
Profiling a Warehouse-scale Computer

Presented by Alain Kohli

S. Kanev, J. P. Darago, K. Hazelwood, P. Ranganathan, T. Moseley, G.-Y. Wei and D. Brooks,

“Profiling a Warehouse-scale Computer”, ISCA, 2015



Executive Summary
● Problem: Are current microarchitectures suited for WSC workloads?

● Motivation: No prior research investigated this issue before

● Goal: Identify parts of the microarchitecture that can be optimized for WSCs

● Methodology: Profile a live WSC to get insights into microarchitectural bottlenecks

● Results:

○ Diverse workloads

○ Unusually large i-cache stress

○ Large d-cache stress as expected

○ Low Instruction level parallelism

● Conclusion:

○ Better i-cache prefetcher

○ i/d-cache separation

○ Datacenter specific SoCs

2



Outline
● Background, Problem & Goal

● Methodology

● Results

○ Workload diversity

○ Microarchitectural breakdown

○ Front-end bottlenecks

○ Back-end bottlenecks

○ SMT

● Strengths & Weaknesses

● Ideas & Takeaways

● Questions & Discussion

3



Outline
● Background, Problem & Goal

● Methodology

● Results

○ Workload diversity

○ Microarchitectural breakdown

○ Front-end bottlenecks

○ Back-end bottlenecks

○ SMT

● Strengths & Weaknesses

● Ideas & Takeaways

● Questions & Discussion

4



Background, Problem & Goal
● Warehouse-Scale Computers (WSCs) become more important every year

● WSCs pose different challenges compared to traditional servers due to the scale

● Optimizing servers in a datacenter isn’t going to help if the performance of the 

system as a whole isn’t considered

● Latency is the defining performance metric

● There are many possible bottlenecks in a WSC

● Microarchitectural bottlenecks are not very well understood yet

● WSCs are very complex and theoretical analysis has its limitation

5



Background, Problem & Goal - Previous research
● Isolated benchmarks / unrealistic workloads

[M. Ferdman et al., ASPLOS, 2012]

● Analyzed other aspects (software/system design)

[C. Kozyrakis et al., IEEE Micro, 2010]

● Somewhat outdated

[L. A. Barroso, IEEE Micro, 2003]

6



Background, Problem & Goal - Main question

What parts of the micro-architecture are the biggest bottlenecks

in a real warehouse-scale computer?

7



Outline
● Background, Problem & Goal

● Methodology

● Results

○ Workload diversity

○ Microarchitectural breakdown

○ Front-end bottlenecks

○ Back-end bottlenecks

○ SMT

● Strengths & Weaknesses

● Ideas & Takeaways

● Questions & Discussion

8



Methodology
● Profiling a live Google datacenter over 1-3 years (~20,000 machines)

● Restricted to C++ and Intel Ivy Bridge

○ Get consistent and comparable data

○ Simplifies analyzing the callstack

○ C++ consumes the most amount of CPU cycles, even if it isn’t the most popular

● Workloads for microarchitecture analysis

○ Standard Google workloads that are as diverse as possible

■ ads, bigtable, disk, flight-search, gmail, gmail-fe, indexing1/2, search1/2/3, video

○ Common benchmarks as a reference

■ 400.perlbench, 445.gobmk, 429.mcf, 471.omnetpp, 433.milc

9



Methodology - Google-Wide-Profiling (GWP)
● Google in-house profiling

● Non-intrusive performance sampling

● Procedure

○ Randomly select a small fraction of servers to profile each day

○ Trigger collection of 1s long profile samples (through perf)

○ Symbolize the collected sample’s callstacks

○ Aggregate samples in a database for analysis

● Validations required by the Performance Monitoring Unit (PMU) are applied

○ Exact validations not further specified

10



Outline
● Background, Problem & Goal

● Methodology

● Results

○ Workload diversity

○ Microarchitectural breakdown

○ Front-end bottlenecks

○ Back-end bottlenecks

○ SMT

● Strengths & Weaknesses

● Ideas & Takeaways

● Questions & Discussion

11



● We would like to see how important it is to analyze the datacenter as a whole

● Is there one application that uses up almost all resources?

