Profiling a Warehouse-scale Computer

Presented by Alain Kohli

S. Kanev, J. P. Darago, K. Hazelwood, P. Ranganathan, T. Moseley, G.-Y. Wei and D. Brooks,
“Profiling a Warehouse-scale Computer”, ISCA, 2015

Executive Summary

Problem: Are current microarchitectures suited for WSC workloads?

Motivation: No prior research investigated this issue before

Goal: Identify parts of the microarchitecture that can be optimized for WSCs
Methodology: Profile a live WSC to get insights into microarchitectural bottlenecks
Results:

o Diverse workloads
o Unusually large i-cache stress
o Large d-cache stress as expected
o Low Instruction level parallelism
e Conclusion:

o Better i-cache prefetcher

o i/d-cache separation

o Datacenter specific SoCs

Outline

e Background, Problem & Goal
e Methodology

e Results

o Workload diversity

o Microarchitectural breakdown
o Front-end bottlenecks

o Back-end bottlenecks

o SMT

e Strengths & Weaknesses
e Ideas & Takeaways
® (uestions & Discussion

Outline

e Background, Problem & Goal
e Methodology

e Results

o Workload diversity

o Microarchitectural breakdown
o Front-end bottlenecks

o Back-end bottlenecks

o SMT

e Strengths & Weaknesses
e Ideas & Takeaways
® (uestions & Discussion

Background, Problem & Goal

Warehouse-Scale Computers (WSCs) become more important every year
WSCs pose different challenges compared to traditional servers due to the scale
Optimizing servers in a datacenter isn’t going to help if the performance of the
system as a whole isn’t considered

Latency is the defining performance metric

There are many possible bottlenecks in a WSC

Microarchitectural bottlenecks are not very well understood yet

WSCs are very complex and theoretical analysis has its limitation

Background, Problem & Goal - Previous research

e I[solated benchmarks [/ unrealistic workloads
[M. Ferdman et al,, ASPLOS, 2012]

e Analyzed other aspects (software/system design)
[C. Kozyrakis et al., IEEE Micro, 2010]

e Somewhat outdated
[L. A. Barroso, IEEE Micro, 2003]

Background, Problem & Goal - Main question

What parts of the micro-architecture are the biggest bottlenecks
in a real warehouse-scale computer?

Outline

e Background, Problem & Goal
e Methodology

e Results

o Workload diversity

o Microarchitectural breakdown
o Front-end bottlenecks

o Back-end bottlenecks

o SMT

e Strengths & Weaknesses
e Ideas & Takeaways
® (uestions & Discussion

Methodology

e Profiling a live Google datacenter over 1-3 years (~20,000 machines)

e Restricted to C++ and Intel Ivy Bridge
o Get consistent and comparable data
o Simplifies analyzing the callstack
o C++ consumes the most amount of CPU cycles, even if it isn’t the most popular

e Workloads for microarchitecture analysis
o Standard Google workloads that are as diverse as possible
m ads, bigtable, disk, flight-search, gmail, gmail-fe, indexingl/2, search1/2/3, video
o Common benchmarks as a reference
m 400.perlbench, 445.gobmk, 429.mcf, 471.omnetpp, 433.milc

Methodology - Google-Wide-Profiling (GWP)

e Google in-house profiling
e Non-intrusive performance sampling

® Procedure

o Randomly select a small fraction of servers to profile each day
o Trigger collection of 1s long profile samples (through perf)
o Symbolize the collected sample’s callstacks

o Aggregate samples in a database for analysis

e Validations required by the Performance Monitoring Unit (PMU) are applied

o Exact validations not further specified

Outline

e Background, Problem & Goal
e Methodology

e Results

o Workload diversity

o Microarchitectural breakdown
o Front-end bottlenecks

o Back-end bottlenecks

o SMT

e Strengths & Weaknesses
e Ideas & Takeaways
® (uestions & Discussion

11

Results - Workload diversity

We would like to see how important it is to analyze the datacenter as a whole

Is there one application that uses up almost all resources?
Percentage of total cycles consumed by the X most CPU intensive binaries
The 50 hottest binaries consume less than 60% of all CPU cycles

