
Branch Runahead: An Alternative to Branch Prediction for
Impossible to Predict Branches

Stephen Pruett
stephen.pruett@utexas.edu
University of Texas at Austin

United States

Yale N. Patt
patt@ece.utexas.edu

University of Texas at Austin
United States

ABSTRACT
High performance microprocessors require high levels of instruc-
tion supply. Branch prediction has been the most important dri-
ver of this for nearly 30 years. Unfortunately, modern predictors
are increasingly bottlenecked by hard-to-predict data-dependent
branches that fundamentally cannot be predicted via a history based
approach. Pre-computation of branch instructions has been sug-
gested as a solution, but such schemes require a careful trade-off
between timeliness and complexity. This paper introduces Branch
Runahead: a low-cost, hardware-only solution that achieves high
accuracy while only performing lightweight pre-computation. The
result: a reduction in branch MPKI of 47.5% and an average im-
provement in IPC of 16.9%.

KEYWORDS
Branch Prediction, Pre-computation, Control Independence

ACM Reference Format:
Stephen Pruett and Yale N. Patt. 2021. Branch Runahead: An Alternative to
Branch Prediction for Impossible to Predict Branches. In MICRO’21: 54th
Annual IEEE/ACM International Symposium on Microarchitecture (MICRO
’21), October 18–22, 2021, Virtual Event, Greece. ACM, New York, NY, USA,
12 pages. https://doi.org/10.1145/3466752.3480053

1 INTRODUCTION
Despite significant improvements in branch prediction over the
years, branch mispredictions remain a key performance limiter.
Unfortunately, it is getting harder and harder to improve tradi-
tional branch predictors due to the existence of fundamentally
unpredictable data-dependent branches. Data-dependent branches
present serious challenges for history-based predictors[17–19, 24,
30, 32]as their outcome is not correlated to any previous outcomes
in the branch history [12]. Rather, the outcome is based on a value
recently loaded from memory.

As branch predictors continue to improve, their accuracy on
data-dependent branches remains roughly constant. Over time,
data-dependent branches have become responsible for a larger
share of the total remaining mispredictions. To illustrate this, Fig-
ure 1 shows the misprediction rate of the 32 most hard-to-predict

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
MICRO’21, October 18–22, 2021, Athens, Greece
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8557-2/21/10. . . $15.00
https://doi.org/10.1145/3466752.3480053

mcf_1
7

leela_17
xz_17

deepsjeng_17

omnetpp_17
astar_06

mcf_0
6

gobmk_06
bzip2_06

sjeng_06

omnetpp_06 cc bfs tc bc pr
ssspamean

0
5

10
15
20
25
30
35

M
isp

re
di

ct
io

n
Ra

te
 (%

) TAGE-SC-L (64KB) MTAGE-SC (Unlimited) Dependence Chains

Figure 1: Misprediction Rate: TAGE-SC-L (64KB) vs MTAGE-
SC (Unlimited) vs Dependence Chains for Hard-to-Predict
Branches

branches from each benchmark. The left bar is the accuracy of
a 64KB TAGE-SC-L [32], winner of the 2016 Champion Branch
Prediction competition (CBP-2016) limited storage category, and
the middle bar is the accuracy of MTAGE-SC [33], winner of CBP-
2016 unlimited storage category. On average, MTAGE-SC is only
able to reduce misprediction from 11% (TAGE-SC-L) to 9%, an im-
provement of only 18%. We propose using dependence chains— a
short sequence of operations that can pre-compute the result of the
branch before it is needed in the fetch stage. Figure 1 also shows
the accuracy of using dependence chains to pre-compute branch
outcome (right bar). On average, dependence chains decrease mis-
predictions to 5%, reducing misprediction by 55% (TAGE-SC-L)
and 44% (MTAGE-SC). This result clearly demonstrates that pre-
computation can improve branch prediction for branches that TAGE
fundamentally cannot predict accurately.

Unfortunately, prior work in pre-computation for branch pre-
diction has primarily focused on heavy-weight, compile-time ap-
proaches. Here, the compiler creates a filtered version of the original
program, only containing instructions necessary to compute the
result of hard-to-predict branches. The filtered thread, or “helper"
thread, is executed asynchronously on another core [21, 36], Si-
multaneous Multi-threading (SMT) context [8, 9, 31, 38], or on a
dedicated unit within the core [34]. We argue these approaches are
fundamentally more costly as they require re-executing most in-
structions in the program, and thereby require expensive resources
to pre-compute the branch. Meanwhile, light-weight runtime ap-
proaches [9] are not able to run continuously, limiting their ability
to provide timely predictions.

We propose Branch Runahead, a system that continuously ex-
ecutes lightweight dependence chains to pre-compute the result
of hard-to-predict, data-dependent branches. Dependence chains,
which are extracted from the program at runtime, are far simpler
than the helper threads proposed by prior work, which allows

804

https://doi.org/10.1145/3466752.3480053
https://doi.org/10.1145/3466752.3480053

MICRO’21, October 18–22, 2021, Athens, Greece Pruett and Patt, Stephen Pruett, and Yale N. Patt

mcf_1
7

leela_17
xz_17

deepsjeng_17

omnetpp_17
astar_06

mcf_0
6

gobmk_06
bzip2_06

sjeng_06

omnetpp_06 cc bfs tc bc pr
ssspamean

0
2
4
6
8

10
12
14
16

M
icr

o-
Op

s

Figure 2: Average Length of Dependence Chains

them to be accelerated using less hardware, rather than requir-
ing another core or SMT context. In particular, Branch Runahead
improves state-of-the-art in four key areas.

Light-weight Dependence Chain. The dependence chain is a
short sequence of operations necessary to produce the result of a
branch instruction. 1 Unlike helper threads, dependence chains are
guaranteed to be simple. All dependence chains have fewer than
16 micro-operations, do not contain expensive operations such as
integer divide or floating point operations, and do not contain any
control flow instructions. Figure 2 shows that the average length
of a dependence chain is fewer than 8 micro-operations. Branch
Runahead dynamically filters the instruction stream to produce
the exact sequence of operations needed to compute the branch
outcome. The result is a light-weight sequence of instructions that
can be accelerated efficiently.

Continuous Execution. Prior techniques using light-weight
dependence chains [9, 16, 26] have struggled to execute continu-
ously, as dependence chains do not contain control flow instruc-
tions. This causes them to diverge from the main thread quickly,
reducing the accuracy of predictions. Branch Runahead solves this
problem using our new merge point predictor. The merge point
predictor detects control and data dependencies between branch
instructions, which allows Branch Runahead to properly order de-
pendence chains.

Timeliness. Pre-computation is only effective if the results are
ready before the prediction is needed. Branch Runahead maximizes
chain level parallelism by predicting the next dependence chain,
allowing it to issue as early as possible.

Dependence Chain Engine. Branch Runahead executes depen-
dence chains using a dedicated unit, the Dependence Chain Engine
(DCE). We propose 3 variants of the DCE: an unlimited storage Big
engine, a 17KB Mini engine, and a 9KB Core-Only engine, which
shares reservation stations, physical registers, and functional units
with the core. The Dependence Chain Engine consumes just 2.2%
of the area of a typical out-of-order core (or only 1.4% in the case
of the Core-Only model). As branch outcomes are produced, they
are inserted into prediction queues, which override predictions
supplied by the traditional branch predictor. Dependence chains
begin executing in the DCE as soon as their live-ins are known.
Live-ins are copied from the physical register file during a branch
misprediction and loaded into the DCE. This initializes the register
file for the chain, effectively synchronizing it with the core. Depen-
dence chains are not guaranteed to be correct, and occasionally

1More specifically, a dependence chain is the backwards dataflow slice needed to
compute the branch.

diverge from the main thread. Once this is detected, the DCE is
synchronized again by repeating the copy of the physical registers.

The contributions of this paper are:
• To our knowledge, this paper is the first work to evaluate
dynamically generated, light-weight dependence chains that
are run continuously as a means to pre-compute the results
of branch instructions.

• We demonstrate the importance of accurately identifying
affector and guard dependencies between branches (sec-
tion 4.4).

• We introduce a new method for merge point prediction,
which is 92% accurate, compared to prior work which is only
78% accurate [29] (section 4.4).

• We introduce the Branch Runahead system, including depen-
dence chain extraction, synchronization with the fetch unit,
and the microarchitecture of the Dependence Chain Engine.
We show that placing restrictions on chain extraction can
guarantee the simplicity of the dependence chain, allowing
it to be executed quickly and efficiently on the Dependence
Chain Engine (DCE).

• We evaluate three methods for chain initiation, which pro-
motes chain level parallelism and improves the timeliness of
predictions.

In the remaining sections, we discuss the fundamental limitations
of prior work, and how Branch Runahead addresses them. Then,
we provide a detailed discussion of Branch Runahead, including
implementation and important properties. Finally, we show that
Branch Runahead, when configured under reasonable hardware
constraints, reduces branch MPKI by 47.5% and increases IPC by
an average of 16.9%.

2 LIMITATIONS OF PRIORWORK
Branch Runahead is not the first to propose pre-computation as a
substitute for branch prediction. In fact, manyworks have paved the
way for Branch Runahead [8, 9, 21, 31, 34, 38, 39]. However, Branch
Runahead is the first runtime only solution to execute light-weight
dependence chains continuously. This allows Branch Runahead to
execute further ahead with fewer hardware resources.

