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Executive Summary

= Problem: Genomic similarity measurement is a computational bottleneck.
Examining the similarity of highly-dissimilar genomic sequences
consumes an overwhelming majority of a modern read mapper’s
execution time.

= Goal: Develop a fast and effective filter that can detect highly-dissimilar
genomic sequences and eliminate them before invoking computationally
costly alignment algorithms.

= Key observation: If two strings differ by E edits, then every pairwise
match can be aligned in at most 2E shifts.

= Key ideas:
0 Quickly find similar sequences using Hamming Distance.

0 Compute “Shifted Haomming Distance” for the rest of sequence pairs: ANDing
2E+1 Hamming vectors of two strings, to identify dissimilar sequences.

o Use only bit-parallel operations that nicely map to:

= SIMD instructions, FPGA, Logic layer of the 3D-stacked memory, and In-memory
accelerators (e.g., Ambit)

= Key results:

o Provides a huge speedup of up to 130x compared to the previous state
of the art software solution.
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Background, Problem, & Goal




What 1s Genome Analysis?

Genomic analysis Y atom  EYRSS Feed

Genomic analysis is the identification, measurement or comparison of genomic features
such as DNA sequence, structural variation, gene expression, or regulatory and functional
element annotation at a genomic scale. Methods for genomic analysis typically require high-
throughput sequencing or microarray hybridization and bioinformatics.

https://onlinelearning.hms.harvard.edu/hmx/courses/genetic-testing/ 7
https://www.nature.com/subjects/genomic-analysis



https://onlinelearning.hms.harvard.edu/hmx/courses/genetic-testing/
https://www.nature.com/subjects/genomic-analysis

Applications of Genome Analysis

v

abundances of microbes in a sample

20 -@
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Rapid surveillance of disease outbreaks Developing personalized medicine

And many other applications ... 8



How to Analyze a Genome?

NO

machine gives the complete
sequence of genome as output

>CCTCCTCAGTGCCACCCAGCCCACTGGCAGCTCCCAAACAGGCTCTTATTAAAACACCCTGTTCCCTGCCCCTTGGAGTGAGGTGTCAAG
GACCTAAACTAAAAAAAAAAAAAGAAAAAGAAAAGAAAAAGAATTTAAAATTTAAGTAATTCTTTGAAAAAAACTAATTTCTAAGCTTCTT
CATGTCAAGGACCTAATGTGCTAAACAGCACTTTTTTGACCATTATTTTGGATCTGAAAGAAATCAAGAATAAATGAAGGACTTGATACATTG
GAAGAGGAGAGTCAAGGACCTACAGAAAAAAAAAAAAAAGAAAAAGAAAAGAAAAAGAATTTAAAATTTAAGTAATTCTTTGAAAAAA
ACTAATTTCTAAGCTTCTTCATGTCAAGGACCTAATGTCTGTGTTGCAGGTCTTCTTGCATTTCCCTGTCAAAAGAAAAAGAATTTAAAATTT
AAGTAATTCTTTGAAAAAAACTAATTTCTAAGCTTCTTCATGTCAAGGACCTAATGTCAGGCCAAGAGTTGCAAAAAAAAAAAAAGAAAAA
GAAAAGAAAAAGAATTTAAAATTTAAGTAATTCTTTGAAAAAAACTAATTTCTAAGCTTCTTCATGTCAAGGACCTAATGTAGCCAGAATGG
TTGTGGGATGGGAGCCTCTGTGGACCGACCAGGTAGCTCTCTTTTCCACACTGTAGTCTCAAAGCTTCTTCATGTGGTTTCTCTGAGTGAAA
AAAAAAAAAAGAAAAAGAAAAGAAAAAGAATTTAAAATTTAAGTAATTCTTTGAAAAAAACTAATTTCTAAGCTTTTTCATGTCAAGGACC
TAATGTAGCTATACTGAACGTTATCTAGGGGAAAGATTGAAGGGGAGCTCTAAGGTCAACACACCACCACTTCCCAGAAAGCTTCTTCA

9




DNA Testing
Fall DNA special

Just 55 CHF 8ocHF The promotion ends today in 12 more hours!

F

o

@ MyHeritage >NA

https://www.myheritage.ch/dna
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https://www.myheritage.ch/dna

DNA Testing

Fall DNA specia Welcome to you now

Just 55 CHF 3ocH ?""ii -
i i e

ANCESTRY

lay in 12 more hours!

Health + Ancestry
Service

$199

Includes everything in Ancestry +

@ MyHeritage >NA

Traits Service

PLUS

e : . : 10+ Health Predisposition reports*

https://www.mvheritage.ch/dna 5+ Wellness reports

https://www.23andme.com/

40+ Carrier Status reports*
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https://www.myheritage.ch/dna
https://www.23andme.com/

High- Throughput Sequencers

Oxford
Nanopore
PromethlON

Pacific
Biosciences
Sequel Il

lllumina MiSeq

Oxford Nanopore MinION

Oxford
Nanopore
SmidglON

lllumina NovaSeq 6000

Pacific Biosciences RS Il
.. and more! All produce data W|th dlfferent properties.

12



Genome Sequencer 1s a Chopper

Regardless the sequencing machine,

reads still lack information about their order and location

(which part of genome they are originated from)

Billions of Short Reads
ATATATACGTACTAGTACG

AGTACGTACG
........ e ATACGTACTAGTACG
G ACGTA
ACGTACTAGTACG
AGTACGTACG
ACGTACTAAAGTACG
. TACGTACTAGTACG
AAAACGTA

GTACTAGTACG

GGGAGTACGTACG

13



Solving the Puzzle

FASTAfile FASTQ file

/ e W
Reference < *

of

genome / o .
Reads )

https://www.pacb.com/smrt-science/smrt-sequencing/hifi-reads-for-highly-accurate-long-read-sequencing/

14


https://www.pacb.com/smrt-science/smrt-sequencing/hifi-reads-for-highly-accurate-long-read-sequencing/

Reterence Genome

FASTA file:

>NG 008679.1:5001-38170 Homo sapiens paired box 6 (PAX6)

ACCCTCTTTTCTTATCATTGACATTTAAACTCTGGGGCAGGTCCTCGCGTAGAACGCGGCTGTCAGATCT
GCCACTTCCCCTGCCGAGCGGCGGTGAGAAGTGTGGGAACCGGCGCTGCCAGGCTCACCTGCCTCCCCGC
CCTCCGCTCCCAGGTAACCGCCCGGGLCTCCGGLCCCCGELCCLCGEGLTCEGEGECCCGCEGEGECCTCTCCGCTG
CCAGCGACTGCTGTCCCCAAATCAAAGCCCGCCCCAAGTGGCCCCGGGGCTTGATTTTTGCTTTTAAAAG
GAGGCATACAAAGATGGAAGCGAGTTACTGAGGGAGGGATAGGAAGGGGGGTGGAGGAGGGACTTGTCTT
TGCCGAGTGTGCTCTTCTGCAAAAGTAGCAAAATGTTCCACTCCTAAGAGTGGACTTCCAGTCCGGCCCT
GAGCTGGGAGTAGGGGGCGGGAGTCTGCTGCTGCTGTCTGCTAAAGCCACTCGCGACCGCGAAAAATGCA
GGAGGTGGGGACGCACTTTGCATCCAGACCTCCTCTGCATCGCAGTTCACGACATCCACGCTTGGGAAAG
TCCGTACCCGCGCCTGGAGCGCTTAAAGACACCCTGCCGCGEGETCGGGCGAGGTGCAGCAGAAGTTTCCC
GCGGTTGCAAAGTGCAGATGGCTGGACCGCAACAAAGTCTAGAGATGGGGTTCGTTTCTCAGAAAGACGC

15



Obtaining the Human Reference Genome

GRCh38.p13

Description: Genome Reference Consortium Human Build 38
patch release 13 (GRCh38.p13)

Organism name: Homo sapiens (human)

Date: 2019/02/28

3,099,706,404 bases

Compressed .fna file (964.9 MB)
https://www.ncbi.nlm.nih.gov/assembly/GCF _000001405.39

>NC_000001.11 Homo sapiens chromosome 1, GRCh38.p13 Primary Assembly

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
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https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=9606&lvl=3&lin=f&keep=1&srchmode=1&unlock
https://www.ncbi.nlm.nih.gov/assembly/GCF_000001405.39

Genomic Reads

FASTQ file:

Identifier —— @HWI-EAS209_0006_FC706VJ:5:58:5894:21141#ATCACG/1
Sequence ——| TTAATTGGTAAATAAATCTCCTAATAGCTTAGATNTTACCTTNNNNNNNNNNTAGTTTCTTGAGA
‘+’ sign —+

Quality scores— efcfffffcfeefffcffffffddf feed] '] Ba ~ [YBBBBBBBBBBRTT\|]|] []dddd"

Base T
phred Quality ] =29
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Obtaining .FASTQ Files

= https://www.ncbi.nlm.nih.gov/sra/ERR240727

=3 NCBI Resources ¥/ How To ¥

SRA [SRA vl

Advanced

0 COVID-19 is an emerging, rapidly evolving situation.
Public health information (CDC) | Research information (NIH) | SARS-CoV-2 data (NCBI) | Prevention and treatment information (HH

Full + Send to: «

ERX215261: Whole Genome Sequencing of human TSI NA20754
1 ILLUMINA (lllumina HiSeq 2000) run: 4.1M spots, 818.7M bases, 387.2Mb downloads

Design: lllumina sequencing of library 6511095, constructed from sample accession SRS001721 for study accession SRP000540. This is part of an
lllumina multiplexed sequencing run (9340_1). This submission includes reads tagged with the sequence TTAGGCAT.