There is not one single “killer application” for performance

Hottest: 9.9 %

cycles (CDF %)

Y
(@)
c
o

=
=

O

=
-

0
o

20 30
Binaries

12

Results - Workload diversity

e There is a slight trend for less heavy applications over the years
e The 50 hottest binaries use a smaller percentage of CPU cycles every year

£
)
£
O
>
O

50 hottest binaries (%)

13

Results - Workload diversity

Are there clear things to optimize on an application basis at least?

o
e DPercentage of total cycles consumed by the X hottest leaf functions in search3
e There are no clear hotspots to optimize within the applications either

o X
c
onNn
=0
0~
QO n
T O
09
0o

OO

1000 1500
Leaf functions

14

Results - Workload diversity (datacenter tax)

® Are there lower level common operations that cause a slowdown?
e Common components that could be prime candidates for hardware acceleration
e Datacenter tax has a trend to slightly increase

o U

memmove
rpc
protobuf
hash

+ allocation

= =~ NN WW
Ul o u1 © Ul

compression

)
>
N
0]
©
]
(&)
X
©
)
£
n
Q
O
>
O

o

Apr Y1
May y,

Fep Y1
Mar YI

Results - Workload diversity (datacenter tax)

memmove: memcpy () / memmove (), not counting other forms of copying
rpc: Remote Procedure Calls (load balancing, encryption, data movement, etc.)
protobuf: Protocol buffers, used for serialization

hash: Hashing used in various parts, i.e. for communication

allocation: All form of memory allocation

compression: Compression using multiple algorithms

4+ memmove
rpc

4 protobuf
—=— hash

+—1 allocation

compression

16

Results - Microarchitectural bottleneck breakdown

What is preventing us from fully using the microarchitectural resources we have?

We look at the state of the pipeline each cycle and determine, whether p-ops
successfully pass through it

If p-ops do not successfully pass through the pipeline, we want to know which
part of the pipeline is stalling and preventing them from doing so

Broad categorization first (retiring, bad speculation, frontend/backend bound)

17

Results - Microarchitectural bottleneck breakdown

° Retiring
Useful work

= Bad Speculation Pipeline slots Pipeline slots Pipeline slots
Branch prediction fail Retiring Front-end bound Back-end bound

Bad speculation
e m Front-end bound

Can’t fill pipeline fast enough

o Back-end bound
Can’t empty pipeline fast enough

18

Results - Microarchitectural bottleneck breakdown

® Retiring
Useful work s
bigtgblg
° Bad speculation fllghit-search
R gmai
-Te
Branch prediction fail e
indexing%
e = Front-end bound 222522
search3
Can’t fill pipeline fast enough video
400.per|b<|eoncE

445,

° Back-end bound oo

471.omnetpp

Can’t empty pipeline fast enough 433.milc

B Retiring Il Bad speculation
1 Front-end bound 3 Back-end bound

60 80 100
Pipeline slot breakdown (%)

19

Results - Microarchitectural bottleneck breakdown

e 400.perlbench
High IPC/i-cache stress

® 445 gobmk
Hard to predict branches

o 429.mcf/47].omnetpp
Memory bound/latency

e 433.milc
Memory bound/bandwidth

B Retiring Il Bad speculation
1 Front-end bound 3 Back-end bound

ads
bigtable
disk
flight-search
gmail
gmail-fe
indexingl
indexing2
searchl
search2
search3
video

400.perlbench
445.gobmk
429.mcf
471.omnetpp
433.milc

60 80 100
Pipeline slot breakdown (%)

20

Results - Microarchitectural bottleneck breakdown

Is this what we would expect?