2.1 Limitations of Compiler-based Techniques
Most priorwork relies on the compiler to identify candidate branches
and extract helper threads [8, 9, 21, 31, 34, 38, 39]. Since compilers
take a holistic view of the program, they can iterate over the control
flow and data flow that lead up to a branch instruction and pro-
duce the exact minimum set of operations needed to compute the
direction of the branch. Zilles et al. [38, 39] first observed, however,
that building helper threads that computed branch outcome 100%
accurately was not profitable, as it required too many operations
to be a part of the helper thread. Since then, research has focused
on using profiling techniques during compile time to more aggres-
sively remove instructions from the helper threads [8, 21, 31]. This
results in a helper thread that is significantly simpler but no longer
100% accurate. Unfortunately, the effectiveness of these techniques
relies heavily on the representativeness of the profiling data. Un-
representative data can lead to inaccurate compiler optimizations
that improperly reduce the helper threads, causing them to produce

805

Branch Runahead: An Alternative to Branch Prediction for Impossible to Predict Branches MICRO’21, October 18–22, 2021, Athens, Greece

mcf_1
7

leela_17
xz_17

deepsjeng_17

omnetpp_17
astar_06

mcf_0
6

gobmk_06
bzip2_06

sjeng_06

omnetpp_06 cc bfs tc bc pr
ssspamean

0
20
40
60
80

100

Re
la

tiv
e

M
icr

o-
Op

s
Iss

ue
d

(%
)

142%

Micro-Ops Issued
Load Micro-Ops Issued

Figure 3: Increase in micro-ops due to Branch Runahead

far less accurate predictions at runtime, increasing expensive syn-
chronizations. In addition, introducing dependence chains at the
compiler level requires changes to the Instruction Set Architecture
(ISA) that chip makers are usually hesitant, if not unwilling, to
make. In contrast, Branch Runahead requires no modifications to
the ISA or compiler to achieve its full potential.

2.2 Limitations of Prior Runtime Techniques
SlipStream and its variants [35, 36] are runtime only techniques
that pre-compute the direction of branch instructions. In SlipStream,
two processors are used to execute a program. The A-stream runs a
filtered version of the program ahead of the R-Stream. This enables
the A-stream to communicate branch directions via a hardware
queue between the two cores. Slipstream reports to remove an
average of 15% of all retired instruction, leaving the remaining 85%
in the A-stream as overhead.

In contrast, Branch Runahead extracts only the instructions
needed to predict the targeted branch. As a result, dependence
chains in Branch Runahead are far simpler than the A-stream. To
illustrate this, Figure 3 shows the increase in micro-ops executed
due to enabling Branch Runahead. On average, Branch Runahead
executes 34.3% more micro-ops, significantly less than SlipStream’s
85%.2

Difficult-path SSMT (DP-SSMT) [9] extracts dependence chains
at runtime to pre-compute hard-to-predict branches. However, DP-
SSMT requires a trigger instruction to begin each instance of the
dependence chains. In contrast, Branch Runahead generates de-
pendence chains that can execute continuously, as if they were in
a loop. This allows Branch Runahead to run farther ahead than
DP-SSMT. Furthermore, Branch Runahead considers affector and
guard branches, which enable Branch Runahead to run ahead for
longer intervals with high accuracy. DP-SSMT, on the other hand,
generates dependence chains that only work if control goes down
a predefined path.

Dependence Chains for Prefetching. Hashemi et al. propose
using dependence chains for data prefetching [15, 16]. While both
papers show the predictive power of dependence chains, Branch
Runahead utilizes affector/guard branches and frequent synchro-
nizations to improve the accuracy of the dependence chains. Carl-
son et al. [7] propose a new way of extracting dependence chains
different from the method we use. Naithani et al. [26] use a similar
technique, but instead of running chains on a separate pipeline,
they issue chains during cycles where the core is idle. Both works
2The Slipstream numbers are values reported in [35], which used a slightly different
set of benchmarks. However, there are several benchmarks that do overlap which
confirm the large disparity.

rely on branch prediction to generate the correct dependence chain,
making the techniques less useful as a branch prediction alterna-
tive.

2.3 Limitations of Heavy-weight Helper
Threads.

Prior work requires helper threads to execute on another core [21,
36] or SMT context [8, 9, 31, 38] because helper threads still contain
complex control flow that requires expensive out-of-order hardware
to execute quickly. Requiring a separate core doubles the hardware
cost for a single thread, and adds non-trivial latency for core-to-
core communication. Requiring a separate SMT context requires all
helper thread instructions be fetched, decoded, renamed, and access
many other structures, like the Re-order Buffer (ROB), Load-Store
Queue, etc.

In contrast, Branch Runahead guarantees the simplicity of de-
pendence chains. Dependence chains are stored in the Dependence
Chain Cache as a sequence of micro-ops, so they do not need to
be decoded. Further, most communication is internal to the depen-
dence chain, allowing us to break Rename into 2 phases: a one-time
local rename, and a dynamic global rename. This optimization also
reduces the cost of reservation stations and physical registers. These
simplifications motivate the creation of the Dependence Chain En-
gine (DCE): a dedicated unit for executing dependence chains.

3 MOTIVATIONAL EXAMPLE
History-based branch predictors struggle with data-dependent
branches because the branch outcome is not correlated to the
branch history. Dependence chains, however, are a good fit for
data-dependent branches because they use the application’s own
code to compute the direction of the branch.

Using dependence chains to predict branches. Figure 4a
shows a code snippet taken from leela, a benchmark in the SPEC
2017 [3] benchmark suite. The code contains two hard-to-predict
branches, A and B, which are two of the most frequently mispre-
dicted branches in the benchmark. Branch A loads data from a ran-
dom location on a GO board, then inspects it to see if the location is
empty. The branch is hard to predict because it is a data-dependent
branch with no correlated branches in the history.

Instead of trying to predict branch A, Branch Runahead extracts
all instructions required to compute the outcome of the branch,
forming the dependence chain for branch A. Figure 4b shows the as-
sembly code generated by the compiler. Branch Runahead performs
a backwards dataflow walk on branch A to find all instructions
required to produce its outcome. These instructions (marked with
the letter A) are included in the dependence chain for branch A.
The resulting dependence chain is shown in Figure 4c.

Once extracted, we speculate the dependence chain can be used
to compute future predictions. The dependence chain is shipped to
the Dependence Chain Engine where it is executed continuously, as
if it were in a loop. This process generates accurate predictions for
the duration of the for loop (until i reaches 8). Once that happens,
the dependence chain diverges from the main thread, because it
continues to assume that it is in a loop. This will cause future
predictions for branch A to be inaccurate. Once this is detected,

806

MICRO’21, October 18–22, 2021, Athens, Greece Pruett and Patt, Stephen Pruett, and Yale N. PattMICRO’21, October 18–22, 2021, Athens, Greece Pruett and Patt

pos = position on GO board
for (i = 0; i < 8; i++) {

sq = pos + neighbor_offset[i]
if (board[sq] == EMPTY) // Branch A

if(not board[sq]. self_atari ()) // Branch B
do_work ()

} (a)

Tag: < A, ∗ >

add $0x4 , %rbx

mov (%rbx), %ebp

add %r14d , %ebp

movslq %ebp , %rax

cmpl $0x2 ,0x6f0(%r12 ,%rax ,4)

jne SKIP ; Branch A (c)

Tag: < A, NT >

movzwl 0x1ba4(%r12 ,%rax ,2) ,%edx

mov %edx , %eax

sar $0x8 , %eax

and $0x7 , %eax

cmp $0x1 , %eax

jle SKIP ; Branch B (d)

A LOOP mov (%rbx), %ebp

A add %r14d , %ebp

A movslq %ebp , %rax

A cmpl $0x2 ,0x6f0(%r12 ,%rax ,4)

A jne SKIP ; Branch A

B movzwl 0x1ba4(%r12 ,%rax ,2) ,%edx

B mov %edx , %eax

B sar $0x8 , %eax

B and $0x7 , %eax

B cmp $0x1 , %eax

B jle SKIP ; Branch B

W call do_work

A SKIP add $0x4 , %rbx

W cmp %rbx , %r13

W jne LOOP (b)

Figure 4: Code snippet from leela, a SPEC 2017 benchmark [3].

mcf_1
7

leela_17
xz_17

deepsjeng_17

omnetpp_17
astar_06

mcf_0
6

gobmk_06
bzip2_06

sjeng_06

omnetpp_06 cc bfs tc bc pr
ssspamean

0
20
40
60
80

100

%
 o

f D
ep

en
de

nc
e

Ch
ai

ns
 Im

pa
ct

ed

Figure 5: Dependence Chains with Affectors or Guards

enough for the Dependence Chain Engine to run ahead of the main
thread. This requires Branch Runahead to be aware of frequently
changing branches that may affect the instructions in the depen-
dence chain.

We classify such branches into two groups. Guard branches are
branches that control the execution of another branch. For example,
in Figure 4a, branch B is guarded by branch A and only occurs
when branch A is not-taken. Affector branches are branches that
can affect the source data of other branches; i.e., the direction of one
branch could have an impact on the data-dependencies of another
branch. Both affector and guard branches can have a serious impact
on the accuracy of dependence chains if ignored. Figure 5 shows
the percentage of dependence chains in SPEC 2017 [3] that are
impacted by affectors and guards.

As affector and guard branches impact such a large fraction of
dependence chains, it is important that dependence chains be aware
of affector and guard relationships. Branch Runahead uses our new
dynamic merge point predictor to identify the merge point3 of
a branch at runtime. Once the merge point is known, it can be
used to detect affector and guard relationships. This process will
be discussed in detail in section 4.4.

3The merge point of a branch is the instruction where control converges regardless of
the true direction of the branch.

