spots on some memory banks and intro- 
duce a new source of page conflicts. 

There are several alternatives to the selection of k bits 
among the t-bit L2 tag. Since programs have data local- 
ity, it is more likely that higher order bits of L2-conflict 
addresses are the same. Our experiments show that choos- 
ing the low order k bits achieves or approaches the lowest 
row-buffer miss rate for all the benchmark programs used. 

Other operations such as "add" and "subtract" can also 
be used to generate the bank index for reducing row-buffer 
conflicts. However, since this operation is done for each 
memory access, it should be executed as fast as possible. 

We will later show in the paper that the risk for the XOR 
operation to cause more row-buffer conflicts is very small 
in practice. A major reason for this is discussed as follows. 
The memory space can be divided into segments in the unit 
of the cache size. The XOR operation uses the same k-bit 
L2 tag for the addresses in each segment. Thus, it does 
not change the conflicting relationship between any pair 
of addresses in each segment, which is defined as whether 
the pair is mapped onto the same row-buffer or not. Our 
analysis also shows that the XOR operation may increase 
the chance of conflicts only for addresses in some specific 
segment boundaries. Since the cache size is sufficiently 
large in current computer systems, these addresses form a 
very small subset in the entire memory address space. 

4.2 Correctness of the Scheme 
The mapping function of a memory interleaving scheme 

must satisfy the one-to-one property [lS]. For a given 
memory address A,  we can obtain its memory location A' 

-. . .. 
L2 tag 

M 

01 

10 

11 

Bank0 Bank? Bank 3 Bank 1 Bar*? Bank3 

Figure 4: An example of mapping continuous pages onto 4 memory 
banks under the conventional and the permutation-based page interleav- 
ing schemes, where L is the number of pages the L2 cache can hold. 

using the permutation-based interleaving scheme by com- 
puting its bank index I' using equation (1). Conversely, 
for a given memory location A', we can obtain its ad- 
dress A by computing (uk+,-~...a,) as U:  @ aA-t+i-p 
for i = p ,  . . . , k + p - 1. In modern computer sys- 
tems, it is always true that (s + b) > ( k  + p ) .  Thus, for 
i = p ,  . . . ,  k + p -  1, 

- U: e aA-t+i-, - (ai e am--t+i-p) @ am-t+i--p = ai. 
(2) 

Thus, the permutation-based mapping function has the 
one-to-one property. 

4.3 Comparisons with the Swapping Scheme 
Zurawski, Murray, and Lemmon [28] present an inter- 

leaving scheme that swaps partial bits of the L2 tag and 
partial bits of the page offset, which is used in the Al- 
phastation 600 5-series workstations. We call i t  the swap- 
ping scheme in this paper. Wong and Baer [27] study the 
performance of the swapping scheme for selected SPEC92 
benchmark programs by finding the optimal number of bits 
to be swapped for these programs. 

Figure 5 describes the swapping scheme. This scheme 
maps every 2" L2 conflict addresses (with the same 

. . . a,-,)) to the same page. Thus, if two L2 con- 
flict misses have the same high order n bits in their page 
offsets, they will cause page hits. However, if two L2 con- 
flict misses have different high order n bits in their page 
offsets, they will still cause page conflicts. In addition, 
the swapping scheme may degrade the spatial locality of 
memory references because the block size of continuous 
addresses inside a page is decreased from 2, to 2 P P n .  The 
more bits that are swapped using this method, the more 
conflict misses can be removed, but the less spatial locality 
is retained. In contrast, the permutation-based scheme re- 
duces page conflicts and preserves data locality at the same 
time. 