Bad speculation seems to be comparable to the benchmarks, no further analysis
The backend bound part is also comparable

Significantly larger frontend bound part than the reference

Smaller retiring part than the reference B Retiring B Bad speculation
[Front-end bound [EEI Back-end bound

ads
bigtable
disk

400.perlbench
445.gobmk
429.mcf
471.omnetpp
433.milc

60 80 100
Pipeline slot breakdown (%)

21

Memory hierarchy overview

e Instruction cache could bottleneck the frontend
e Data cache could bottleneck the backend
e Instruction and data caches are shared on 1.2

Processor package
f

] i
] |
i |
1 1
]]
i |
1 1
i i
: L2 unified cache L2 unified cache E
i i
1 1
] i
: :
L3 unified cache
(shared by all cores)
Main memory

22

Results - Front-end bottlenecks (Instruction cache)

e We want to find the reasons for the front-end bottleneck
® Measure the amount of cycles no instruction enters the pipeline from the frontend
e For a significant part of instructions, the pipeline is completely starved

ads
bigtable
disk
flight-search
gmail
gmail-fe
indexingl
indexing2
searchl
search2
search3
video

Fetch latency cycles (%)

Results - Front-end bottlenecks (Instruction cache)

e Much higher L2 i-cache MPKI (Misses per kilo instruction)
e Starvation is most likely due to large i-cache stress

ads
bigtable
disk
flight-search |-+
gmail
gmail-fe
indexingl
indexing2
searchl
search2
search3
video

400.perlbench
445.gobmk
429.mcf

L2 cache instruction MPKI

Results - Front-end bottlenecks (Instruction cache)

e Large (and growing) binaries without significant hotspots — More i-cache stress

Possible solutions:

e Larger i-caches
e Better prefetchers
e Separate i-cache and d-cache

25

Results - Front-end bottlenecks (Instruction cache)

e How large would i-caches need to be to alleviate this problem?
e Usually this would be simulated, which is hard with such a complex system
® Measuring the amount of unique i-cache lines that would be required to cover 99%

of the instruction pointer samples
e I-caches become more and more stressed over the years

e Much larger than current L2 caches, not even accounting for data (688KB or more)

e Mmoo
W BT o i
M._—-.-—. e = ~.o"

= N W A U
o O O O

o

in 1M samples (K)
in 1M samples (K)

n
@
3=
]
c
v
IS
2
]
S
g
c
=
3+

unique icache lines

o
o

Jul yq
Oct y,
Jan Y>
Jul v,
Oct y,
Jan Y>

Results - Back-end bottlenecks

e Generally very low IPC due to d-cache stalls and/or low ILP

ads
bigtable
disk
flight-search
gmail
gmail-fe
indexingl
indexing2
searchl
search2
search3
video

400.perlbench
445.gobmk
429.mcf
471.omnetpp
433.milc

0.0 0.5 1.0 1.5 2.0 2.5
Instructions per cycle (IPC)

Results - Back-end bottlenecks (Data cache)

e s the slowdown mostly d-cache driven?
e Data cache stalls are 50-60% of all cycles (~80% of backend bound cycles)

e WSC applications are very memory intensive

ads
bigtable
disk
flight-search
gmail
gmail-fe
indexingl
indexing2
searchl
search?2
search3
video

30 40 50
Cache-bound cycles (%)

Results - Back-end bottlenecks (ILP)

How well is Instruction Level Parallelism (ILP) used?

Up to 6 p-ops executing in parallel (6 execution ports)
Generally low ILP in line with cache misses

Possibly due to a fine-grained mix of dependent cache accesses and bursty
computation

=
o
o

=
o
=
©
Y]
)
(9}
©
—
=
X
Q
£
h=
=
w0
)
o
>
O

[1,21 [3.41 [5.6]

Number of p-ops executing each cycle

29

Results - Back-end bottlenecks (Memory bandwidth)

Are the d-cache stalls bandwidth or latency limited?