What does the dependence chain for branch B look like?
Similar to branch A, the chain extraction process starts by doing
a backward dataflow walk starting at branch B. However, because
branch A guards branch B, the chain extraction process terminates
once branch A has been reached. Additionally, the dependence
chain is tagged < A,NT >, representing the Program Counter (PC)
of branch A, as well as the branch outcome (of branch A) required
to execute branch B. The resulting dependence chain is shown in
Figure 4d.

Tags are used to identify the action which initiates the execution
of the dependence chain. For example, any time branch A is not-
taken, that will match with the tag < A,NT > and the dependence
chain for branch B can begin executing. Additionally, the depen-
dence chain for branch A is tagged as < A, ∗ >. The ‘*’ denotes a
wildcard, meaning that any outcome of branch A will match this
tag and initiate branch A’s dependence chain.

Biased branches and memory address aliasing.
Branch Runahead assumes that highly biased branches will remain
biased and ignores them during chain extraction, even if a biased
branch is also an affector or guard branch. Additionally, Branch
Runahead assumes that memory address aliasing (i.e., overlapping
memory addresses) between store-load pairs will also persist. These
assumptions are, of course, not always true and can cause the
dependence chains to diverge from the main thread. For example,
once the for loop in Figure 4a terminates, the dependence chain for
branch A will no longer be valid and any predictions it generates
will likely be incorrect. Dependence chains will be deactivated when
a misprediction is detected.

Putting it all together. Once the chains for branch A and B
have been extracted, they are installed in a chain cache located in
the Dependence Chain Engine. Newly installed chains cannot start
executing until the core synchronizes the chain by initializing the
chain’s local register file with the correct input data. This does not

Figure 4: Code snippet from leela, a SPEC 2017 benchmark [3].

mcf_1
7

leela_17
xz_17

deepsjeng_17

omnetpp_17
astar_06

mcf_0
6

gobmk_06
bzip2_06

sjeng_06

omnetpp_06 cc bfs tc bc pr
ssspamean

0
20
40
60
80

100

%
 o

f D
ep

en
de

nc
e

Ch
ai

ns
 Im

pa
ct

ed

Figure 5: Dependence Chains with Affectors or Guards

the core will synchronize with branch A’s dependence chain and
resume its execution.

Affector and Guard Branches. Frequent synchronizations in-
hibit Branch Runahead’s ability to stay ahead of the main thread.
Therefore, we need the dependence chains to remain accurate long
enough for the Dependence Chain Engine to run ahead of the main
thread. This requires Branch Runahead to be aware of frequently
changing branches that may affect the instructions in the depen-
dence chain.

We classify such branches into two groups. Guard branches are
branches that control the execution of another branch. For example,
in Figure 4a, branch B is guarded by branch A and only occurs
when branch A is not-taken. Affector branches are branches that
can affect the source data of other branches; i.e., the direction of one
branch could have an impact on the data-dependencies of another
branch. Both affector and guard branches can have a serious impact
on the accuracy of dependence chains if ignored. Figure 5 shows
the percentage of dependence chains in SPEC 2017 [3] that are
impacted by affectors and guards.

As affector and guard branches impact such a large fraction of
dependence chains, it is important that dependence chains be aware
of affector and guard relationships. Branch Runahead uses our new

dynamic merge point predictor to identify the merge point3 of
a branch at runtime. Once the merge point is known, it can be
used to detect affector and guard relationships. This process will
be discussed in detail in section 4.4.

What does the dependence chain for branch B look like?
Similar to branch A, the chain extraction process starts by doing
a backward dataflow walk starting at branch B. However, because
branch A guards branch B, the chain extraction process terminates
once branch A has been reached. Additionally, the dependence
chain is tagged < A,NT >, representing the Program Counter (PC)
of branch A, as well as the branch outcome (of branch A) required
to execute branch B. The resulting dependence chain is shown in
Figure 4d.

Tags are used to identify the action which initiates the execution
of the dependence chain. For example, any time branch A is not-
taken, that will match with the tag < A,NT > and the dependence
chain for branch B can begin executing. Additionally, the depen-
dence chain for branch A is tagged as < A, ∗ >. The ‘*’ denotes a
wildcard, meaning that any outcome of branch A will match this
tag and initiate branch A’s dependence chain.

Biased branches and memory address aliasing.
Branch Runahead assumes that highly biased branches will remain
biased and ignores them during chain extraction, even if a biased
branch is also an affector or guard branch. Additionally, Branch
Runahead assumes that memory address aliasing (i.e., overlapping
memory addresses) between store-load pairs will also persist. These
assumptions are, of course, not always true and can cause the
dependence chains to diverge from the main thread. For example,
once the for loop in Figure 4a terminates, the dependence chain for
branch A will no longer be valid and any predictions it generates

3The merge point of a branch is the instruction where control converges regardless of
the true direction of the branch.

807

Branch Runahead: An Alternative to Branch Prediction for Impossible to Predict Branches MICRO’21, October 18–22, 2021, Athens, Greece

Fetch Decode Rename Reservation
Stations

Physical
Register Read Execute Retire

Chain Extraction

Affector/Guard
Detection

Chain Live-in
Register Access

Prediction
Queues

Dependence
Chain Engine

Figure 6: Pipeline Modifications

will likely be incorrect. Dependence chains will be deactivated when
a misprediction is detected.

Putting it all together. Once the chains for branch A and B
have been extracted, they are installed in a chain cache located in
the Dependence Chain Engine. Newly installed chains cannot start
executing until the core synchronizes the chain by initializing the
chain’s local register file with the correct input data. This does not
happen until the next time either branch A or branch B mispredicts.
When a misprediction occurs, the correct direction of the branch
is broadcast to the Instruction Fetch Unit. Any chains whose tag
matches the branch address and outcome are activated. At this
point, newly activated chains copy their live-ins from the physical
register file and begin execution. Finally, when the dependence
chain finishes execution, the branch address and outcome produced
by the chain are used to identify the next set of chains. The de-
pendence chains continue to execute, completely asynchronously
from the core, until a misprediction from the dependence chains is
detected. At that point, the mispredicting chain is synchronized by
copying the correct values from the physical register file and chain
execution resumes.

4 BRANCH RUNAHEAD
Figure 6 shows a summary of the changes Branch Runahead re-
quires on top of a typical Out-of-Order pipeline. We break these
changes up into three categories: 1) dependence chain extraction,
the process of identifying hard-to-predict branches and the uops
that belong to their dependence chains. Once extracted, dependence
chains are stored in the dependence chain cache. 2) Dependence
Chain Control synchronizes the dependence chains with the core
and allows them to execute continuously, producing near perfect
branch predictions, which are used instead of predictions from
the TAGE-SC-L predictor. Finally, the chains are executed on 3)
the Dependence Chain Engine (DCE), which is a specialized unit
designed to execute dependence chains more efficiently than is
possible on the core. Figure 7 shows a block diagram of the DCE.
This section discusses Dependence Chain Control, followed by the
microarchitecture of DCE, then concludes with dependence chain
extraction and affector/guard detection.

4.1 Dependence Chain Control
Entering Runahead Mode. Once the dependence chains have
been extracted, they are copied to the dependence chain cache
where they wait to be initiated. Dependence chains cannot be initi-
ated until their live-in data is synchronized with the core. Branch
mispredictions present a convenient time to perform this synchro-
nization, as the core backend and frontend are synchronized. When
the core detects a branch misprediction, the branch address and
outcome, which together form a tag, are used to look up an entry
in the chain cache. If there is a hit, then the matching dependence

chain is initiated; i.e., its uops are written into the reservation sta-
tions and its live-ins are copied from the core’s physical register
file. Additionally, the corresponding prediction queue is synchro-
nized with instruction fetch. Once complete, the chain may begin
execution.

Continuous Execution.Once initiated by the core, dependence
chains execute continuously by using the dependence chain out-
come to initiate future dependence chains. The aggressiveness of
chain initiation impacts the level of chain level parallelism, which
impacts the timeliness of the computed branch outcomes. In this
paper, we evaluate three initiation techniques.

Non-speculative Initiation. A dependence chain must finish
execution entirely before initiating the next dependence chain. Once
the dependence chain has finished execution, the pre-computed
branch outcome and the branch address are used to index the chain
cache and initiate all matching chains. Chain level parallelism is
minimized in this mode as dependence chains must wait for their
predecessors to finish execution before they can begin processing.

Independent-early Initiation. Chains with a wildcard tag are
initiated when a triggering branch is issued into the reservation
station. Recall from section 3 that some chains are marked with a
wildcard tag, indicating that the direction of the triggering branch
does not matter. In this case there is no need to wait for the prede-
cessor chain to finish execution as the result of the branch will not
affect whether or not the wildcard chain is initiated. Instead, wild-
card chains are initiated as soon as their predecessor chains finish
initiation. This mode increases chain level parallelism as chains with
wildcard tags can now execute in parallel4. Non-wildcard chains,
however, must wait for the predecessor chain to finish execution.

Predictive Initiation. Before, chains with non-wildcard tags
required the direction of the triggering branch to be known in order
to initiate them; however, in this mode the outcome of each branch
is predicted at initiation time. This allows the branch address and
the predicted outcome to index the chain cache and initiate non-
wildcard matching chains early. If the prediction turns out to be
incorrect, the speculatively initiated chains are simply flushed and
the correct chains are initiated in their place. This mode maximizes
chain level parallelism when the predicted branch outcomes are
correct, or, in the case of mispredictions, results in chains being
initiated no later than they would have in the prior two modes.
In this mode, wildcard chains are handled exactly as they were in
Independent-early Initiation. It is important to note that the pre-
diction is only used to increase chain level parallelism; thus, any
level of accuracy will likely improve the timeliness of branch out-
comes. We use a simple per-branch 3-bit counter as the prediction
mechanism.