The swapping scheme attempts to convert accesses to 
different pages in the same bank into accesses to the same 
page. The permutation-based scheme attempts to convert 
accesses to different pages in the same bank into accesses 
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Figure 5: The swapping scheme 

500 MHz 
32 Kbytes, 2-way, 32-byte block 
32 Kbytes, 2-way. 32-byte block 

to different banks. The permutation-based scheme not only 
reduces the row-buffer conflicts of current accesses, but 
also potentially increases the row-buffer hit rates for sub- 
sequent accesses. 

row buffer size 
DRAM precharge time 
DRAM row access time 
DRAM column access time 

5 Experimental Environment 
Performance evaluation is based on execution-driven 

simulations. We use the SPEC95 [23] and the TPC-C [24] 
as workloads, and use Simplescalar [2] as the base sim- 
ulator. The database system we have used to support the 
TPC-C workload is the PostgreSQL (version 6.5) [ 121. 

In order to compare different interleaving schemes, we 
have modified two programs in the Simplescalar tool set: 
sim-cache and sim-outorder. We use the modified sim- 
cache to measure the row buffer miss rate to compare dif- 
ferent interleaving schemes on different memory system 
configurations at a small simulation cost. This allows us to 
investigate a wide range of choices. We use sim-outorder 
to measure the execution time and collect detailed statis- 
tics of workloads. In addition to the DRAM, the memory 
controller and a bus with contention are emulated. Bank 
contention, DRAM precharge, DRAM refresh, and proces- 
sorlbus synchronization are also considered in the simula- 
tion. 

We have used sim-outorder to configure an 8-way pro- 
cessor, to set the loadstore queue size to 32, and to set the 
register update unit size to 64 in the simulation. The pro- 
cessor allows up to 8 outstanding memory requests, and the 
memory controller has the ability to accept up to 8 concur- 
rent memory requests. Reads are allowed to bypass writes. 
The outstanding writes are scheduled to memory modules 
as soon as there are no outstanding reads. Table 2 gives the 
major architectural parameters. The 500 MHz processor 
and the 256-bit (32 bytes), 83 MHz data bus are used in 
Compaq Workstation XPlOOO [4]. All times are converted 
into processor cycles in the simulation. 

6 Performance Evaluation 
Using execution-driven simulations with the SPEC95 

and TPC-C workloads, we have evaluated the permutation- 
based page interleaving scheme by comparing it with three 

2-8 Kbytes 
36 ns 
36 ns 
24 ns 

LI cache hit time 
L2 cache 
L2 cache hit time 
memory bus width 32 bytes 
memorv bus clock rate 83 MHz 

2 Mbytes, 2-way. 64-byte block 

I number of memorv banks I 4 ~ 2 5 6  1 

Table 2: Architectural parameters of simulation 

other interleaving schemes: cache line interleaving, page 
interleaving, and swapping. 

6.1 Comparisons of Row-buffer Miss Rates 
Figure 6 presents the row buffer miss rates of SPEC95 

benchmark programs and the TPC-C workload among 
the four interleaving schemes: the cache line interleaving 
(cache line), the page interleaving (page), the swapping 
interleaving (swap), and our permutation-based page inter- 
leaving (permutation) schemes. The memory system con- 
tains 32 memory banks. The row-buffer size of each bank 
is 2KB. This is a representative high performance memory 
system configuration [ 131. 

We have following observations based on our experi- 
ments: 

Most programs using cache line interleaving have the 
highest row buffer miss rates compared with three 
other interleaving schemes. The row-buffer miss rates 
of ten benchmark programs out of the total nineteen 
programs are higher than 90% using cache line in- 
terleaving. Since cache line interleaving is normally 
associated with the close-page mode, the high row- 
buffer miss rates do not necessarily mean poor overall 
performance. 
All the programs except su2cor using page interleav- 
ing have lower miss rates than those using cache line 
interleaving. However, the miss rate reductions are 
not significant for most programs. 
Our experiments show that the swapping scheme 
reduces the row-buffer miss rates for most of the 
benchmark programs compared with page interleav- 
ing. However, the row-buffer miss rates of six pro- 
grams using the swapping scheme are higher than 
those using page interleaving. This is because the 
swapping scheme could make programs exploit less 
locality than page interleaving, as we have discussed 
in Section 4. 
For almost all programs, our permutation-based in- 
terleaving scheme obtains the lowest row-buffer miss 
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Figure 6: Row buffer miss rates for different interleaving schemes when the number of banks is 32, and the row buffer size is 2KB. The left figure 
contains SPECfp95 programs, and the right figure contains SPECint95 programs and TPC-C workload. 