Submitted by: The Wellcome Trust Sanger Institute (SC)

Study: Whole genome sequencing of (TSI) Toscani in Italia HapMap population
PRJNA33847 « SRP000540 « All experiments * All runs

Sample: Coriell GM20754
SAMNO00001273 » SRS001721 « All experiments * All runs
Organism: Homo sapiens

Library:
Name: 6511095
Instrument: lllumina HiSeq 2000
Strategy: WGS
Source: GENOMIC
Selection: RANDOM
Layout: PAIRED
Construction protocol: Standard

Runs: 1 run, 4.1M spots, 818.7M bases, 387.2Mb

Run # of Spots # of Bases Size Published
ERR240727 4,093,747 818.7M 387.2Mb 2013-03-22
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https://www.ncbi.nlm.nih.gov/sra/ERR240727

Read Mapping

Map reads to a known reference genome with some
minor differences allowed

DNA Sample Reads Referande;ganome
“chemical format” “text format” “text format”

19



Analysis 1s Bottlenecked in Read Mapping!!

Human

genome
32 CPU hours
on a 48-core processor

4 8 Human whole
genomes
at 30 X coverage

in about 2 days

[llumina NovaSeq 6000 ‘

Read Mapping = Others

71%

Goyal+, "Ultra-fast next generation human genome sequencing data processing using DRAGENTM bio-IT processor 20
for precision medicine”, Open Journal of Genetics, 2017.



https://www.scirp.org/journal/paperinformation.aspx?paperid=74603

VWhat makes
read mapping
a bottleneck?



Let's first learn
how to map a read



Matching Fach Read with Reference Genome

FASTA file:

>NG 008679.1:5001-38170 Homo sapiens paired box 6 (PAX6)

ACCCT ITCATTGACATTTAAACTCTGGGGCAGG TG 2AACGCGGCTGTCAGATCT
GCCACTTCCCCTGCCGAGCGGCGGTGAGAAGTGTGGGAACCGGCGCTGCCAGGCTCACCTGCCTCCCCGC
CCTCCGCTCCCAGGTAACCGCC( CCCCGGCCCGGCTCGGGGCCCGCGGGGCCTCTCCGCTG
CCAGCGACTGCTGTCCCCAAATCAAAGCCCGCCCCAAGTGGCCCCGGGGCTTGATTTTTGCTTTTARAAAG
GAGGCATACAAAGATGGAAGCGAGTTACTGAGGGAGGGATAGGAAGGGGGGTGGAGGAGGGACTTGTCTT
TC{CCGAGTGT_:AAAAGTAGCAJ crcCTA I CCAGTCCEGCCCT
GAGCTGGGAGTAGGGGGCGGGAGTCTGCTGCTGCTGTCTGCTAAAGCCACTCGCGACCGCGAAAAATGCA
GGAGGTGGGGACGCACTTTGCATCCAGACCTCCTCTGCATCGCAGTTC. .CGCTTGGGAAAG
TcCGTACCCGCGCCTIE 2 2GACACCCTGCCGCGGGTCGGGCGAGGTGCAGCAGAAGTTTCCC
GCGGTTGCAAAGTGCAGATGGCTGGACCGCAACAAAGTCTAGAGATGGGGTTCGTTTCTCAGAAAGACGC

FASTQ file:

@HWI-EAS209 0006 FC706VJ:5:58:5894:21141#ATCACG/1
T . TAAATC T TTAGAT NG N NNNNNNNTAG
+HWI-EAS209 0006 FC706VJ:5:58:5894:21141#ATCACG/1
efcfffffcfeefffcffffffddf feed] ] Ba ~ [YBBBBBBBBBBRTT
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Base-by-Base Comparison

read 1:

ref 1:

'\
.
.
.
.

CC1

TAGIAT AR CTAC

X

CGT

GTT

TAC

I x ] xx | «x

TaGlcT AR ATCC

TAC

GAT

refe\rence segment that spans
locations (5, 7, and 9)

24



Sequence Alignment (Verification)

Edit distance is defined as the minimum number of edits

(i.e. insertions, deletions, or substitutions) needed to make
the read exactly matches the reference segment.

organization x operation organization x translation
Ref oIIrganization Ref organiz.ation
Read ation Read tr-an-slation
Ref oIIrganization Ref organ.ization
Read oIIr-a----tion Read tr-anII-ation

Edit distance = 7

Ref organization
match )
deletion Read tr-anslation

~ insertion Edit distance = 4

mismatch
25



VWhat makes
read mapping
a bottleneck?



A Tsunami of Sequencing Data

A Tera-scale increase in sequencing production in the past 25 years

Genes & Operons 1990 Kilo = 1,000

Bacterial genomes 1995  Mega = 1,000,000

Human genome 2000 Giga = 1,000,000,000
Human microbiome 2005  Tera=1,000,000,000,000
50K Microbiomes 2015  Peta=1,000,000,000,000,000

what is expected for the next 15 years ? (a Giga?)

200K Microbiomes 2020 Exa= 1,000,000,000,000,000,000

1M Microbiomes 2025  Zetta = 1,000,000,000,000,000,000,000 s°:r°efd
(@ yrpiaes

Earth Microbiome 2030 Yotta = 1,000,000,000,000,000,000,000,000

Efficient indexing of k-mer presence and abundance in sequencing datasets

Rayan Chikhi, VanBUG seminar 2020

27



Lack of Spectalized Compute Capability

Specialized Machine General-Purpose Machine
for Sequencing for Analysis

FAST SLOW

28



Data Movement Dominates Performance

= Data movement dominates performance and is a major
system energy bottleneck (accounting for 40%-62%)

Data Movement

o
) b

Sequencing Storage (SSD/HDD) Main Memory Microprocessor
Machine

Single memory request consumes >160x-800x more
energy compared to performing an addition operation

* Boroumand et al., “Google Workloads for Consumer Devices: Mitigating Data Movement Bottlenecks,” ASPLOS 2018
* Kestor et al., “Quantifying the Energy Cost of Data Movement in Scientific Applications,” ISWC 2013
* Pandiyan and Wu, “Quantifying the energy cost of data movement for emerging smart phone workloads on mobile platforms,” ISWC 2014

29



Read Mapping Execution Time

Collect Minimizers
2%
Collect
Matching
Seeds

>60%

Sorting
Seeds

of the read mapper’s 50%
execution time is spent in
sequence alignment

Seed
Chaining
16%

minimap2

ONT FASTQ size: 103MB (151 reads), Mean length: 356,403 bp, std: 173,168 bp, longest length: 817,917 bp

30



Why Alignment 1s Computationally Costly?

» Quadratic-time dynamic-
programming algorithm  WHY?!

Enumerating all possible prefixes

In[e[T[He[rR[La[N]D]s]

S
NETHERLANDS x SWITZERLAND VIV
“  NETHERLANDS x S =
NETHERLANDS x SW -
NETHERLANDS x SWI
NETHERLANDS x SWIT E
NETHERLANDS x SWITZ R
NETHERLANDS x SWITZE L
NETHERLANDS x SWITZER A
NETHERLANDS x SWITZERL 5
NETHERLANDS x SWITZERLA 5

NETHERLANDS x SWITZERLAN
NETHERLANDS x SWITZERLAND

31



Why Alignment 1s Computationally Costly?