In all three modes, chain execution continues as long as the pro-
duced tags continue to hit in the chain cache. If ever the produced
tag misses, then there are no more chains to initiate and runahead
mode is exited.

DetectingDependenceChainDivergence.Unfortunately, de-
pendence chains will eventually diverge from the main thread.
When this happens, the dependence chains will begin to produce
incorrect predictions. Branch Runahead monitors all prediction
4Note that initiation simply affects when the chain is added to the reservation stations.
The individual uops within the dependence chain are still required to wait until their
data dependencies have been satisfied before they are scheduled to the functional unit.

808

MICRO’21, October 18–22, 2021, Athens, Greece Pruett and Patt, Stephen Pruett, and Yale N. Patt

Dependence
Chain Cache

DCE
Physical
Registers

ALU0 ALU1

Prediction
Queues

Final Prediction

Program

Counter

Live-ins from core
<Branch PC, Outcome>

64KB
TAGE-SC-L

Hit

Reservation Stations
...

...
to Core

D-Cache

Figure 7: DCE Microarchitecture

produced by dependence chains. Once a misprediction is detected,
the chain is synchronized by once again copying the live-in values
from the core to the DCE.

4.2 DCE Microarchitecture
The microarchitecture of the DCE is specialized to execute depen-
dence chains more efficiently than the core. This is accomplished
by observing that most of the communication between uops occurs
within the dependence chain. Tailoring the microarchitecture of the
DCE around this allows us to reduce the number of ports required
for physical registers and reservation stations, in turn reducing the
cost-per-entry of those structures. Alternatively, we also evaluate a
Core-Only implementation of the DCE, which shares physical reg-
isters, reservation stations, and functional units with the core. This
section covers each component of the DCE microarchitecture, how
it works, and what utility it provides towards improving branch
prediction.

Dependence Chain Cache. Once the dependence chains have
been extracted, they are copied to the dependence chain cache
where they wait to be executed. The dependence chain cache holds
up to 32 dependence chains and uses LRU as a replacement policy.

Rename and Instruction Scheduling. Instruction scheduling
happens at two levels of granularity: global (i.e., initiating the de-
pendence chains, discussed in section 4.1) and local (i.e., scheduling
the uops within a chain). To accomplish this, Branch Runahead uses
two levels of rename. Local rename happens once, during chain ex-
traction, where communication within the chain is assigned a local
physical register. Global rename happens dynamically, when the de-
pendence chain is initiated, and results in assigning the dependence
chain to a local register file and reservation station.

Physical Registers. The physical register file is divided into
several local register files (Figure 8). Each local register file is treated
as an independent, single-ported bank. Dependence chains read
and write to their own local register file, except for live-in values 5,
which are read from the local register file of the producer chain,
creating the possibility of a bank conflict.

Reservation Stations. The reservation stations are divided into
several local reservation stations, each with a capacity of 16 uops
5Values produced by another dependence chain or the core.

<A-*>

Chain Cache

1 2 3 A

Tag Chain
Physical
Registers

1 2 3 A

1 2 3 A

Local Reg.
File 0

Local Reg.
File 1

Local Reg.
File 2

CoreMispredict

Figure 8: Global Rename Example

(1 chain). As uops are executed, their results are broadcast to the
physical register file and to the reservation stations. Once all sources
of a uop are ready, then the uop may be scheduled for execution.
Uops are scheduled to execute out-of-order. We experimented with
in-order instruction scheduling; however, we found that in-order
execution was not able to expose enough Memory Level Parallelism
(MLP) to significantly benefit the dependence chains.

InstructionWindow. The physical register file and reservation
stations together form the instruction window. The number of local
register files and reservation stations directly affects the number
of dynamic chain instances that are actively executing at once.
Increasing the window size allows for more chain level parallelism;
however, it can come at a significant cost. Alternatively, the entire
instruction window can be shared with the core, minimizing cost,
but also minimizing chain level parallelism. See section 5.2 for a
detailed analysis.

Figure 8 shows an example. Here, a branch misprediction from
the core triggers the tag < A, ∗ >. The misprediction also triggers a
synchronization between the DCE and the core. The chain’s live-ins
are read from the core physical registers and copied to a new local
register file (red). While the live-ins are being copied, the matching
dependence chain is issued into a reservation station and allocated a
new local register file (blue). The chain’s source register file is set to
red. Once the branch is issued, its address is broadcast to the chain
cache to initiate any matching wildcard tags. In this example, the
same chain matches, which triggers another dynamic instance of
the chain to be issued (orange) and the chain’s source registers are
set to blue. Once the core has copied all live-ins to the red register
file, the ready-bits in the physical register file will be set and the
reservation station will be notified. At this point, the chain may
begin executing. As uops execute, their results are written back
to the appropriate local register file and the reservation station is
notified.

Memory Accesses. The DCE shares the D-Cache and D-TLB
with the core. The main thread is given priority to the D-Cache
and D-TLB ports, and the DCE may only use these structures when
available. Dependence chains do not contain any store instructions
(see section 4.3), so the main thread does not have to worry about
data corruption by the dependence chains.

The Prediction Queues. The prediction queues ensure that
predictions between the DCE and core are synchronized. The size
of each prediction queue also limits how far ahead (or behind)
the DCE can be, which can affect performance. The DCE contains
16 per-branch prediction queues. When a dependence chain is

809

Branch Runahead: An Alternative to Branch Prediction for Impossible to Predict Branches MICRO’21, October 18–22, 2021, Athens, Greece

initiated, a slot in the corresponding prediction queue is allocated. 6
Finally, when the dependence chain finishes execution, it pushes the
outcome of the branch into the prediction queue. When the branch
is fetched, it will see that its queue contains a prediction and will
use that result instead of TAGE-SC-L. However, if the core fetches
the branch before the DCE has computed the next prediction, then
the slot is marked as consumed, even though it has not yet been
filled. Later, when the DCE finishes computing the prediction, the
already consumed slot in the prediction queue will be filled in case
there is a recovery. To maintain the state of the queue, we use
three pointers: DCE push for inserting new predictions, core fetch
for consuming predictions at fetch, and core retire for removing
retired predictions.

Recovery. During a branch recovery, the core fetch pointer is
restored to its state before the misprediction, effectively reinserting
previously consumed predictions into their original positions in
the queue. This is accomplished by checkpointing the state of the
core fetch pointer at each branch.

Prediction Throttling. Each prediction queue has a 2-bit throt-
tle counter, which is incremented when the DCE is correct and
TAGE is incorrect and decremented when the DCE is incorrect
and TAGE is correct. When the counter is negative, predictions
produced by the DCE are ignored.

4.3 Chain Extraction Hardware
Detecting Hard to Predict Branches. A new structure, the Hard
Branch Table (HBT) (Figure 9), detects hard-to-predict branches.
New entries are allocated when a conditional branch retires (if space
available). Each entry consists of a 5-bit saturating misprediction
counter that is incremented upon retiring a mispredicted branch. A
branch is considered hard-to-predict when its misprediction counter
saturates. Misprediction counters are periodically decremented by
15 every 1000 retired branches.7, and old entries can be overwritten
when their counter is 0.

TrackingAffector andGuard Branches. In addition to identi-
fying hard-to-predict branches, theHBT also keeps track of affectors
and guards. Once detected (section 4.4), affector/guard branches
are allocated in the HBT. The AG field is set to indicate the branch
is an affector/guard, which allows the branch to remain in the table
even if it is not hard-to-predict. Affector/guard branches can only
be replaced when the hard-to-predict branch they are associated
with is removed. In addition, the affector/guard branch is added to
the affector/guard list (AGL) field of the hard-to-predict branch.8
If this branch was not previously in the affector/guard list, then
the affector/guard changed (AGC) field is set, indicating that a new
affector/guard branch was found.

Branch Runahead ignores highly biased affector/guard branches.
Therefore, the HBT tracks the bias of each affector/guard branch
using a 7-bit bias counter, which is incremented when the direc-
tion of a retired branch matches the direction stored in the Biased

6Slots must be allocated at initiation to ensure they appear in the prediction queue in
program order.
7The decrement amount and counter widthwas calculated using a binomial distribution
that theoretically detects branches that make up at least 1.5% of the total misprediction
rate with a 1% false positive rate.
8The AGL is stored as a bit-vector, 1 bit per entry in the HBT.

Direction (BD) field and is decremented by 9 periodically9. If an
affector/guard branch is found to be biased, then it is removed from
the hard-to-predict branch’s affector/guard list, and the AGC field
is set if appropriate.

Extracting the Dependence Chain. The chain extraction al-
gorithm is adapted from Hashemi et al. [16] where the authors use
dependence chains to create prefetches for load instructions. Chain
extraction begins when a hard-to-predict branch is retired.10 Chain
extraction terminates when either 1) a second instance of the same
branch is found, or 2) an affector/guard branch is found. Upon ter-
mination, the dependence chain is tagged with the PC and outcome
of the terminating branch and installed into the dependence chain
cache.