rates compared with the other three interleaving 
schemes. The only exception is m88ksim whose 
miss rate is 6% higher than that using the swap- 
ping scheme. Our experiments show the permutation- 
based interleaving scheme significantly reduces the 
row-buffer miss rates. For example, compared with 
the best performed interleaving scheme among the 
other three for each program, the permutation-based 
interleaving scheme can further reduce the row-buffer 
miss rate by more than 80% for five programs, and by 
more than 50% for eight programs. 

6.2 Effects of Memory Organization Variations 
Changing the number of memory banks and the row- 

buffer size of each memory bank, we have evaluated the 
effects of memory system organization variations on the 
interleaving schemes and on memory performance. Due to 
the page limit, we only present the performance of selected 
program applu, which is memory intensive and well repre- 
sentative for the group of workloads. Figure 7 shows the 
row-buffer miss rates of the program using the four inter- 
leaving schemes as the number of banks varies from 4 to 
256 and the row-buffer size varies from 2 KB to 8 KB. 

For each memory system variation, our experiments 
show that the permutation-based page interleaving scheme 
reduces the row-buffer miss rate dramatically. For exam- 
ple, when the number of memory banks is 16 and the row- 
buffer size is 4 KB, the permutation-based interleaving 
scheme reduces row-buffer miss rates by 82%, 75%, and 
72%, compared with the cache-line interleaving, the page 
interleaving, and the swapping schemes, respectively. We 
also show that the permutation-based scheme reduces row- 
buffer miss rate more closely proportional to the increase 
in the number of memory banks than the other three inter- 
leaving schemes. The reason this scheme scales well with 
the number of memory banks is related to its bank index 
generation, which is able to widely distribute the conflicted 

pages among the memory banks. The larger the number 
of memory banks, the more effective of the permutation- 
based bank index generation. 

6.3 Effects of Write Buffers 
Among the nineteen programs we studied, four pro- 

grams do not have memory write operations. For the rest 
fifteen programs, the ratios of the number of memory stores 
to the number of memory loads range from 0.26 to 0.84. 
Using SPEC95 programs mgrid and applu as examples, 
we show the effects of write buffers with different write 
policies on the row-buffer miss rates. The performance of 
the other workloads is consistent with that of these two. 
Figure 8 shows the row-buffer miss rates of mgrid and ap- 
p h  on a memory system of 32 banks with the row-buffer 
size of 2KB in each bank. We have compared the follow- 
ing three write policies: write with no-bypass (reads are not 
allowed to bypass writes), write after reaching the thresh- 
old (writes are scheduled to memory banks only when the 
number of outstanding writes reaches a threshold - four 
in our experiments), and write when memory is idle (writes 
are scheduled to memory banks whenever there are no out- 
standing reads). 

As we have discussed in Section 3, postponing writes 
using write buffers could reduce the row-buffer miss 
rate. However, our experiments show that the existence 
of write buffers cannot reduce the row-buffer miss rate 
as effectively as the permutation-based page interleaving 
scheme does. For example, when the write after reach- 
ing the threshold policy is used for program applu, the 
permutation-based scheme can still reduce the row-buffer 
miss rates by 87%, 65%, and 74%, compared with cache 
line interleaving, page interleaving, and swapping, respec- 
tively. 