» Quadratic-time dynamic-
programming algorithm

N E/T/H ER/L AND|S
Enumerating all possible prefixes 0 1/2/3lal5/6/7/8|9/10/11
S|1/1(2(3/4|5/6|7|8|9/|10/10
Wi 2(2|2/3|4|5|6|7|8|9 10[11
» Data dependencies limit the 113|3[33/4|5|6/7|8]9|10/11
computation parallelism T e e L
P P Z|5/5(5/4(4|5/6|7|8|9/|10/11
Processing row (or column) after another E|6/6/5|/5|/5/4(5/6/7/8|9]/10
R|7/7|6|6|6|/5/4|/5/6[7|8]9
L 8|8|7|7|7|6|5/4|5|6|7|8
. . Al9|9/8(8|8|7|6|5/4|5|6/|7

= Entire matrix is computed o e T o olslo el s tals
even though strings can be D|11[10[10[10[10[ 98|76 |5 |4} 5

dissimilar.
Number of differences is computed only at the backtracking step.

32




Large Search Space for Mapping Location

CCTATAATACG

OOP—HP—HP>-HO>O

8%

Read .
Alignment .~ of candidate locations

have high dissimilarity

with a given read

Reference Genome

Cheng et al, BMC bioinformatics (2015)
Xin et al, BMC genomics (2013)
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We need intelligent algorithms
and intelligent architectures
that handle data well



Detailed Analysis of Tackling the Bottleneck

Mohammed Alser, Zulal Bingol, Damla Senol Cali, Jeremie Kim, Saugata Ghose,
Can Alkan, Onur Mutlu

“Accelerating Genome Analysis: A Primer on an Ongoing Journey”

IEEE Micro, August 2020.

Home / Magazines / IEEE Micro / 2020.05

IEEE Micro

Accelerating Genome Analysis: A Primer on
an Ongoing Journey

Sept.-Oct. 2020, pp. 65-75, vol. 40
DOI Bookmark: 10.1109/MM.2020.3013728

Machine Learning for Systems
Mini-Theme: Biology and Systems Interactions.

;‘f“ Authors
- Mohammed Alser, ETH Zilrich
P > Zulal Bingol, Bilkent University
Previous Next Damla Senol Cali, Carnegie Mellon University

Jeremie Kim, ETH Zurich and Carnegie Mellon University
Saugata Ghose, University of lllinois at Urbana—-Champaign and Carnegie Mellon University
Past Issues Can Alkan, Bilkent University

Onur Mutlu, ETH Zurich, Carnegie Mellon University, and Bilkent University

i= Table of Contents
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https://arxiv.org/pdf/2008.00961.pdf

Goal: Minimizing Alignment Time

Sequence Alignment is expensive

Our goal is to accelerate read mapping
by reducing the need for
dynamic programming algorithms

36



Novelty, Key Approach, and
Ideas




Key Idea

t

L Genomic Strings J

p

Ignore them if the number

o

of differences exceeds a
threshold.

)

o

Find number and location

of differences?

*yiw&i‘“y T~
I 4 I

)

38



Ideal Filtering Algorithm

Step 3

Read
Alignment

1. Filter out most of incorrect mappings.
2. Preserve all correct mappings.
3. Do it quickly.

39



Proposed Solution: GateKeeper

st

Pre-Alignment : s 21 S —
Filter bea -7 2 FPGA-based
o Alignment Filter

Low Speed & High Accuracy
Medium Speed, Medium Accurac
High Speed, Low Accuracy

x1012

mappings

x103

mappings
- oo

ATATATACGTACTAGTACG
BACGGGGAGTA A
OTACTAAAGTACO

Query the Index

QOP—APA>P-HO>

Billions of Short Rea

E High throughput DNA Read Pre-Alignment Filtering Read Alignment

sequencing (HTS) technologies Fast & Low False Positive Rate Slow & Zero False Positives

40



Mechanisms (in some detail)

41




GateKeeper

Key observation:

o If two strings differ by £ edits, then every pairwise match can
be aligned in at most 2 £ shifts.

Key ideas:
o Quickly find similar sequences using Hamming Distance.

o Compute “Shifted Hamming Distance’. AND of 2E£+1 Hamming
vectors of two strings, to identify invalid mappings

o Use only bit-parallel operations that nicely map to:
SIMD instructions
FPGA
Logic layer of the 3D-stacked memory

In-memory accelerators (e.g., Ambit)
42



Mechanisms

= Key observation:

a If two strings differ by £ edits, then every pairwise match can
be aligned in at most 2 £ shifts.

43



Hamming Distance (3,D)

3 matches 5 mismatches
Edit = 1 Deletion

[ [ I
O N

\

| [)S||T N||IB{|Uf|L

To cancel the effect of a
) deletion, we need to shift

TIJA|IN[IB|JU]|| L
[

‘-- ——

in the right direction

44



Shifted Hamming Distance (Xin+ 2015)

| [[S|ITIA|IN||B[|U||L
OR - ! i i i i E E Edit = 1 Deletion
A 4 \ 4 [
g :
O(|O}JO[1{J1]/1)1}) = XOR
AND<
1//1(/1{/0(/0(/0}||0

C°“"t{ooo1oooo

7 matches

1 mismatches

45



Mechanisms

Key observation:

o If two strings differ by £ edits, then every pairwise match can
be aligned in at most 2 £ shifts.

Key ideas:
o Quickly find similar sequences using Hamming Distance.

o Compute “Shifted Hamming Distance”: AND of 2£+1 Hamming
vectors of two strings, to identify invalid mappings

46



GateKeeper Walkthrough

Generate 2E+1
masks

Amend random zeros: AND all masks,
101 > 111 & 1001 »> 1111 ACCEPT iff number of ‘1" < Threshold

Query :GAGAGAGATATTTAGTGTTGCAGCACTACAACACAAAAGAGGACCAACTTACGTGTCTAAAAGGGGGAACATTGTTGGGCCGGA
Reference :GAGAGAGATAGTTAGTGTTGCAGCCACTACAACACAAAAGAGGACCAACTTACGTGTCTAAAAGGGGAGACATTGTTGGGCCGG

Hamming Mask :00000000001/0000000000001111111011110001110110101101111111110001000 11011010010101
l1-Deletion Mask :11111111111001111101111
2-Deletion Mask :000000001011011100111111111111101111000111011010110111111111000100
3-Deletion Mask :111111111110111011001101110111011000100100111111111111100101100110

1-Insertion Mask :111111111110111110111111011101100010010011111111111110010110011000

2-Insertion Mask :000000100111110011111111100100011010101001101011111111111110111001 11000111101100

3-Insertion Mask :111111110111011001100011111111101011011111100110010111011111111011 11010111001000

AND Mask :000000000010000000000001000000000000000000000000000000000000000000000000000000000000

11101101001010
10111011101111
11101110111110

1-5»; Our goal to track the diagonally consecutive matches in the
o1 neighborhood map.

\GAGAGAGATATTTAGTGTTGCAG-CACTACAACACAAAAGAGGACCAACTTACGTGTCTAAAAGGGGGAACATTGTTGGGCCGG

Needleman-Wunsch
Alignment < ILELLDEED DREEEREEEEEE CERREEER R e et et bbb e == b e

\GAGAGAGATAGTTAGTGTTGCAGCCACTACAACACAAAAGAGGACCAACTTACGTGTCTAAAAGGGGAGACATTGTTGGGCCGG
47




GateKeeper

Key observation:

o If two strings differ by £ edits, then every pairwise match can
be aligned in at most 2 £ shifts.

Key ideas:
o Quickly find similar sequences using Hamming Distance.

o Compute “Shifted Hamming Distance’. AND of 2E£+1 Hamming
vectors of two strings, to identify invalid mappings

o Use only bit-parallel operations that nicely map to:
SIMD instructions
FPGA
Logic layer of the 3D-stacked memory

In-memory accelerators (e.g., Ambit)
48



Alignment Matrix vs. Neighborhood Map

Needleman-Wunsch Neighborhood Map
TATAATACG TATAATACG
4
A A e
‘ 0 1

T | T 0| 1

A A 0l 1

T T 0| 1

A A 0| o

Independent vectors can be processed in parallel using
hardware technologies

49



Hardware Architecture

50




GateKeeper Walkthrough (cont’d)

AND all masks,
ACCEPT iff number of ‘1’ < Threshold

| « (2E)*(ReadLength) 2-AND
operations.

* (ReadlLength/4) 5-input LUT.

log,ReadlLength-bit counter.

Generate 2E+1 Amend random zeros:
NERS 101 > 111 & 1001 »> 1111

 E right-shift registers (length=ReadLength)
« E left-shift registers (length=ReadLength)
« (2E+1) * (ReadLength) 2-XOR operations.