Chain extraction performs a backwards dataflow walk starting
at the most recently retired hard-to-predict branch instruction. To
facilitate this, we add a circular buffer, called the chain extraction
buffer (CEB), that holds the last 512 micro-operations (uops) retired.
Uops in the CEB are searched cycle-by-cycle to see if they belong
to the dependence chain. Figure 9 shows an example. In cycle 0,
the second, younger dynamic instance of the mispredicting branch
(shaded in grey) is added to the dependence chain and the search
list (LIV) is initialized with the live-in table entry associated with
this branch. Additionally, all of the branch’s source registers (i.e.,
the condition code register) are added to the search list. Then, the
CEB is iteratively scanned for uops whose destination register(s)
match in the search list. On a match, we 1) add the matching uop
to the dependence chain, 2) remove the matching register(s) from
the search list, and 3) add the source registers of the matching uop
to the search list. In cycle 1, the CEB is scanned for uops that write
the condition codes, resulting in the addition of the CMP uop to
the dependence chain and its source registers added to the search
list. In cycle 2, the CEB is scanned for uops that write to R0. This
results in the LD uop being added to the dependence chain, P0 being
removed from the search list, and the sources of the LD (P2) added
to the search list. When a load op is found, its address is compared
to other addresses in the CEB store buffer. If a corresponding store
op is found, then the store is also added to the dependence chain.
In cycle 3, the MOV uop is added to the dependence chain because
of its write to P2. Finally, in cycle N, we reached the initial instance
of the branch, ending chain extraction. The shaded uops make up
the final resulting dependence chain. Several uops in the CEB were
omitted because they are not added to the dependence chain.

Chain extraction takes place one chain at a time, off the critical
path, and is not latency sensitive. The process takes multiple cycles,
as shown in Figure 9. In all of our experiments, we model this
latency accurately 11; however, we experimented with much longer
latency (1000s of cycles) and found no sensitivity. This is because
chain extraction very rarely produces a chain that is not currently
in the chain cache.

Live-in and Live-out Tables. The live-in and live-out tables
hold the architectural live-ins/outs for each chain detected during

9The decrement amount and counter width was calculated using an arithmetic model
that theoretically detects a bias of 90% or more with a false positive rate of 1%.
10The branch must be contained in the HBT and have either saturated its misprediction
counter or be randomly selected. Branches are randomly selected with a 1% probability.
11uops in CEB / retire width

810

MICRO’21, October 18–22, 2021, Athens, Greece Pruett and Patt, Stephen Pruett, and Yale N. Patt

PC Operation

BR 0x7

ADD P3 <= P3 + 40xA

LD P7 <= [P3]0xC

LD P0 <= [P2]
CMP P0, 2
BR (mispredict)

MOV P2 <= P70x1
0x3
0x5
0x7

...

...

...

...

ADD P7 <= P7 + P50xD

Cycle 0

Retired

Cycle 1 Cycle 2 Cycle 3 Cycle N

BR 0x7

ADD P3 <= P3 + 40xA

LD P7 <= [P3]0xC

LD P0 <= [P2]
CMP P0, 2
BR (mispredict)

MOV P2 <= P70x1
0x3
0x5
0x7

...

...

...

...

ADD P7 <= P7 + P50xD

BR 0x7

ADD P3 <= P3 + 40xA

LD P7 <= [P3]0xC

LD P0 <= [P2]
MOV P2 <= P70x1

0x3

0x7

...

...

...

...

ADD P7 <= P7 + P50xD

PC Operation PC Operation PC Operation PC Operation

CMP P0, 20x5
BR (mispredict)

BR 0x7

ADD P3 <= P3 + 40xA

LD P7 <= [P3]0xC

LD P0 <= [P2]
CMP P0, 2
BR (mispredict)

MOV P2 <= P70x1
0x3
0x5
0x7

...

...

...

...

ADD P7 <= P7 + P50xD

BR 0x7

ADD P3 <= P3 + 40xA

LD P7 <= [P3]0xC

LD P0 <= [P2]
CMP P0, 2
BR (mispredict)

MOV P2 <= P70x1
0x3
0x5
0x7

...

...

...

...

ADD P7 <= P7 + P50xD

LIV: {cc} LIV: {P0} LIV: {P2} LIV: {P7} LIV: {P5, P3}

Hard Branch Table
Bias

CounterAG AGC AGLBR BDMisp.
Counter

0x7 31 1 0 { } 0 NT

0x9 31 0 0 { 0x7 } 0 T

Figure 9: The Chain Extraction Buffer (CEB)

Table 1: Baseline Configuration

Core 4-Wide Issue, 256-Entry ROB, 92-Entry Reservation
Station, 3.2 GHz, 64KB TAGE-SC-L Branch Predictor [32].
Modeled by Scarab [2].

WPB 128-entry, 4-way, max merge point distance 256 uops.
L1 Caches 32 KB I-Cache, 32 KB D-Cache, 64 Byte Lines, 2 Ports,

3-Cycle Hit Latency, 8-Way, Write-Back.
L2 Cache 2 MB 12-Way, 18-Cycle Latency, Write-Back.
Memory Controller 64-Entry Memory Queue.
Prefetchers Stream: 64 Streams, Distance 16. Prefetch into LLC.
DRAM DDR4, 8Gb, x8, 2400R, Modeled by Ramulator [20].

chain extraction. In Figure 9, the architectural registers correspond-
ing to the live-in vector (LIV) are stored in the live-in table at the
end of chain extraction. Further, the Live-out vector, i.e., architec-
tural registers corresponding to P0, P2, P3, P7, is written into the
live-out table. This information is used during local rename and
during synchronizations with the core.

Local Rename. Local rename happens once during chain ex-
traction. During this process local registers (i.e., communication
within a chain) are renamed and global registers (communication
between chains) are identified and partially renamed to prepare
for global rename. Local registers are renamed to minimize physi-
cal register footprint. Global registers are identified by comparing
the live-in/live-out registers of the chain with the live-out/live-in
registers of the producer/consumer branches, respectively. Global
registers are renamed in-order to guarantee the same name is used
between different chain extractions.

Dependence Chain Optimizations. All move uops are move-
eliminated. Further, because store-load pairs detected during chain
extraction are logically equivalent to a move, all store-load pairs
are move eliminated as well. This optimization guarantees that
dependence chains will not contain any store instructions.

4.4 Detecting Affector and Guard Branches
Branch Runahead uses a new merge point prediction algorithm to
detect control and data dependencies between dependence chains.
Prior work in merge point prediction makes assumptions about
code layout [10, 11], which results in a lower accuracy and cover-
age [29]. Our algorithm leverages branch mispredictions, compar-
ing the wrong path and correct path of the branch to see where
they intersect.

Table 2: Branch Runahead Configuration

Core-Only (9KB) Mini (17KB) Big (Unlimited)
uOps Integer: add/multiply/subtract/mov/load.

Logical:and/or/xor/not/shift/sign-extend.
Chain 32-entry (2KB) 1024-entry
Cache 1 uop per entry, 4B per uop.
PRF 0 (0KB) 64x 8-entry (4KB) 1024x 8-entry
RSV 0 (0KB) 64x 32-entry (4KB) 1024x 32-entry
MSHRs 48-entry 48-entry 64-entry
Prediction 16x 256-entry (4KB) 1024-entry
Queue
HBT 64-entry (1KB)
CEB 512-entry (2KB) 2048-entry

Merge Point Prediction. Due to high fetch rates and the large
instruction windows, it is common for modern processors to fetch
hundreds of wrong path instructions before detecting a mispredic-
tion12. This suggests the merge point is likely fetched and allocated
while going down the wrong path. Thus, to detect the merge point,
we can save wrong path instructions, and compare them to instruc-
tions retired on the correct path. The first instruction that appears
both in the wrong path and in the correct path is the predicted
merge point.

To find the merge point, we add a new structure to retirement
called the Wrong Path Buffer (WPB). The WPB is a 128 entry, 4-
way set associative cache that stores wrong path program counters
(PC). When a flush is triggered, the Reorder Buffer (ROB) contains
wrong path instructions. Those instructions, starting with the first
instruction after the mispredicted branch, are copied from the ROB
to the WPB by conducting a forward ROB-walk13. This process
takes multiple cycles as instructions are copied over in batches. 14
The ROB walk typically completes when a second dynamic instance
of the mispredicting branch is found, indicating that we are in a
loop. If the second dynamic instance of the branch is not found, the
ROB-walk terminates when the tail of the ROB has been reached, or
when the maximum merge point distance has been exceeded (100
uops in our experiments). When the copy is complete, the WPB is

12We measured an average of 100 wrong path uops fetched on workloads in SPEC
CPU2006
13We do not expect the latency of the ROB-walk to be an issue. ROB-walks are com-
monly used during a flush to restore the state of the speculative register alias table.
Their latency is typically hidden by the front-end as it refills the pipeline.
14In our experiments, we assume that we can copy instructions to the WPB at the
same rate instructions can be retired.

811

Branch Runahead: An Alternative to Branch Prediction for Impossible to Predict Branches MICRO’21, October 18–22, 2021, Athens, Greece

marked as valid, indicating that correct path instructions should
be compared to its contents. After recovery, retired correct path
instructions use their PC to index the WPB. If there is a hit, then
we have found a PC that is common to both the wrong path and
the correct path, i.e., a merge point. If the second instance of the
branch is retired on the correct path or the maximum merge point
distance is exceeded before finding a merge point, then the process
terminates and the WPB is invalidated.

In addition to the merge point, the WPB also supplies a bit vector
indicating all architectural destination registers that are written
on either side of the branch. We refer to this vector as the dest
set. To create this, we store a dest set at each entry in the WPB
that indicates the destination registers seen up to that point on the
wrong path. A bloom filter is used to track destination addresses
of memory writes. We also use a single correct-path dest set to
accumulate this information as correct path instructions retire.
Once the merge point has been found, we take the logical OR of
the hitting wrong-path dest set and the correct-path dest set. This
results in a single dest set that indicates registers written on either
side of the branch. We refer to this as the both-path dest set.