Although workloads scheduled by the write after reach- 
ing threshold policy normally get lower row-buffer miss 
rates than those scheduled by the policy of write when 
memory is idle, the write after reaching threshold policy 
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Figure 7: Row buffer miss rates of program applu using four interleaving schemes: the cache line, the page, the swapping, and the permutation-based 
interleaving. The number of memory banks changes from 4 to 256. The performance results in the left figure, the middle one, and the right one correspond 
to row buffer sizes of 2KB, 4KB, and 8KB, respectively 

Figure 8: Row buffer miss rates using the three write policies: write 
with no-bypuss (no-bypass), write after reaching the rhreshold (thresh- 
old), and wrire when memory is idle (idle). The upper figure corresponds 
to mgnd, and the bottom one corresponds to applu. The number of mem- 
ory banks is 32, the row buffer size is 2KB. 

may cause higher total execution time due to longer mem- 
ory stall time. For example, our experiments show that 
program mgrid scheduled by the write after reaching the 
threshold policy reduces the row-buffer miss rate using 
page interleaving scheme by 48% compared with the pol- 
icy of write when memory is idle, but its total execution 
time is 12% longer. For this reason, the policy of write 
when memory is idle is  used for comparing the overall per- 
formance of different interleaving schemes in our study. 

6.4 Comparisons of Memory Stall Times 
We have measured the memory access portions of CPIs 

of the SPEC95 programs and the TPC-C workload to com- 

pare the four interleaving schemes. In order to show the 
memory stall portion in each program, we used a method 
similar to that presented in [ I ]  and [6]. We simulated a 
system with an infinitely large L2 cache to eliminate all 
main memory accesses. The difference between the exe- 
cution time on this "perfect" system and that on a system 
using the investigated interleaving scheme is defined as the 
memory stall portion of the program on the system using 
the interleaving scheme. 

We have only studied the SPECfp95 programs and the 
TPC-C workload because memory accesses only account 
for a negligible portion in the total execution time for the 
SPECint95 programs. Figure 9 presents the memory stall 
portion of the SPECfp95 programs and the TPC-C work- 
load using the four interleaving schemes: the cache line, 
the page, the swapping, and the permutation-based inter- 
leaving schemes. The close-page mode is used for cache 
line interleaving, while the open-page mode is used for the 
other three schemes. 

Compared with page interleaving, our permutation- 
based interleaving scheme is able to reduce the memory 
stall time of these programs by 16% to 50%. The aver- 
age memory stall time reduction for all the SPECfp95 pro- 
grams and the TPC-C workload is 37%. Compared with 
the swapping scheme, our scheme can reduce the memory 
stall time of these programs by 14% to 53%. The average 
memory stall time reduction is 33%. 

Compared with cache line interleaving, the permutation 
based interleaving scheme is able to reduce the memory 
stall time of these programs by 21% to 68%. The only 
exception is for program su2cor, where the memory stall 
time is increased by 11%. The average memory stall time 
reduction is 36%. Here is the reason for the exception. 
Although the permutation-based scheme does reduce the 
row-buffer miss rate by 8% for su2cor compared with the 
cache line interleaving scheme, the row-buffer miss rate is 
still as high as 70%. Because cache line interleaving is 
combined with close-page mode, the precharge can begin 
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Figure 9: Normalized memory stall portion of the SPECfp95 programs 
and the TPC-C workload using the four interleaving schemes. All the 
stall time values are normalized to that using the cache line interleaving 
scheme. The number of memory banks is 32, and the row buffer size is 
2KB. 

earlier than in the open-page mode for a row-buffer miss. 
When the row-buffer miss rate is so high, the benefit of 
a row-buffer hit cannot offset the penalty caused by late 
precharge in open-page mode. Thus cache line interleaving 
outperforms the other schemes which use the open-page 
mode for this program. 

We have also made performance comparisons between 
cache line interleaving and page interleaving. Among the 
nine programs we have studied, cache line interleaving out- 
performs.page interleaving for seven programs. 

The swapping scheme performs better than cache line 
interleaving for four programs but worse for five programs. 
For those four programs, the swapping scheme effectively 
reduces the row-buffer miss rate so that open-page mode is 
more beneficial than close-page mode. For most programs, 
the swapping scheme performs better than page interleav- 
ing because the swapping scheme reduces row-buffer con- 
flicts. But for two of these nine programs, the swapping 
scheme achieves worse performance than page interleaving 
because data locality cannot be retained after the “swap- 
ping”. 