~ ™

Hamming mask

; 010§§§§§O020212021505122ggiig:;'_':
I 5-input

D LI{T . /1 : : —

| l l
I<0111100011l10001111 1111110001ﬂ10

Hamming mask after amending

! » (2E+1)*(ReadLength) 5-input LUT.

51



Virtex-7 FPGA Layout

Configurable logic blocks (CLBs) are the main logic resources for implementing
sequential as well as combinatorial circuits

“7 Series FPGAs Configurable Logic Block”, User Guide, Xilinx 2016

52


https://www.xilinx.com/support/documentation/user_guides/ug474_7Series_CLB.pdf

Virtex-7 FPGA Layout

Switch
Matrix

Figure 1-1: Arrangement of Slices within the CLB

> Slice(1)

Slice(0)

UG474_c1_01_071910

The LUTs in 7 series
FPGAs can be
configured as either a
6-input LUT with one
output, or as two 5-
input LUTs with
separate outputs

Table 2-1: Logic Resources in One CLB

. o Arithmetic and R (1) . . 1)
Slices | LUTs | Flip-Flops Carry Chains Distributed RAM Shift Registers

2 8 16 2 256 bits 128 bits

“7 Series FPGAs Configurable Logic Block”, User Guide, Xilinx 2016 53



https://www.xilinx.com/support/documentation/user_guides/ug474_7Series_CLB.pdf

Key Results:
Methodology and Evaluation




Methodology

= System setup:
o 3.6 GHz Intel i7-3820 (supports only PCIe 2.0)

o Xilinx VC709 (~$5000)

= Architecture implementation using Vivado 2014.4 in Verilog
= RIFFA 2.2 to perform Host-FPGA PCle communication

= Evaluated dataset:
o Real sequencing read set (ERR240727 1.fastq)

o Five simulated read sets of 100 bp and 300 bp long Illumina-
like reads with different type and number of edits.

55



Prior Work on Pre-Alignment Filtering

Adjacency Filter (BMC Genomics, 2015)
a Slow

o Accepts a large number of dissimilar sequences.

Shifted Hamming Distance (SHD) (Bioinformatics, 2015)

o It requires the same execution time as the Adjacency Filter

o It accepts 4X fewer dissimilar sequences compared to the
Adjacency Filter.

o It suffers from a limited sequence length (< 128 bp)
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VC709 Resource Utilization

Theoretically:

= Up to 140 GateKeeper Processing cores on a single FPGA (E=5,
100bp)

= BUT bottlenecked by PCIle bandwidth
= Small area allows integration into FPGAs already inside of sequencers

Table 2. FPGA resource utilization for a single GateKeeper core

Resource utilization %

Read length 100 bp 300 bp
Edit distance 2 5 2 5 15
Slice LUT? 0.39% 0.71% 1.27% 2.2% 4.82%

Slice Register” 0.01% 0.01% 0.01% 0.01% 0.01%

*LUT: look-up tables.
bFlip-flop.
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VC709 Resource Utilization

Experimentally:

= GateKeeper aligns each read against up to 8 and 16 different reference
segments in parallel, without violating the timing constraints for a
sequence lengths of 300 and 100 bp, respectively.

Table 3. Overall system resource utilization under different read
lengths and edit distance thresholds

Resource utilization %

Read length 100 bF 300 bp

16 GateKeeper cores 8 GateKeeper cores
Edit distance 2 5 2 15
Slice LUT 32% 45% 50% 69 %
Slice register 2% 2% 17% 91%

Block memory 2% 2% 2% 2%
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GateKeeper Accelerator Architecture

= Maximum data throughput =~13.3 billion bases/sec

= Can examine 8 (300 bp) or 16 (100 bp) mappings concurrently at 250 MHz

= Occupies 50% (100 bp) to 919% (300 bp) of the FPGA slice LUTs and registers

Preprocessing Host (CPU) Alignment Filtering (FPGA) ‘Alignment Verification

onnnnnnnnnaneneaseasens , ..................... GateKeeper . . . > (CPUIFPGA)

Read Controller

read#1 read#N

ACTATAATACG

read pairsﬁ -

(mrFAST
output) b
’ K Input stream E

: of binary pairsi GateKeeper EEEEE GateKeeper

|

—ll T Processing Processing
Core #1 R Core #N

input reads  reference '

(fastq) genome (.fasta)

Read .
Encoder ERN

DOP>AP>PAP>PHA0>0

Accepted Alignments
(correct & false positives)
: ‘map.#1]| J---[ I/map.#N |

PCie

GateKeeper
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Speed & Accuracy Results

90x-130x faster

than SHD (Xin et al., 2015) and the Adjacency Filter (Xin et al., 2013).

Accepts 4x fewer dissimilar strings

than the Adjacency Filter (Xin et al., 2013).

10x speedup

with the addition of GateKeeper to the mrFAST mapper (Alkan et al., 2009).

Freely available online

github.com/BilkentCompGen/GateKeeper
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Summary
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GateKeeper Conclusions

There is a significant performance gap between high-
throughput DNA sequencers and read mapper

Sequence alignment is computationally expensive and
unavoidable

GateKeeper is the first hardware accelerator architecture
(as a pre-alignment filter) for quickly rejecting dissimilar
sequences

It provides a huge speedup of up to 130x compared to the
previous state of the art software solution.
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GateKeeper Conclusions

FPGA-based pre-alignment filtering greatly speeds up read

mapping
o 10x speedup of a state-of-the-art mapper (mrFAST)

FPGA-based pre-alignment can be integrated with the
sequencer

o It can help to hide the complexity and details of the FPGA
o Enables real-time filtering while sequencing
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More on SHD (SIMD Implementation)

= Download and test for yourself
= https://qgithub.com/CMU-SAFARI/Shifted-Hamming-Distance

Bioinformatics, 31(10), 2015, 1553-1560

doi: 10.1093/bioinformatics/btu856

Advance Access Publication Date: 10 January 2015
Original Paper OXFORD

Shifted Hamming distance: a fast and accurate
SIMD-friendly filter to accelerate
alignment verification in read mapping

Hongyi Xin'*, John Greth?, John Emmons?, Gennady Pekhimenko’,
Carl Kingsford?, Can Alkan** and Onur Mutlu®*

Sequence analysis
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More on GateKeeper

= Download and test for yourself
https://github.com/BilkentCompGen/GateKeeper

Bioinformatics ISCB?

INTERNATIONAL SOCIETY FOR
COMPUTATIONAL BIOLOGY

Article Navigation

GateKeeper: a new hardware architecture for accelerating
pre-alignment in DNA short read mapping @

Mohammed Alser ¢, Hasan Hassan, Hongyi Xin, Oguz Ergin, Onur Mutlu %, Can Alkan

Bioinformatics, Volume 33, Issue 21, 01 November 2017, Pages 3355-3363,
https://doi.org/10.1093/bioinformatics/btx342
Published: 31 May 2017 Article history v

Alser+, "GateKeeper: A New Hardware Architecture for Accelerating Pre-Alignment in DNA
Short Read Mapping”, Bioinformatics, 2017.
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Strengths

New and simple solution to a critical problem. New
algorithm and hardware architecture.

GateKeeper does not sacrifice any of the aligner
capabilities, as it does not modify or replace the alignment
step.

Design is scalable; could add more processing cores in the
future.

Some sequencers use FPGAs as well, so GateKeeper could
be integrated into them.
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Strengths (cont’d)

Authors understand and highlight limitations of GateKeeper
Greatly improves filtering speed and accuracy
Spurred quite a few papers that build on GateKeeper

Well-written, interesting and easy to understand paper
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Weaknesses
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Recall: Try to Avoid Rat Holes

Performance Analysis Rat Holes

Workload Metrics  Configuration Details

Source: https://www.cse.wustl.edu/~jain/iucee/ftp/k_10adp.pdf

©2010 Rai Jain www raiiain.conl
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Weaknesses

The benefits of such a mechanism require an FPGA and
advanced knowledge with computers, this may be
problematic for some biologists/genomicists/geneticists

The amendment of the random zeros is a simple “hack” to
reduce the number of false positives, but there is no
explanation why GateKeeper only flips the patterns 101 and
1001, what about 10001? And 1017

The paper can be confusing at times due to the use of a
“supplementary material” document that is constantly
referred to (but understandable as there was a page limit
set by the publication journal).
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Weaknesses (cont’d)

GateKeeper's accuracy degrades exponentially for £>2%,
and becomes ineffective for £>8%.