Detecting Guard Branches By definition, a branch guards any
branches that are observed between itself and the merge point
(excluding biased branches). Therefore, any branches observed on
the wrong-path or correct-path during merge point prediction are
marked as being guarded by the merge predicted branch. If no
merge point is found, then no branches are marked.

Detecting Affector Branches The merge predicted branch is
an affector for any branch that sources data that is affected by the di-
rection of the merge predicted branch. Fortunately, the merge point
predictor provides us with the both-path dest set, which marks all
registers/memory addresses affected by the merge predicted branch.
To detect affectee branches, we use the both-path dest set and the
poison algorithm adapted from Runahead Execution [25]. Registers
and memory addresses marked in the both-path dest set are initial-
ized as poisoned. As correct path instructions after the merge point
retire, they propagate any poison they source to the destination
register. If an instruction outputs to a poisoned register without
sourcing any poisoned registers, then the destination register poi-
son is removed. Any branch, including the merge predicted branch,
that sources poison is considered to be an affectee branch 15 (i.e.,
the merge predicted branch is an affector of the poison sourcing
branch). The process terminates when the second instance of the
merge predicted branch is seen or when the maximum merge point
distance has been reached.

5 RESULTS
5.1 Evaluation Methodology
To simulate our proposal, we use Scarab [2]— an open source simu-
lator commissioned by Intel in their Intel/NSF FoMR initiative [1].
Scarab is an execution-driven, cycle-accurate x86 simulator whose
front-end is based on PIN [23]. The simulator faithfully models core
microarchitectural details, the cache hierarchy, wrong-path exe-
cution, and includes a detailed non-uniform access latency DDR4
memory system, modeled by Ramulator [20]. We model the 64KB

15Excluding biased branches.

gmean
10
0

10
20
30
40
50

Re
la

tiv
e

IP
C

Im
pr

ov
em

en
t (

%
) 73%83%

80KB TAGE-SC-L
Core Only BR
Mini BR
Big BR

mcf_1
7

leela_17
xz_17

deepsjeng_17

omnetpp_17
astar_06

mcf_0
6

gobmk_06
bzip2_06

sjeng_06

omnetpp_06 cc bfs tc bc pr
ssspamean

0
10
20
30
40
50
60
70
80

Re
la

tiv
e

M
PK

I
Im

pr
ov

em
en

t (
%

)

Figure 10: IPC andMPKI Improvement of Branch Runahead
compared to 64KB TAGE-SC-L

TAGE-SC-L [32] branch predictor with the configuration submit-
ted to CBP-2016. The 64KB TAGE-SC-L is the best known realistic
branch predictor. Table 1 describes our system.

Branch Runahead Configuration. Branch Runahead is eval-
uated on three configurations— Core-Only (9KB), Mini (17KB), and
Big (unlimited). Table 2 contains the details of each configuration.

Benchmarks.We evaluate Branch Runahead on SPEC CPU2017
Integer Speed, SPEC CPU2006 Integer [3] and GAP Benchmark
Suites [6]. From that set, we select the branch misprediction inten-
sive benchmarks with an average MPKI greater than 2. We use the
SimPoints [27] methodology to identify anywhere between one to
five representative regions per benchmark. We run each region for
200 million instructions, then compute the weighted average of all
the regions. We run SPEC benchmarks on the ref input set, and
use -g 19 -n 300 inputs for GAP. If there is more than one ref input,
then the benchmark is run on each input, and a weighted average,
weighing each input by the total dynamic instruction count, is used
to compute a single metric for the entire benchmark.

Energy and Area. We model chip energy and area using Mc-
PAT [22]. The DCE is modeled as a stripped down core, remov-
ing structures like decode, register rename, floating point pipeline,
prefetchers, and others required for maintaining precise state, such
as the ROB.

Metrics.We use Instructions Per Cycle (IPC) as the performance
metric and Branch Mispredictions Per Kilo Instruction (MPKI) to
evaluate improvements in prediction accuracy. MPKI Improvement
is computed as the difference between Branch Runahead MPKI and
TAGE-SC-L MPKI, normalized to TAGE-SC-L MPKI.

5.2 Branch Runahead Results
Figure 10 shows the performance results for the Core-Only, Mini,
and Big implementations of Branch Runahead. The results show
that Branch Runahead reduces MPKI by an average of 37.5%, 43.6%,
and 47.5% and increases IPC by an average of 8.2%, 13.7%, and 16.9%,
respectively. The trade-off comes down to cost vs chain level par-
allelism. Big-Branch Runahead maximizes chain level parallelism
by providing the most physical registers and reservation station
entries, while the Core-only model minimizes these same qualities.

Figure 10 also shows the performance of an 80KB TAGE-SC-L
predictor (left most bar), which requires roughly the same storage
overhead as Mini Branch Runahead (16KB). However, the 80KB

812

MICRO’21, October 18–22, 2021, Athens, Greece Pruett and Patt, Stephen Pruett, and Yale N. Patt

0
10
20
30
40
50
60
70
80

Re
la

tiv
e

M
PK

I
Im

pr
ov

em
en

t (
%

)

MTAGE Unlimited Big BR MTAGE + Big BR

mcf_1
7

leela_17
xz_17

deepsjeng_17

omnetpp_17
astar_06

mcf_0
6

gobmk_06
bzip2_06

sjeng_06

omnetpp_06 cc bfs tc bc pr
ssspamean

0
10
20
30
40
50
60
70
80

Re
la

tiv
e

M
PK

I
Im

pr
ov

em
en

t (
%

)

Non-speculative
Independent-early
Predictive

Figure 11: MPKI Improvement of MTAGE and Branch Runa-
head (top) andMPKI Improvement of Chain InitiationMeth-
ods (bottom)

TAGE-SC-L only improves MPKI by 0.8%, resulting in only 0.3%
improvement in IPC. Mini Branch Runahead improves the mis-
prediction rates of targeted branches by an average of 55%, while
80KB TAGE-SC-L has a negligible effect on these same branches.
This result supports the claim that history-based predictors are
fundamentally unable to predict these data-dependent branches.

Limits of Branch Runahead. Big Branch Runahead uses un-
limited storage to demonstrate the maximum potential of Branch
Runahead. In this model, parameters of the microarchitecture are
increased far beyond their reasonable limits. As Figure 10 shows,
Big Branch Runahead improves MPKI over Mini Branch Runahead
by only 3.8%, suggesting that Mini Branch Runahead is very close
to its peak potential.

Limits of History-based Predictors. Figure 11 (top) compares
Big-Branch Runahead to MTAGE-SC, winner of the unlimited stor-
age category in CPB-2016 [33]. While MTAGE-SC improves MPKI
significantly, particularly in the SPEC workloads, it is still outper-
formed on average by Big Branch Runahead (middle bar). This is
because MTAGE-SC performs poorly on GAP workloads, which are
dominated by data-dependent branches. Combining MTAGE-SC
and Big Branch Runahead (right bar) further improves MPKI on
every benchmark, demonstrating that Branch Runahead is capable
of predicting branches that TAGE fundamentally cannot predict.

Chain Initiation Method. Chain Initiation is the most impor-
tant factor towards improving timeliness. As discussed in section 4.1,
Chain Initiation affects chain level parallelism. Figure 11 (bottom)
shows the MPKI improvement of each initiation method. Unsurpris-
ingly, the Predictive Initiation method, which maximizes chain level
parallelism, has the highest impact on MPKI. While this method
does produce the highest degree of performance, it comes at the
cost of flushing the DCE on a misprediction, which wastes energy.

Timeliness of predictions. DCE predictions need to be timely
in order to be useful. The stacked bars in Figure 12 show the frac-
tion of predictions supplied by the DCE that are inactive or late.
The inactive category means that, at the time the core needed the
prediction, no dependence chains had been activated to produce
that prediction. This generally happens once the branch is fetched,
but before the first synchronizing misprediction occurs. Branch

mcf_1
7

leela_17
xz_17

deepsjeng_17

omnetpp_17
astar_06

mcf_0
6

gobmk_06
bzip2_06

sjeng_06

omnetpp_06 cc bfs tc bc pr
ssspamean

0
20
40
60
80

100

%
 o

f P
re

di
ct

io
ns

Inactive Late Throttled Incorrect Correct

Figure 12: Prediction Breakdown

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Re
la

tiv
e

M
PK

I
Im

pr
ov

em
en

t (
%

)

2.5
0.0
2.5

16

32 64 128 256 1024

Chain Cache Size

0

2

4

512
1024

2048

CEB Entries

0.0

2.5

64
128

256 512 1024

Prediction Queue Entries

0

2

4

16 32 64 128

HBT Entries

2.5
0.0
2.5

32

64
128

256 512 1024

Window Size

20

10

0

8

16 32
Max Chain Length

Figure 13:MPKI Improvement relative toMini BranchRuna-
head. Parameters are swept individually up to the level of
Big Branch Runahead (Red dotted line) to show each param-
eters contribution.

Runahead requires a mispredicted branch to synchronize, which un-
fortunately has the effect of activating chains late. The late category
refers to predictions which have active chains, but are generated
too late to be useful for the core. This generally happens when
the dependence chain contains too many long latency operations.
The throttle category refers to predictions that are throttled (as
described in section 4.2). The remaining two categories, correct and
incorrect, refer to predictions that are used by the core. This figure
demonstrates two things. First, predictions generated by Branch
Runahead are very accurate, with nearly all of the used predictions
being correct. Second, nearly 40% of predictions are generated on
time. Timeliness is the most difficult issue Branch Runahead faces,
with late predictions making up the largest category outside of
correct predictions.