● Percentage of total cycles consumed by the X most CPU intensive binaries

Results - Workload diversity

● The 50 hottest binaries consume less than 60% of all CPU cycles

● There is not one single “killer application” for performance

12



Results - Workload diversity
● There is a slight trend for less heavy applications over the years

● The 50 hottest binaries use a smaller percentage of CPU cycles every year

13



Results - Workload diversity
● Are there clear things to optimize on an application basis at least?

● Percentage of total cycles consumed by the X hottest leaf functions in search3

14

● There are no clear hotspots to optimize within the applications either



Results - Workload diversity (datacenter tax)
● Are there lower level common operations that cause a slowdown?

● Common components that could be prime candidates for hardware acceleration

15

● Datacenter tax has a trend to slightly increase



Results - Workload diversity (datacenter tax)
● memmove: memcpy() / memmove(), not counting other forms of copying

● rpc: Remote Procedure Calls (load balancing, encryption, data movement, etc.)

● protobuf: Protocol buffers, used for serialization

● hash: Hashing used in various parts, i.e. for communication

● allocation: All form of memory allocation

● compression: Compression using multiple algorithms

16



Results - Microarchitectural bottleneck breakdown
● What is preventing us from fully using the microarchitectural resources we have?

● We look at the state of the pipeline each cycle and determine, whether µ-ops 

successfully pass through it

● If µ-ops do not successfully pass through the pipeline, we want to know which 

part of the pipeline is stalling and preventing them from doing so

● Broad categorization first (retiring, bad speculation, frontend/backend bound)

17



Results - Microarchitectural bottleneck breakdown
● ◼ Retiring

Useful work

● ◼ Bad speculation

Branch prediction fail

● ◼ Front-end bound

Can’t fill pipeline fast enough

● ◼ Back-end bound

Can’t empty pipeline fast enough

18

Retiring

Bad speculation

Front-end bound Back-end bound



Results - Microarchitectural bottleneck breakdown
● ◼ Retiring

Useful work

● ◼ Bad speculation

Branch prediction fail

● ◼ Front-end bound

Can’t fill pipeline fast enough

● ◼ Back-end bound

Can’t empty pipeline fast enough

19



Results - Microarchitectural bottleneck breakdown
● 400.perlbench

High IPC/i-cache stress

● 445.gobmk

Hard to predict branches

● 429.mcf / 471.omnetpp

Memory bound/latency

● 433.milc

Memory bound/bandwidth

20



Results - Microarchitectural bottleneck breakdown
● Is this what we would expect?

● Bad speculation seems to be comparable to the benchmarks, no further analysis

● The backend bound part is also comparable

● Significantly larger frontend bound part than the reference

● Smaller retiring part than the reference

21



Memory hierarchy overview
● Instruction cache could bottleneck the frontend

● Data cache could bottleneck the backend

● Instruction and data caches are shared on L2

22



Results - Front-end bottlenecks (Instruction cache)
● We want to find the reasons for the front-end bottleneck

● Measure the amount of cycles no instruction enters the pipeline from the frontend

23

● For a significant part of instructions, the pipeline is completely starved



Results - Front-end bottlenecks (Instruction cache)
● Much higher L2 i-cache MPKI (Misses per kilo instruction)

● Starvation is most likely due to large i-cache stress

24



Results - Front-end bottlenecks (Instruction cache)
● Large (and growing) binaries without significant hotspots → More i-cache stress

Possible solutions:

● Larger i-caches

● Better prefetchers

● Separate i-cache and d-cache

25



Results - Front-end bottlenecks (Instruction cache)
● How large would i-caches need to be to alleviate this problem?

● Usually this would be simulated, which is hard with such a complex system

● Measuring the amount of unique i-cache lines that would be required to cover 99% 

of the instruction pointer samples

26

● I-caches become more and more stressed over the years

● Much larger than current L2 caches, not even accounting for data (688KB or more)



Results - Back-end bottlenecks
● Generally very low IPC due to d-cache stalls and/or low ILP

27



Results - Back-end bottlenecks (Data cache)
● Is the slowdown mostly d-cache driven?