GateKeeper is tested using short reads

o 3" generation sequencing machines produce much longer
reads
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Thoughts and Ideas




Accelerating Read Mapping

Genome Analysis Pipeline 4 N
I Read I
= Mapping =il
Genomic Sample Sequencing Machine Reads Genomic Variants
@ Indexing © Pre-Alignment Filtering © sequence Alignment
Reference Genome AL N Read
- Al N\ T
Read & ] Dynamic
_- :’-,- N B Programming
k mers-__ — 2 .. .=. (DP) Matrix
k-mer 2 — \_M 3 l=
Io::e;tl;)ns Locating " — g .. =. Output
3,512 | common k-mers — o .. .= utpu
05 | A (G4 4 2 n
ANV 2 . .
23,90 e Reference subsequences extracted ~ SAMfile (alignment score, edit
: | ateach common k-mer location ) { distance, type and location of each echt)‘
. . Accelerating ) .
Accelerating Indexing Pre-Alignment Filtering Accelerating Alignment
p - ( g-gram filtering )
Reducing
___ thenumberofseeds ) ("~ pigeonhole principle )

Reducing data movement | [ Base counting )
. during indexing )

¢ Sparse DP )

Alser+, “Accelerating Genome Analysis: A Primer on an Ongoing Journey”, IEEE Micro, 2020.
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https://arxiv.org/pdf/2008.00961.pdf

Our Ongoing Journey

Near-memory/In-memory Specialized Pre-alignment Filtering
Pre-alignment Filtering Accelerators (GPU, FPGA)

GRIM-Filter [BMC Genomics'18] GateKeeper [Bioinformatics'17]
SneakySnake [IEEE Micro'21] MAGNET [AACBB'18]
GenASM [MICRO 2020] Rt Ny Shouji [Bioinformatics'19]
\
\ .
Near-memory Sequence Alignment \ GateKeeper-GPU [arXiv'21]
N \ . .,
GenASM [MICRO 2020] J \\\ \| SneakySnake [Bioinformatics'20]
(. \
- (N
I I "N
{ \ 4

Zin

Sequencing Machine Storage

MR

(SSD/HDD) Main Memory Microprocessor
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Extensions

Can we improve the filtering accuracy

o Don’t amend, count the number of matches accurately.

Yes, see MAGNET paper [Alser et al. arXiv preprint 2017]. But
this requires large number of LUTs.
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https://arxiv.org/pdf/1707.01631.pdf

MAGNET [Alser+, arXiv 2017]

Mohammed Alser, Onur Mutlu, and Can Alkan,

"MAGNET: Understanding and Improving the Accuracy of
Genome Pre-Alignment Filtering"

IPSI Transactions on Internet Research, July 2017.

arXiv.org version, July 2017.

[Source Code]

MAGNET: Understanding and Improving
the Accuracy of
Genome Pre-Alignment Filtering

Alser, Mohammed; Mutlu, Onur; and Alkan, Can
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https://people.inf.ethz.ch/omutlu/pub/magnet-understanding-improving-genome-prealignment_ipsi17.pdf
https://arxiv.org/pdf/1707.01631.pdf
https://github.com/BilkentCompGen/MAGNET

MAGNET Walkthrough

Read :
Reference :

Upper Diagonal-4 :
Upper Diagonal-3 :
Upper Diagonal-2 :
Upper Diagonal-1 :

Main Diagonal :
Lower Diagonal-1 :
Lower Diagonal-2 :
Lower Diagonal-3 :
Lower Diagonal-4 :

MAGNET bit-vector :

Build Neighborhood Map

Track the Diagonally Consecutive ACCEPT iff number of ‘1’ < Threshold
Matches

TTTTACTGTTCTCCCTTTGAATACAATATATCTATATTTCCCTCTGGCTACATTTAAAATTTCCCCTTTATCTGTAATAATCAGTAATTACGTTTTAAAA
TTTTACTGTTCTCCCTTTGAAATGACAATATATCTATATTTCCCTCTGGCTACATTTAAAATTTCCCCTTTATCTGTAATAATCAGTAAATTACCGTTTT
--01101101010111111

O,
101100001010001011010011111101101100110110011010101011101111111
110111111111110010011110111111001000100100010011111110110111111(

-001111011001011011

0001111101110010011¢ 101111111111100100111101111110010001001000100111111101101111110
110000101000101101001111110110110011011001101010101110111111111
101111111110111110111111011111110111111011110111111000010110101¢
110010001010111001110011101101111111111111101010111101101010100
101111111011110111111111101101101111110111110111101111111111111
111000001011101011001111100101001111100111001001111010110111111

\</
---1101111111001111

— el

00011111011100100110
00111101100101101111¢(
01101101010111111110
11011111110011111011¢

O = = =

Find the longest segment of consecutive zeros

Exclude the errors from the search space

Divide the problem into two subproblems and repeat

Total number of edits = number of 1’s in MAGNET bit-vector
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Extensions

Can we improve the filtering accuracy

o Don’t amend, count the number of matches accurately.

Yes, see MAGNET paper [Alser et al. arXiv preprint 2017]. But
this requires large number of LUTs.

Can we improve the filtering accuracy and scalability
a Yes, see Shouji paper [Alser et al. Bioinformatics 2019].
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https://arxiv.org/pdf/1707.01631.pdf
https://doi.org/10.1093/bioinformatics/btz234

Shouji (BEF) [Alser+, Bioinformatics 2019]

Mohammed Alser, Hasan Hassan, Akash Kumar, Onur Mutlu, and Can Alkan,
"Shouji: A Fast and Efficient Pre-Alignment Filter for Sequence Alighment"
Bioinformatics, [published online, March 28], 2019.
[Source Code]

[Online link at Bioinformatics Journal]

Bioinformatics, 2019, 1-9

doi: 10.1093/bicinformatics/btz234

Advance Access Publication Date: 28 March 2019
Original Paper

Sequence alignment

Shouiji: a fast and efficient pre-alignment filter
for sequence alignment

Mohammed Alser'?>*, Hasan Hassan', Akash Kumar?, Onur Mutlu
and Can Alkan3*

lComputer Science Department, ETH Ziirich, Ziirich 8092, Switzerland, 2Chair for Processor Design, Center For
Advancing Electronics Dresden, Institute of Computer Engineering, Technische Universitdt Dresden, 01062
Dresden, Germany and *Computer Engineering Department, Bilkent University, 06800 Ankara, Turkey

1.3.%

*To whom correspondence should be addressed.
Associate Editor: Inanc Birol
Received on September 13, 2018; revised on February 27, 2019; editorial decision on March 7, 2019; accepted on March 27, 2019
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http://bioinformatics.oxfordjournals.org/
https://github.com/CMU-SAFARI/Shouji
https://doi.org/10.1093/bioinformatics/btz234

J 1 2 3 4 5 6 7 8 9 10 11 12

Bu||d|ng the i | G| G| T |G| C | A |G| A |G )|C T Cc
Neighborhood Map 116 0 Jorg™ Qs

2 [¢]%. 0 a

SR KN R ? -

2 6|0 [0y ¥y 0
Finding all common 50 a N 10
subsequences : e N 010
(diagonal segments of 5 [a ; 110l 1] 1
consecutive zeros) : B ol 110l 11 1
shared between two - BEEEEERERE
given sequences. 0T 11111101
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Storing it @ Shouiji Bit-vector 0jo0jo0jOf2jojoOjOfoOj21]0]1

ACCEPT iff number of ‘1’ £ Threshold

Shouiji: a fast and efficient pre-alignment filter for sequence alignment, Bioinformatics 2019,

https://doi.org/10.1093/bioinformatics/btz234
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Shouji Walkthrough

J 1 2 3 4 6 7 8 9 10 11 12
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1 | 6 110 1] 1] 1
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Storing it (@ oSSR tor ojojojofrjofo|O0jO|2]|O0 1

ACCEPT iff number of ‘1’ £ Threshold

Shouiji: a fast and efficient pre-alignment filter for sequence alignment, Bioinformatics 2019,
https://doi.org/10.1093/bioinformatics/btz234
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Extensions

Can we improve the filtering accuracy

o Don’t amend, count the number of matches accurately.

Yes, see MAGNET paper [Alser et al. arXiv preprint 2017]. But
this requires large number of LUTs.

Can we improve the filtering accuracy and scalability
a Yes, see Shouji paper [Alser et al. Bioinformatics 2019].