Sweeps. Figure 13 shows MPKI improvement for a DCE with
various configurations 16. Parameters are swept up to the values
used for the Big Branch Runahead configuration. On average, Big
Branch Runahead improves the MPKI of Mini Branch Runahead by
3.89%. The figure suggests that this improvement is primarily due
to the increased window size and chain cache size. Furthermore,
the graph suggests that optimal values for window size and chain
cache would be 128-entry and 64-entry respectively, meaning that

16Due to the large number of simulations, sweeps ran for 10 Million instructions, as
opposed to the 200 Million used for all other experiments.

813

Branch Runahead: An Alternative to Branch Prediction for Impossible to Predict Branches MICRO’21, October 18–22, 2021, Athens, Greece

mcf_1
7

leela_17
xz_17

deepsjeng_17

omnetpp_17
astar_06

mcf_0
6

gobmk_06
bzip2_06

sjeng_06

omnetpp_06 cc bfs tc bc pr
ssspgmean

45

30

15

0

En
er

gy
Ch

an
ge

 (%
)

Core Only BR Mini BR Big BR

Figure 14: Energy Impact (Lower is better)

Big Branch Runahead could be implemented using 27KB of total
storage.

Energy. Figure 14 shows the change in energy due to Branch
Ruanhead, as estimated by McPat. Branch Runahead decreases
energy on average, primarily due to faster run times. However,
Branch Runahead does increase energy usage in two ways. First,
there is the increase in static and dynamic power that is generated
by new structures. Second, Branch Runahead increases the total
number of instructions executed and memory accesses. Figure 3
shows the total increase in both ops executed and total memory
accesses.

Area.McPat estimates the DCE engine area to be 0.38mm2, or
about 2.2% of a baseline out-of-order core (16.96mm2 at a 22nm
process). Of this total, 0.09mm2 is dedicated to the dependence
chain cache, 0.15mm2 is dedicated to functional units, reservation
stations, and physical registers, and 0.14mm2 is dedicated to chain
extraction and the HBT. 17

Impact on clock frequency. Branch Runahead minimally af-
fects clock frequency, as almost all units are off the critical-path
and are not sensitive to latency. The only component on the critical
path is a MUX, which selects between TAGE-SC-L and the DCE
engine prediction queues. The DCE executes the dependence chain
across many cycles, off the critical path, and inserts the result into
a prediction queue. Therefore, processor throughput is minimally
impacted.

6 RELATEDWORK
Gupta et al. [14] target dependence chains that contain one load
instruction with a predictable address. While this technique is ef-
fective for a subset of branches, Branch Runahead is a more general
technique that is able to capture more benefit. Their targeted ap-
proach does simplify some hardware (no affector/guards, simplifies
chain scheduling), however much of the same hardware is needed
to execute the dependence chains.

Farooq el al. [12] propose Store-Load-Branch (SLB) predictor,
which predicts data-dependent branches by identifying dependent
store-load-branch chains in a program using the compiler. Gao
et al. [13] propose a new predictor that targets data-dependent
branches by correlating a load’s memory address with the result of

17For reference, McPat estimates the 64KB TAGE-SC-L predictor to be 0.73mm2 .
This estimate is a lower bound on the total area, as McPat does not faithfully model
the interconnect, muxes, and adders contained within TAGE-SC-L predictor, which
consume a non-negligible area.

an upcoming branch. The EXACT predictor [4] also targets data-
dependent branches by distinguishing branch instances based on
their feeder load’s address.

Premillieu et al. [28] save branch results computed on the
wrong-path and replay them as predictions later on the correct-
path. However, this technique is limited to control-independent/data-
independent branches that are executed in the shadow of a branch
misprediction.

Ayers et al. [5] propose a new methodology to classify the mem-
ory access patterns of applications. This technique effectively cate-
gorizes dependence chains for load instructions, enabling reasoning
about prefetcher timeliness and criticality.

Zangeneh et al. propose BranchNet [37] offline training of a CNN
to improve prediction accuracy for hard-to-predict branches. How-
ever, this technique requires correlation between branch outcomes
and history, making the technique less effective for data-dependent
branches.

7 CONCLUSION
Branch Runahead represents a new opportunity to achieve high
prediction accuracy on hard-to-predict, data-dependent branches.
This paper demonstrates that history based predictors, like TAGE-
SC-L and MTAGE-SC are not capable of predicting this category of
branches. Branch Runahead, however, uses the application’s own
code to pre-compute the result of these branches, leading to an
accuracy improvement of 55% (TAGE-SC-L) and 44% (MTAGE-SC)
for branches which Branch Runahead targets.

ACKNOWLEDGMENTS
We thank the anonymous reviewers and the members of the HPS
Research Group for their feedback and help improving this paper.
We would like to thank Intel, the Cockrell Foundation, Arm, and
NSF Award #2011145 for their financial support.

REFERENCES
[1] [n. d.]. NSF/Intel Partnership on Foundational Microarchitecture Research

(FoMR). ([n. d.]). https://www.nsf.gov/pubs/2019/nsf19598/nsf19598.htm
[2] [n. d.]. Scarab. ([n. d.]). https://github.com/hpsresearchgroup/scarab
[3] [n. d.]. The Standard Performance Evaluation Corporation (SPEC). The SPEC

Benchmark Suite. ([n. d.]). http://www.spec.org
[4] Muawya Al-Otoom, Elliott Forbes, and Eric Rotenberg. 2010. EXACT: Explicit

Dynamic-Branch Prediction with Active Updates. In Proceedings of the 7th ACM
International Conference on Computing Frontiers (CF ’10). Association for Comput-
ing Machinery, New York, NY, USA, 165–176. https://doi.org/10.1145/1787275.
1787321

[5] Grant Ayers, Heiner Litz, Christos Kozyrakis, and Parthasarathy Ranganathan.
2020. Classifying Memory Access Patterns for Prefetching. In Proceedings of the
Twenty-Fifth International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS ’20). Association for Computing Ma-
chinery, New York, NY, USA, 513–526. https://doi.org/10.1145/3373376.3378498

[6] Scott Beamer, Krste Asanovic, and David A. Patterson. 2015. The GAP Benchmark
Suite. CoRR abs/1508.03619 (2015). arXiv:1508.03619 http://arxiv.org/abs/1508.
03619

[7] Trevor E. Carlson, Wim Heirman, Osman Allam, Stefanos Kaxiras, and Lieven
Eeckhout. 2015. The Load Slice Core Microarchitecture. In Proceedings of the 42nd
Annual International Symposium on Computer Architecture (ISCA ’15). Association
for Computing Machinery, New York, NY, USA, 272–284. https://doi.org/10.
1145/2749469.2750407

[8] Robert S. Chappell, Jared Stark, Sangwook P. Kim, Steven K. Reinhardt, and Yale N.
Patt. 1999. Simultaneous Subordinate Microthreading (SSMT). In Proceedings of
the 26th Annual International Symposium on Computer Architecture (ISCA ’99).
IEEE Computer Society, Washington, DC, USA, 186–195. https://doi.org/10.1145/
300979.300995

814

https://www.nsf.gov/pubs/2019/nsf19598/nsf19598.htm
https://github.com/hpsresearchgroup/scarab
http://www.spec.org
https://doi.org/10.1145/1787275.1787321
https://doi.org/10.1145/1787275.1787321
https://doi.org/10.1145/3373376.3378498
https://arxiv.org/abs/1508.03619
http://arxiv.org/abs/1508.03619
http://arxiv.org/abs/1508.03619
https://doi.org/10.1145/2749469.2750407
https://doi.org/10.1145/2749469.2750407
https://doi.org/10.1145/300979.300995
https://doi.org/10.1145/300979.300995

MICRO’21, October 18–22, 2021, Athens, Greece Pruett and Patt, Stephen Pruett, and Yale N. Patt

[9] R. S. Chappell, F. Tseng, A. Yoaz, and Y. N. Patt. 2002. Difficult-path branch pre-
diction using subordinate microthreads. In Proceedings 29th Annual International
Symposium on Computer Architecture. 307–317. https://doi.org/10.1109/ISCA.
2002.1003588

[10] A. Chauhan, J. Gaur, Z. Sperber, F. Sala, L. Rappoport, A. Yoaz, and S. Subramoney.
2020. Auto-Predication of Critical Branches*. In 2020 ACM/IEEE 47th Annual
International Symposium on Computer Architecture (ISCA). 92–104. https://doi.
org/10.1109/ISCA45697.2020.00019

[11] J. D. Collins, D. M. Tullsen, and Hong Wang. 2004. Control Flow Optimization
Via Dynamic Reconvergence Prediction. In Microarchitecture, 2004. MICRO-37
2004. 37th International Symposium on. 129–140. https://doi.org/10.1109/MICRO.
2004.13

[12] M. U. Farooq, Khubaib, and L. K. John. 2013. Store-Load-Branch (SLB) predictor:
A compiler assisted branch prediction for data dependent branches. In 2013 IEEE
19th International Symposium on High Performance Computer Architecture (HPCA).
59–70.