28

● Data cache stalls are 50-60% of all cycles (~80% of backend bound cycles)

● WSC applications are very memory intensive



Results - Back-end bottlenecks (ILP)
● How well is Instruction Level Parallelism (ILP) used?

● Up to 6 µ-ops executing in parallel (6 execution ports)

29

Number of µ-ops executing each cycle

● Generally low ILP in line with cache misses

● Possibly due to a fine-grained mix of dependent cache accesses and bursty 

computation



Results - Back-end bottlenecks (Memory bandwidth)
● Are the d-cache stalls bandwidth or latency limited?

30

● Very low median memory bandwidth utilization, lower than median CPU 

utilization (10% vs 40-70%)

● Memory latency is more important than bandwidth



Results - SMT
● So far, Simultaneous Multi-Threading (SMT) was not accounted for

● Only an estimate, as SMT can’t be turned off in the live system measured

● The workload seems like a good candidate for SMT

● Measuring the core utilization increase from SMT

● Comparing per-thread and per-core metrics

31



Results - SMT (Backend)
● On the backend, functional execution unit utilization increases as expected

● More execution ports tend to be utilized

32

Per hyperthread Per core



Results - SMT (Frontend)
● We might see either

○ Instruction cache pressure increases with SMT, increasing the frontend bottleneck

○ Long latency fetch bubbles can be absorbed by fetching from another hyperthread, reducing the 

frontend bottleneck

● The latter seems to dominate, as utilization increases

33



Results - Paper conclusion
● Workloads are diverse with few hotspots

○ Profiling across the whole WSC is important to get accurate measurements

● Some common operations use up a large percentage of cycles (datacenter tax)

○ Datacenter specific SoCs

● Instruction cache footprints are large and growing

○ Better prefetching, separate i/d-cache

● Memory bandwidth is usually not fully utilized

○ Make bandwidth tradeoffs in favor of e.g. more cores

34



Outline
● Background, Problem & Goal

● Methodology

● Results

○ Workload diversity

○ Microarchitectural breakdown

○ Front-end bottlenecks

○ Back-end bottlenecks

○ SMT

● Strengths & Weaknesses

● Ideas & Takeaways

● Questions & Discussion

35



Strengths
● Analyzes relevant, real-world workloads

● Gives plausible explanations for why certain slowdowns happen

● Gives concrete solution ideas for every problem seen

● Has a systematic top-down approach

36



Weaknesses
● Generalizes all problems as WSC problems, even if they might be Google specific

● The conclusion argues about brawny/wimpy cores without much analysis

● The Performance Monitoring Unit (PMU) limitations and validation for profiling 

are left very vague

● For SMT backend measurements, only ILP was considered and not d-cache stress, 

which is 80% of the backend-bottlenecks

● Most of the conclusion section was only presented

through keywords, which weren’t always very clear

37



Outline
● Background, Problem & Goal

● Methodology

● Results

○ Workload diversity

○ Microarchitectural breakdown

○ Front-end bottlenecks

○ Back-end bottlenecks

○ SMT

● Strengths & Weaknesses

● Ideas & Takeaways

● Questions & Discussion

38



Ideas/Takeaways
● Compare specific aspects of WSC workloads to justify generalization

● Memory related architectural changes have great potential

● Reducing the instruction memory footprint of applications could have great 

benefits

● Improving i-cache stress seems harder compared to d-cache stress as you are more 

bound to the CPU

● Existing benchmarks don’t seem to be quite good enough to analyze WSC 

workload behavior

39



Questions & Discussion

40



Should software developers strive for smaller 
binary sizes? Is this even possible?

41



Could you think of any more radical solutions for 
improving i-cache stress, similar to PIM for 

d-cache stress?

42



Why aren’t WSC hardware accelerators used yet?

43



Do you think consumer software will start running 
into similar limitations soon?

44