Can we solve the FPGA-CPU communication bottleneck?

o Where it makes sense: Processing-in-memory, Processing-
near-storage, Processing-while-sequencing?

a Yes, see GRIM-Filter [Kim et al. BMC Genomics 2018].
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https://doi.org/10.1093/bioinformatics/btz234
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GRIM-Filter [Kim+, BMC Genomics 2018]

Jeremie S. Kim, Damla Senol Cali, Hongyi Xin, Donghyuk Lee, Saugata Ghose,
Mohammed Alser, Hasan Hassan, Oguz Ergin, Can Alkan, and Onur Mutlu,
"GRIM-Filter: Fast Seed Location Filtering in DNA Read Mapping Using
Processing-in-Memory Technologies"

to appear in BMC Genomics, 2018.

Proceedings of the 16th Asia Pacific Bioinformatics Conference (APBC),
Yokohama, Japan, January 2018.

arxiv.org Version (pdf)

GRIM-Filter: Fast Seed Location Filtering
in DNA Read Mapping

Using Processing-in-Memory Technologies

Jeremie S. Kim1®", Damla Senol Cali!, Hongyi Xin?, Donghyuk Lee?, Saugata Ghose!,

Mohammed Alser*, Hasan Hassan®, Oguz Ergin®, Can Alkan**, and Onur Mutlu*°:!
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GRIM-Filter in 3D-Stacked DRAM

Row 0: AAAAA
Row 1: AAAAC
Row 2: AAAAG

Row R—1: TTTTT

o)
Q
>
~

Bitvector for bin 2
Bitvector for bin t—1

Bitvector for bin O
Bitvector for bin 1

X

yZ
e

Logic Layer

Each DRAM layer is organized as an array of banks
o A bank is an array of cells with a row buffer to transfer data

The layout of bitvectors in a bank enables filtering many

bins in parallel
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GRIM-Filter: Bitvectors

bin1 bin3

Reference m—— ——————
Genome "AAAACCCCTGCCTTGCATCTAGAAAACTTGACAGGAACTTTTTATCGCA -
bin,
b,
”AAAAé ' aaaACc  © Represent each bin with a bitvector
AAMAG | 0| exists in that holds the occurrence of all
AAMAT 101 pin 1 permutations of a small string (token)
cceeT | 1 In the bin
tokens < ' '

. . o To account for matches that straddle
GeATG | bins, we employ overlapping bins
= A read will now always completely fall

TTGCA | 1| CCCCT within a single bin

doesn’t
exist in
bin 1

TTTTT
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Integrating GRIM-Filter into a Read Mapper

INPUT: Read Sequence

GAACTTGCGAG » s« GTATT

INPUT: All Potential Seed Locations
.«( 020128 )...( 020131 )...( 414415 ),..

3 @ ;| GRIM:Filter:
- Seed Location Checker
(1) L KEEP 4 KEEP
GRIM_FiIter: S IIIIOOO1O Olll01 O10lll y
Filter Bitmask Generator DfSCARDl
. s y X v v
++10001010 4420110104 QReference Segment Storage
Seed Location Filter Bitmask reference reference
segment segment
@ 020131 @ 4] 4415
@ Read Mapper: Edit-Distance Calculation
Sequence Alignment

v

OUTPUT: Correct Mappings



Can We Do Better?

Faster, More Accurate,
More Scalable
Pre-Alignment Filtering




Specialized Hardware for Pre-alignment Filtering

Mohammed Alser, Taha Shahroodi, Juan-Gomez Luna, Can Alkan, and Onur Mutlu,
"SneakySnake: A Fast and Accurate Universal Genome Pre-Alignment Filter for
CPUs, GPUs, and FPGAs"

Bioinformatics, 2020.

[Source Code]

[Online link at Bioinformatics Journal]

Bioinformatics ISCB?

INTERNATIONAL SOCIETY FOR
COMPUTATIONAL BIOLOGY

SneakySnake: a fast and accurate universal genome pre-
alignment filter for CPUs, GPUs and FPGAs

Mohammed Alser ™, Taha Shahroodi, Juan Gomez-Luna, Can Alkan ™, Onur Mutlu ==

Bioinformatics, btaal015, https://doi.org/10.1093/bioinformatics/btaal015
Published: 26 December2020 Article history v
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https://github.com/CMU-SAFARI/SneakySnake
https://doi.org/10.1093/bioinformatics/btaa1015

SneakySnake

= Key observation:
o Correct alignment is a sequence of non-overlapping long matches
= Key idea:

o Approximate edit distance calculation is similar to Single Net
Routing problem in VLSI chip

VLSI chip layout

hlnmh_} |Iﬁ«é' e
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SneakySnake Walkthrough

Building Neighborhood Map Finding the Optimal Routing Path Examining the Snake Survival

of value ’0’) in its corresponding HRT. Given two genomic sequences, a
reference sequence R[1...m] and a query sequence Q[1...m], and an E
edit distance threshold E, we calculate the entry Z[i, j| of the chip maze,
where 1 <4 < (2E+ 1) and 1 < 5 < m, as follows:

3

0, if i=E+1, Q[j]= R[],
. . )0, if 1<i<E, Q[j—1i]=R[],
2151 = 0, ifi>E+1, Q[j+i—E—1]=R[j], 1)
1

, otherwise

column 1 2 3 4 5 6 7 8 9 10 11 12
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SneakySnake Walkthrough

Building Neighborhood Map Finding the Optimal Routing Path

column 1 2 3 4 5 06 7 8 9 10 11 12

I*" Upper Diagc

Main Diagon

ENTRANCE

I’ Lower Diagq
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SneakySnake Walkthrough

Building Neighborhood Map

Finding the Optimal Routing Path
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SneakySnake Walkthrough

Building Neighborhood Map Finding the Routing Travel Path Examining the Snake Survival
This is what you actually need to build and - 3
it can be done on-the-fly!

checkpoint 1 checkpoint 2 checkpoint 3

Ll
O
=
=
—
=
L
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FPGA Resource Analysis

FPGA resource usage for a single filtering unit of GateKeeper,
Shouji, and Snake-on-Chip for a sequence length of 100 and
under different edit distance thresholds (E).

E (bp) Slice LUT Slice Register No. of Filtering Units

GateKeeoer 2 0.39% 0.01% 16

P 0.71% 0.01% 16

B 0.69% 0.08% 16
Shouji

1.72% 0.16% 16
0.68% 0.16% 16
1.42% 0.34% 16

U N1 N

Snake-on-Chip
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Filtering Accuracy

1 s
sl SHD
- == Q== GateKeeper
0.8 - ® - Shouji
- wlQue MAGNET
o e SneakySnake-100
B o6 | el == SneakySnake-5
]
= I
Q
3
<
2
L

0 1 2 3 4 5 6 7 8o 9 10
Edit Distance Threshold

Alser, "Accelerating the Understanding of Life's Code Through Better Algorithms

and Hardware Design”, arXiv preprint arXiv:1910.03936, 2019. 97



https://arxiv.org/abs/1910.03936

Key Results of SneakySnake

Q

SneakySnake is up to four orders of magnitude more accurate than
Shouji (Bioinformatics'19) and GateKeeper (Bioinformatics'17)

Using short reads, SneakySnake accelerates Edlib (Bioinformatics'17)
and Parasail (BMC Bioinformatics'16) by

up to 37.7 x and 43.9 x (>12 x on average), on CPUs

up to 413 x and 689 x (>400 x on average) with FPGA/GPU
acceleration

Using long reads, SneakySnake accelerates Parasail and KSW2 by
140.1 x and 17.1 X on average, respectively, on CPUs
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Takeaways




Key Takeaways

A novel method to accelerate Sequence Alignment in
genome analysis.

Simple and effective
Hardware/software cooperative

Good potential for work building on it to extend it
o To make things more efficient and effective

o Multiple works have already built on the paper (see MAGNET,
Shouji, GRIM-Filter, SneakySnake, GenCache)

Easy to read and understand paper
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Open Discussion

101




Discussion Starters (I)

Thoughts on the previous ideas?

Rethinking Alignment and Pre-alignment?
o Re-use the results of the pre-alignment filter?

o Improve the accuracy of pre-alignment filtering to achieve an
optimal alignment?

Extend the solution to longer reads, higher edit distance
thresholds?

Is this solution clearly advantageous in some cases?
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Discussion Starters (11)

Data movement is still a bottleneck. How could we try to
reduce it?

o Placing the accelerator closer to memory

o Using newer and faster I/O

o Closely integrate the accelerator into sequencers for real-time
pre-alignment filtering
o Offer cloud computing with access to advanced FPGA chips
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Can We Do Better?