7 Other Related Work 
Hsu and Smith propose and study several memory in- 

terleaving schemes which can both increase data locality 
and avoid hot banks in vector supercomputers with Cached 
DRAM [ IO]. There are several other research papers deal- 
ing with the bank conflict problem of vector accesses in 
vector supercomputers. Authors in [8] and [19] attempt 
to use the prime memory systems to address the conflict 
issues. Other papers focus on the memory interleaving 
schemes on vector systems [3, 15, 17, 18, 21, 251. Au- 
ttiors in [9], [3], and [I71 study the skew schemes. Rau, 

Schlansker, and Yen propose a pseudo-random interleav- 
ing technique using the XOR function to randomize the 
mapping of references to memory modules in [ 151. Their 
scheme can eliminate the occurrence of long clusters due to 
structured data access. Sohi studies permutation-based in- 
terleaving schemes which can improve memory bandwidth 
for a wide range of access patterns for vector computers 
[21]. Valero, Lang, and Ayguadt [25] divide the mem- 
ory address into several portions according to the width of 
bank index, then XOR all the address portions to gener- 
ate the bank index. Their method can avoid bank conflict 
due to power-of-two strides in vector machines. Seznec 
and Lenfant [ 181 propose the Interleaved Parallel Scheme, 
which uses the XOR operation and parameters related to 
the numbers of processors, logical memory banks, and 
physical memory banks to induce more equitable distribu- 
tion over memory banks for a wider set of vectors than the 
normal mappings. 

In contrast to above cited interleaving schemes, our 
major objective is to reduce the conflicts of DRAM row- 
buffers. Concurrent accesses to the same bank can be well 
pipelined in a contemporary DRAM system as long as they 
hit the row-buffer. In vector machines, concurrent accesses 
to the same bank always cause bank conflicts and cannot 
be pipelined. 

Besides memory bank interleaving techniques, there are 
other approaches to address the memory latency problem, 
such as blocking-free cache, prefetching, thread changing, 
and data prediction and speculation [26]. 

8 Conclusion 
We have shown that the conflicts and conflict misses 

of DRAM row-buffers significantly increase memory stall 
times. We have analyzed their sources in the context of su- 
perscalar processors with two levels of caches. Our study 
indicates that the miss rates of row-buffers are mainly de- 
termined by the ways data are interleaved among the mem- 
ory banks. Conventional schemes, such as cache line and 
page interleaving, could not effectively exploit both the 
concurrency of multiple banks and data locality in the row- 
buffer of each bank. Aiming at achieving the both objec- 
tives, we have proposed a memory interleaving scheme, 
called permutation-based page interleaving. By using the 
fast exclusive-OR operation to generate the bank index, 
our scheme can dramatically reduce the row buffer miss 
rates for SPEC95 and TPC-C workloads compared with the 
two conventional interleaving schemes and an existing op- 
timized commercial scheme. Our execution-driven simula- 
tions show that the permutation-based scheme outperforms 
the cache line interleaving, the page interleaving, and the 
swapping schemes by reducing the average memory stall 
times of the workloads by 36%, 37%, and 33%, respec- 
tively, In terms of overall performance, the permutation- 
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based scheme reduces the average execution times of the 
workloads by 12%, lo%, and 8%, compared with the cache 
line interleaving, the page interleaving, and the swapping 
schemes, respectively. 

The potential performance penalty of the permutation- 
based scheme is the exclusive-OR operation for generating 
each memory bank index. For a modern computer system 
with multiple levels of caches, this operation is not in the 
critical path, and can be overlapped with operations above 
this level in the memory hierarchy. Our experiments show 
that the additional runtime overhead involved is negligible 
compared with effective reductions of memory stall times. 
For example, when using the permutation-based page inter- 
leaving scheme, the average memory access latency of the 
workloads is around 50 CPU cycles, while the exclusive- 
OR operation only takes about one cycle [ 113. 

Using memory access scheduling techniques to exploit 
row-buffer locality and concurrency is another attractive 
approach (e.g. [ 161). We believe the combination of access 
scheduling and the permutation-based interleaving scheme 
can further improve memory performance. 
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