Very low median memory bandwidth utilization, lower than median CPU
utilization (10% vs 40-70%)

Memory latency is more important than bandwidth

w A U
o O O

Y
o
s
o

S
3

Q0

=

+—

R

o

bandwidth (CDF %

= N

40 60
Samples (%)

30

Results - SMT

So far, Simultaneous Multi-Threading (SMT) was not accounted for
Only an estimate, as SMT can’t be turned off in the live system measured
The workload seems like a good candidate for SMT

Measuring the core utilization increase from SMT

Comparing per-thread and per-core metrics

31

Results - SMT (Backend)

® On the backend, functional execution unit utilization increases as expected
e More execution ports tend to be utilized

Per hyperthread Per core

0

)
&
(a
=
©
]
+—
(9}
©
—
4+
x
]
e
=
=
0n
@
O
>
QO

[1,2] [3,4] [5.,6]

S
o
=
©
(O]
4
[©]
@©
o
)
X
(0]
<
=
2
w0
Q
O
>
O

[1,2] [3,4] [5.6]

32

Results - SMT (Frontend)

e We might see either

o Instruction cache pressure increases with SMT, increasing the frontend bottleneck
o Long latency fetch bubbles can be absorbed by fetching from another hyperthread, reducing the
frontend bottleneck

e The latter seems to dominate, as utilization increases

per-thread
per-core

20
Front-end bound cycles (%)

33

Results - Paper conclusion

e Workloads are diverse with few hotspots

o Profiling across the whole WSC is important to get accurate measurements

e Some common operations use up a large percentage of cycles (datacenter tax)

o Datacenter specific SoCs

e Instruction cache footprints are large and growing
o Better prefetching, separate i/d-cache

e Memory bandwidth is usually not fully utilized

o Make bandwidth tradeoffs in favor of e.g. more cores

Outline

e Background, Problem & Goal
e Methodology

e Results

o Workload diversity

o Microarchitectural breakdown
o Front-end bottlenecks

o Back-end bottlenecks

o SMT

e Strengths & Weaknesses
e Ideas & Takeaways
® (uestions & Discussion

35

Strengths

Analyzes relevant, real-world workloads
Gives plausible explanations for why certain slowdowns happen
Gives concrete solution ideas for every problem seen

Has a systematic top-down approach

36

Weaknesses

Generalizes all problems as WSC problems, even if they might be Google specific
The conclusion argues about brawny/wimpy cores without much analysis
The Performance Monitoring Unit (PMU) limitations and validation for profiling
are left very vague
For SMT backend measurements, only ILP was considered and not d-cache stress,
which is 80% of the backend-bottlenecks

:)
Most of the conclusion section was only presented

datacenter tax Datacenter specific SOCS

through keywords, which weren’t always very clear (rotobuf, RPC, compression HW)

large (growing) I-prefetchers, i/d-cache partitioning.
i cache footprints

low bandwidth Trade off memory bandwidth for cores.
Do not use SPECrate.
latency-bound Wider SMT.

Summary of findings and suggestions for future investigation.

37

Outline

e Background, Problem & Goal
e Methodology

e Results

o Workload diversity

o Microarchitectural breakdown
o Front-end bottlenecks

o Back-end bottlenecks

o SMT

e Strengths & Weaknesses
e JIdeas & Takeaways
® (uestions & Discussion

38

|deas/Takeaways

e Compare specific aspects of WSC workloads to justify generalization

e Memory related architectural changes have great potential

e Reducing the instruction memory footprint of applications could have great
benefits

e Improving i-cache stress seems harder compared to d-cache stress as you are more
bound to the CPU

e Existing benchmarks don’t seem to be quite good enough to analyze WSC
workload behavior

39

Questions & Discussion

40

Should software developers strive for smaller
binary sizes? s this even possible?

41

Could you think of any more radical solutions for
improving i-cache stress, similar to PIM for
d-cache stress?

Why aren’t WSC hardware accelerators used yet?

Do you think consumer software will start running
into similar limitations soon?

44