Alleviating
Data Movement
Bottlenecks




Near-memory Pre-alignment Filtering

Gagandeep Singh, Mohammed Alser, Damla Senol Cali, Dionysios Diamantopoulos,
Juan Gomez-Luna, Henk Corporaal, Onur Mutlu,
“FPGA-Based Near-Memory Acceleration of Modern Data-Intensive

Applications“
|IEEE Micro, 2021.
[Source Code]

"I!L\j?ml

FPGA Computing

Previous Next
i= Table of Contents

Past Issues

Home / Magazines / IEEE Micro / 2021.04

IEEE Micro

FPGA-Based Near-Memory Acceleration of
Modern Data-Intensive Applications

July-Aug. 2021, pp. 39-48, vol. 41
DOI Bookmark: 10.1109/MM.2021.3088396

Authors

Gagandeep Singh, ETH Zrich, Zirich, Switzerland

Mohammed Alser, ETH Zirich, Zirich, Switzerland

Damla Senol Cali, Carnegie Mellon University, Pittsburgh, PA, USA

Dionysios Diamantopoulos, Zirich Lab, IBM Research Europe, Riischlikon, Switzerland
Juan Gomez-Luna, ETH Zlrich, Zurich, Switzerland

Henk Corporaal, Eindhoven University of Technology, Eindhoven, The Netherlands
Onur Mutlu, ETH Zirich, Zirich, Switzerland
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Near-memory SneakySnake

= Problem: Read Mapping is heavily bottlenecked by data
movement from main memory

= Solution: Perform read mapping near where data resides (i.e.,
near-memory)

= We carefully redesigned the accelerator logic of SneakySnake
to exploit near-memory computation capability on modern
FPGA boards with high-bandwidth memory

FPGA + high-bandwidth memory
on the same package substrate

Xilinx Virtex Utrcle+ HBM VCU128 FPGA
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Key Results of Near-memory SneakySnake
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GenASM Framework [MICRO 2020]

Damla Senol Cali, Gurpreet S. Kalsi, Zulal Bingol, Can Firtina, Lavanya Subramanian, Jeremie S.
Kim, Rachata Ausavarungnirun, Mohammed Alser, Juan Gomez-Luna, Amirali Boroumand,
Anant Nori, Allison Scibisz, Sreenivas Subramoney, Can Alkan, Saugata Ghose, and Onur Mutlu,
"GenASM: A High-Performance, Low-Power Approximate String Matching
Acceleration Framework for Genome Sequence Analysis"

Proceedings of the 53rd International Symposium on Microarchitecture (MICRO), Virtual,
October 2020.

[Lightning Talk Video (1.5 minutes)]

[Lightning Talk Slides (pptx) (pdf)]

[Talk Video (18 minutes)]

[Slides (pptx) (pdf)]

GenASM: A High-Performance, Low-Power
Approximate String Matching Acceleration Framework
for Genome Sequence Analysis

Damla Senol Cali ™ Gurpreet S. Kalsi®  Ziilal Bingol¥  Can Firtina® Lavanya Subramanian? Jeremie S. Kim®1
Rachata Ausavarungnirun® Mohammed Alser® Juan Gomez-Luna® Amirali Boroumand! Anant Nori®
Allison Scibisz|  Sreenivas Subramoney™ Can Alkan’ Saugata Ghose*T  Onur Mutlu®TV
TCarnegie Mellon University ™ Processor Architecture Research Lab, Intel Labs " Bilkent University =~ °ETH Ziirich

YFacebook  ©King Mongkut’s University of Technology North Bangkok — * University of Illinois at Urbana—Champaign
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https://people.inf.ethz.ch/omutlu/pub/GenASM-approximate-string-matching-framework-for-genome-analysis_micro20.pdf
http://www.microarch.org/micro53/
https://www.youtube.com/watch?v=nJs3RRnvk_k
https://people.inf.ethz.ch/omutlu/pub/GenASM-approximate-string-matching-framework-for-genome-analysis_micro20-lightning-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/GenASM-approximate-string-matching-framework-for-genome-analysis_micro20-lightning-talk.pdf
https://www.youtube.com/watch?v=srQVqPJFqjo
https://people.inf.ethz.ch/omutlu/pub/GenASM-approximate-string-matching-framework-for-genome-analysis_micro20-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/GenASM-approximate-string-matching-framework-for-genome-analysis_micro20-talk.pdf

Near-memory GenASM Framework

Our goal: Accelerate approximate string matching (ASM) by
designing a fast and flexible framework, which can accelerate
multiple steps of genome sequence analysis.

Key ideas: Exploit the high memory bandwidth and the logic layer of
3D-stacked memory to perform highly-parallel ASM in the DRAM chip
itself.

Modify and extend Bitapl2, ASM algorithm with fast and simple

bitwise operations, such that it now:
o Supports long reads

o Supports traceback

o Is highly parallelizable

Co-design of our modified scalable and memory-efficient algorithms
with low-power and area-efficient hardware accelerators

[1] R. A. Baeza-Yates and G. H. Gonnet. "A New Approach to Text Searching." CACM, 1992.
[2] S. Wu and U. Manber. "Fast Text Searching: Allowing Errors." CACM, 1992.
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Use Cases of GenASM (cont’d.)

(1) Read Alignment Step of Read Mapping
a Find the optimal alignment of how reads map to candidate

reference regions

(2) Pre-Alignment Filtering for Short Reads
o Quickly identify and filter out the unlikely candidate reference
regions for each read

(3) Edit Distance Calculation
a Measure the similarity or distance between two sequences

= We also discuss other possible use cases of GenASM in our paper:
o Read-to-read overlap finding, hash-table based indexing, whole
genome alignment, generic text search
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Key Results of the GenASM Framework

(1) Read Alignment

= 116 X speedup, 37 X less power than Minimap2 (state-of-the-art SW)

= 111 X speedup, 33 X less power than BWA-MEM (state-of-the-art SW)

m 3.9 X better throughput, 2.7 X less power than Darwin (state-of-the-art HW)

m 1.9 X better throughput, 82% less logic power than GenAX (state-of-the-art HW)

(2) Pre-Alignment Filtering
m 3.7 X speedup, 1.7 X less power than Shouji (state-of-the-art HW)

(3) Edit Distance Calculation
m 22-12501 % speedup, 548-582 X |ess power than Edlib (state-of-the-art SW)
= 9.3-400 X speedup, 67 X less power than ASAP (state-of-the-art HW)
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Discussion Starters (111

Can you think of fields that could be similarly in need of
string alignment as in read mapping in bioinformatics?

Natural language processing

o OCR error correction

o Autocorrection in text-based editors or apps

o Reconstruction of languages using the comparative method
o Social sciences

Combining dynamic programming with filtering to solve a four-stage
two-dimensional guillotine-cut bounded knapsack problem

Francois Clautiaux®"* Ruslan Sadykov"?, Francois Vanderbeck®", Quentin Viaud®®

@IMB, Université de Bordeaux, 351 cours de la Libération, 33405 Talence, France
YINRIA Bordeauz - Sud-Ouest, 200 avenue de la Vieille Tour, 33405 Talence, France

Clautiaux+, "Combining dynamic programming with filtering to solve a four-stage two-
dimensional guillotine-cut bounded knapsack problem”, Discrete Optimization, 2018.

112



https://www.sciencedirect.com/science/article/abs/pii/S1572528617301408

Adoption of
hardware accelerators
IN genome analysis




Bioinformatics: Reviewer #6 (Dec. 20106)

I have a major concern with the work that is actually
not a problem with the manuscript at all. Specifically, I
have the concern that there has been little to no adoption of
previous specialized hardware solutions related to improving
the speed of alignment. While there has been considerable
work in this area (which the authors do an admirable job of
citing), it does not seem that these hardware-based solutions
have gained any type of real traction in the community, as the
vast majority of alignment is still performed on “regular”
CPUs, where the extent of hardware acceleration is the
adoption of specific SIMD or vectorized instructions. While I
dont think that this practical concern should preclude
publication of the current work, it is something worth
considering (e.g. what, if any, of the proposed improvements
to the SHD filter could be “back-ported” to a software-only
solution). He




Our Response

We see the reviewer’s point, but we do not believe this should be held against the research in the area of FPGA-based

acceleration of read mapping in particular or genomics in general. It always takes time to adopt a “new” or “different”

hardware technology since it requires investment into the hardware infrastructure. The main challenges/barriers that
limit the popularity of FPGAs in the genomics field are the high cost, design effort, and development time. Due to the
fact that the deliverable of such projects is normally a hardware product, researchers tend to commercialize their
research with startup companies and engage themselves with industrial collaborators, as we describe below. Today,
the cost structure of FPGAs is changing because major cloud infrastructures (e.g., by Microsoft Azure and Amazon
AWS) offer FPGAs as core engines of the infrastructure. Therefore, we believe the benefits of FPGA-based
acceleration has become available to many more folks in the community, especially with the open-source release of
such FPGA-accelerated solutions. To increase adoption, we have decided to release our source code for GateKeeper.
It is available on https://github.com/BilkentCompGen/GateKeeper.