[13] Hongliang Gao, Yi Ma, Martin Dimitrov, and Huiyang Zhou. 2008. Address-
branch correlation: A novel locality for long-latency hard-to-predict branches.
In 2008 IEEE 14th International Symposium on High Performance Computer Archi-
tecture. 74–85. https://doi.org/10.1109/HPCA.2008.4658629

[14] Saurabh Gupta, Niranjan Soundararajan, Ragavendra Natarajan, and Sreenivas
Subramoney. 2020. Opportunistic Early Pipeline Re-Steering for Data-Dependent
Branches. In Proceedings of the ACM International Conference on Parallel Archi-
tectures and Compilation Techniques (PACT ’20). Association for Computing Ma-
chinery, New York, NY, USA, 305–316. https://doi.org/10.1145/3410463.3414628

[15] Milad Hashemi, Onur Mutlu, and Yale N. Patt. 2016. Continuous Runahead:
Transparent Hardware Acceleration for Memory Intensive Workloads. In The
49th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO-49).
IEEE Press, Piscataway, NJ, USA, Article 61, 12 pages. http://dl.acm.org/citation.
cfm?id=3195638.3195712

[16] Milad Hashemi and Yale N. Patt. 2015. Filtered Runahead Execution with a
Runahead Buffer. In Proceedings of the 48th International Symposium on Microar-
chitecture (MICRO-48). ACM, New York, NY, USA, 358–369. https://doi.org/10.
1145/2830772.2830812

[17] D Jiménez. 2016. Multiperspective Perceptron Predictor. In 5th JILP Workshop on
Computer Architecture Competitions (JWAC-5): Championship Branch Prediction
(CBP-5).

[18] D Jiménez. 2016. Multiperspective Perceptron Predictor with TAGE. In 5th JILP
Workshop on Computer Architecture Competitions (JWAC-5): Championship Branch
Prediction (CBP-5).

[19] D. A. Jimenez and C. Lin. 2001. Dynamic branch prediction with perceptrons. In
Proceedings HPCA Seventh International Symposium on High-Performance Com-
puter Architecture. 197–206. https://doi.org/10.1109/HPCA.2001.903263

[20] Y. Kim, W. Yang, and O. Mutlu. 2016. Ramulator: A Fast and Extensible DRAM
Simulator. IEEE Computer Architecture Letters 15, 1 (2016), 45–49.

[21] S. Kondguli and M. Huang. 2019. R3-DLA (Reduce, Reuse, Recycle): A More
Efficient Approach to Decoupled Look-Ahead Architectures. In 2019 IEEE Interna-
tional Symposium on High Performance Computer Architecture (HPCA). 533–544.
https://doi.org/10.1109/HPCA.2019.00064

[22] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen, and N. P. Jouppi. 2009.
McPAT: An integrated power, area, and timing modeling framework for multi-
core and manycore architectures. In 2009 42nd Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO). 469–480.

[23] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser, Geoff
Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim Hazelwood. 2005. Pin:
Building Customized Program Analysis Tools with Dynamic Instrumentation.
In Proceedings of the 2005 ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI ’05). Association for Computing Machinery,
New York, NY, USA, 190–200. https://doi.org/10.1145/1065010.1065034

[24] Pierre Michaud. 2018. An Alternative TAGE-like Conditional Branch Predictor.
ACM Trans. Archit. Code Optim. 15, 3, Article 30 (Aug. 2018), 23 pages. https:
//doi.org/10.1145/3226098

[25] O. Mutlu, J. Stark, C. Wilkerson, and Y. N. Patt. 2003. Runahead execution: An
effective alternative to large instruction windows. IEEE Micro 23, 6 (Nov 2003),
20–25. https://doi.org/10.1109/MM.2003.1261383

[26] A. Naithani, J. Feliu, A. Adileh, and L. Eeckhout. 2020. Precise Runahead Execution.
In 2020 IEEE International Symposium on High Performance Computer Architecture
(HPCA). 397–410. https://doi.org/10.1109/HPCA47549.2020.00040

[27] Erez Perelman, Greg Hamerly, Michael Van Biesbrouck, Timothy Sherwood, and
Brad Calder. 2003. Using SimPoint for Accurate and Efficient Simulation. In Pro-
ceedings of the 2003 ACM SIGMETRICS International Conference on Measurement
and Modeling of Computer Systems (SIGMETRICS ’03). ACM, New York, NY, USA,
318–319. https://doi.org/10.1145/781027.781076

[28] Nathanael Premillieu and Andre Seznec. 2012. SYRANT: SYmmetric Resource
Allocation on Not-taken and Taken Paths. ACM Trans. Archit. Code Optim. 8, 4,
Article 43 (Jan. 2012), 20 pages. https://doi.org/10.1145/2086696.2086722

[29] Stephen Pruett and Yale Patt. 2020. Dynamic Merge Point Prediction.
arXiv:cs.AR/2005.14691

[30] Stephen Pruett, Siavash Zangeneh, Ali Fakhrzadehgan, Ben Lin, and Yale Patt.
2016. Dynamically Sizing the TAGE Branch Predictor. In 5th JILP Workshop on
Computer Architecture Competitions (JWAC-5): Championship Branch Prediction
(CBP-5).

[31] A. Roth and G. S. Sohi. 2001. Speculative data-driven multithreading. In Pro-
ceedings HPCA Seventh International Symposium on High-Performance Computer
Architecture. 37–48. https://doi.org/10.1109/HPCA.2001.903250

[32] André Seznec. 2014. TAGE-SC-L Branch Predictors. In JILP - Championship
Branch Prediction. Minneapolis, United States. https://hal.inria.fr/hal-01086920

[33] Andre Seznec. 2016. Exploring branch predictability limits with the MTAGE+SC
predictor. In 5th JILP Workshop on Computer Architecture Competitions (JWAC-5):
Championship Branch Prediction (CBP-5).

[34] R. Sheikh, J. Tuck, and E. Rotenberg. 2015. Control-Flow Decoupling: An Ap-
proach for Timely, Non-Speculative Branching. IEEE Trans. Comput. 64, 8 (Aug
2015), 2182–2203. https://doi.org/10.1109/TC.2014.2361526

[35] V. Srinivasan, R. B. R. Chowdhury, and E. Rotenberg. 2020. Slipstream Processors
Revisited: Exploiting Branch Sets. In 2020 ACM/IEEE 47th Annual International
Symposium on Computer Architecture (ISCA). 105–117. https://doi.org/10.1109/
ISCA45697.2020.00020

[36] Karthik Sundaramoorthy, Zach Purser, and Eric Rotenberg. 2000. Slipstream
Processors: Improving Both Performance and Fault Tolerance. SIGPLAN Not. 35,
11 (Nov. 2000), 257–268. https://doi.org/10.1145/356989.357013

[37] S. Zangeneh, S. Pruett, S. Lym, and Y. N. Patt. 2020. BranchNet: A Convolu-
tional Neural Network to Predict Hard-To-Predict Branches. In 2020 53rd An-
nual IEEE/ACM International Symposium on Microarchitecture (MICRO). 118–130.
https://doi.org/10.1109/MICRO50266.2020.00022

[38] Craig Zilles and Gurindar Sohi. 2001. Execution-based Prediction Using Spec-
ulative Slices. SIGARCH Comput. Archit. News 29, 2 (May 2001), 2–13. https:
//doi.org/10.1145/384285.379246

[39] C. B. Zilles and G. S. Sohi. 2000. Understanding the backward slices of perfor-
mance degrading instructions. In Proceedings of 27th International Symposium on
Computer Architecture (IEEE Cat. No.RS00201). 172–181. https://doi.org/10.1145/
339647.339676

815

https://doi.org/10.1109/ISCA.2002.1003588
https://doi.org/10.1109/ISCA.2002.1003588
https://doi.org/10.1109/ISCA45697.2020.00019
https://doi.org/10.1109/ISCA45697.2020.00019
https://doi.org/10.1109/MICRO.2004.13
https://doi.org/10.1109/MICRO.2004.13
https://doi.org/10.1109/HPCA.2008.4658629
https://doi.org/10.1145/3410463.3414628
http://dl.acm.org/citation.cfm?id=3195638.3195712
http://dl.acm.org/citation.cfm?id=3195638.3195712
https://doi.org/10.1145/2830772.2830812
https://doi.org/10.1145/2830772.2830812
https://doi.org/10.1109/HPCA.2001.903263
https://doi.org/10.1109/HPCA.2019.00064
https://doi.org/10.1145/1065010.1065034
https://doi.org/10.1145/3226098
https://doi.org/10.1145/3226098
https://doi.org/10.1109/MM.2003.1261383
https://doi.org/10.1109/HPCA47549.2020.00040
https://doi.org/10.1145/781027.781076
https://doi.org/10.1145/2086696.2086722
https://arxiv.org/abs/cs.AR/2005.14691
https://doi.org/10.1109/HPCA.2001.903250
https://hal.inria.fr/hal-01086920
https://doi.org/10.1109/TC.2014.2361526
https://doi.org/10.1109/ISCA45697.2020.00020
https://doi.org/10.1109/ISCA45697.2020.00020
https://doi.org/10.1145/356989.357013
https://doi.org/10.1109/MICRO50266.2020.00022
https://doi.org/10.1145/384285.379246
https://doi.org/10.1145/384285.379246
https://doi.org/10.1145/339647.339676
https://doi.org/10.1145/339647.339676

	Abstract
	1 Introduction
	2 Limitations of Prior Work
	2.1 Limitations of Compiler-based Techniques
	2.2 Limitations of Prior Runtime Techniques
	2.3 Limitations of Heavy-weight Helper Threads.

	3 Motivational Example
	4 Branch Runahead
	4.1 Dependence Chain Control
	4.2 DCE Microarchitecture
	4.3 Chain Extraction Hardware
	4.4 Detecting Affector and Guard Branches

	5 Results
	5.1 Evaluation Methodology
	5.2 Branch Runahead Results

	6 Related Work
	7 Conclusion
	Acknowledgments
	References