Some examples of the research groups that commercialize their research and promote FPGA-based or even cloud-
based products for genomics are as follows:

http://www.timelogic.com/catalog/775

http://www.gidel.com/HPC-RC/HPC-Applications.asp

http://www.edicogenome.com/dragen bioit platform/the-dragen-engine-2/
http://www.bcgsc.ca/platform/bioinfo/software/XpressAlign/releases/1.0
https://www.sevenbridges.com/amazon/
http://www.falcon-computing.com/index.php/solutions/falcon-genomics-solutions/

115



Our Response (cont’d)

It is also important to emphasize that the necessity of designing a mapper on hardware is currently steering the field
towards more personalized medicine. Hardware-accelerated mappers (using various platforms such as SIMD, GPUs,
and FPGAs) are becoming increasingly popular as they can be potentially directly integrated into sequencing machines
(the lllumina sequencer, for example, includes an FPGA chip inside it
https://support.illumina.com/content/dam/illumina-support/documents/downloads/software/hiseq/hcs_2-0-
12/installnotes _hcs2-0-12.pdf ), such that we have a single machine that can perform both sequencing and mapping
(Lindner, et al., Bioinformatics 2016). This approach has two benefits. First, it can hide the complexity and details of
the underlying hardware from users who are not necessarily aware about FPGAs (e.g., biologists and
mathematicians). Second, it allows a significant reduction in total genome analysis time by starting read mapping
while still sequencing. Hence, an end user or researcher in genomics might not directly deal with the “pre-alignment
on FPGA” or “mapper on FPGA”, but they might purchase a sequencer that performs pre-alignment and alignment
using FPGAs inside. As such, one potential target of our research is to influence the design of more intelligent
sequencing machines by integrating GateKeeper inside them.

In fact, we believe GateKeeper is very suitable to be used as part of a sequencer as it provides a complete pre-
alignment system that includes many processing cores, where all processing cores work in parallel to provide
extremely fast filtering. We believe such a fast approach can make sequencers more intelligent and attractive.
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Remember What We Said in the First Lecture

Dream
and, they will come

*Computing landscape is very different from 10-20 years ago.
*As applications push boundaries, computing platforms will become increasingly strained.
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[lumina DRAGEN Bio-IT Platform (2018)

= Processes whole genome at 30x coverage in ~25 minutes
with hardware support for data compression
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{

emea.illumina.com/products/by-type/informatics-products/dragen-bio-it-platform.html
emea.illumina.com/company/news-center/press-releases/2018/2349147 .html
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https://emea.illumina.com/products/by-type/informatics-products/dragen-bio-it-platform.html
https://emea.illumina.com/company/news-center/press-releases/2018/2349147.html

NVIDIA Clara Parabricks (2020)

GPU board(s)

A University of Michigan’s startup in
2018 and joined NVIDIA in 2020

PERFORMANCE COMPARISON
mline End-to-End Secondary Analys

1,200 minutes

‘ ‘ 52 minutes 35 minutes 23 minutes

—
CPU/GATK 8X T4 8X V100 8X A100

https://developer.nvidia.com/clara-parabricks 119



https://developer.nvidia.com/clara-parabricks

Computing
Is Still Bottlenecked by
Data Movement




Adoption Challenges of Hardware Accelerators

Accelerate the entire read mapping process rather than its
individual steps (Amdahl’s law)

Reduce the high amount of data movement
o Working directly on compressed data

o Filter out unlikely-reused data at the very first component of the
compute system

Develop flexible hardware architectures that do NOT
conservatively limit the range of supported parameter
values at design time

Adapt existing genomic data formats for hardware

accelerators or develop more efficient file formats
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Adoption Challenges of Hardware Accelerators

Maintaining the same (or better) accuracy/sensitivity of the
output results of the software version

o Using heuristic algorithms to gain speedup!

High hardware cost

Long development life-cycle for FPGA platforms
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What else can be done?
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What if we got a new version of
the reference genome?

FASTAfile FASTQ file

.
x"l

\

* ¥
Reference / 2 W
genome / .
Reads )

https://www.pacb.com/smrt-science/smrt-sequencing/hifi-reads-for-highly-accurate-long-read-sequencing/
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https://www.pacb.com/smrt-science/smrt-sequencing/hifi-reads-for-highly-accurate-long-read-sequencing/

AirlLift [Kim+, arXiv 2021]

Jeremie S. Kim, Can Firtina, Meryem Banu Cavlak, Damla Senol Cali,
Mohammed Alser, Nastaran Hajinazar, Can Alkan, Onur Mutlu

"AirLift: A Fast and Comprehensive Technique for Translating Alignments between
Reference Genomes", arXiv, 2021

[Source Code]

[Online link at arXiv]

RESEARCH

AirLift: A Fast and Comprehensive Technique

for Remapping Alignments between Reference
Genomes

Jeremie S. Kim!, Can Firtinal, Meryem Banu Cavlak?, Damla Senol Cali3, Nastaran Hajinazar1'4,
Mohammed Alser!, Can Alkan? and Onur Mutlu!23*
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https://arxiv.org/pdf/1912.08735.pdf
https://github.com/CMU-SAFARI/AirLift
https://arxiv.org/pdf/1912.08735.pdf

Airlift

Key observation: Reference genomes are updated frequently.
Repeating read mapping is a computationally expensive workload.

Key idea: Update the mapping results of only affected reads
depending on how a region in the old reference relates to another
region in the new reference.

Key results:

a reduces number of reads that needs to be re-mapped to new
reference by up to 99.99%

o reduces overall runtime to re-map reads by 6.7x, 6.6x, and
2.8x for large (human), medium (C. elegans), and small (yeast)
reference genomes
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Clustering the Reference Genome Regions

Constant Region Updated Region
Retired Region New Region

Old Reference PR B i (N

New Reference | T ne

Fig. 2. Reference Genome Regions.
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Processing Genomic Data Where it Makes Sense

FPGAS

Intelligent
Genome Analysis

g )A“'
[ |

Sequencing
Machine

Processors and
Accelerators

Persistent Memory/Storage
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What 1s Intelligent Genome Analysis?

= Fast genome analysis Bandwidth
Q Real-time analysis

= Using intelligent architectures Energy-efficiency &
Q Specialized HW with less data movement La tency

= DNA is a valuable asset Privacy

Q Controlled-access analysis

= Population-scale genome analysis Scalability
Q Seqguence anywhere at large scale!

= Avoiding erroneous analysis Accuracy
Q E£.g., your father is not your father
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Achieving Intelligent Genome Analysis?

How and where to enable
fast, accurate, cheap,

privacy-preserving, and exabyte scale

analysis of genomic data?
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Most speedup comes from parallelism enabled

by novel architectures and algorithms
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Read Mapping in 111 pages!
In-depth analysis of 107 read mappers (1988-2020)

Mohammed Alser, Jeremy Rotman, Dhrithi Deshpande, Kodi Taraszka, Huwenbo
Shi, Pelin Icer Baykal, Harry Taegyun Yang, Victor Xue, Sergey Knyazev, Benjamin
D. Singer, Brunilda Balliu, David Koslicki, Pavel Skums, Alex Zelikovsky,

Can Alkan, Onur Mutlu, Serghei Mangul

"Technology dictates algorithms: Recent developments in read alignment”
Genome Biology, 2021

[Source code]

Alser et al. Genome Biology (2021) 22:249

https://doi.org/10.1186/513059-021-02443-7 G enome B | 0O | Ogy

Technology dictates algorithms: recent ")
developments in read alignment

updates
Mohammed Alser'*", Jeremy Rotman®", Dhrithi Deshpande®, Kodi Taraszka®, Huwenbo Shi®’, Pelin Icer Baykal®,
Harry Taegyun Yang*®, Victor Xue”, Sergey Knyazev®, Benjamin D. Singer'®'"'? Brunilda Balliu',
David Koslicki'*'>'®, Pavel Skums®, Alex Zelikovsky®'”, Can Alkan®'®, Onur Mutlu'**" and Serghei Mangul®""
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https://arxiv.org/abs/2003.00110
https://github.com/Mangul-Lab-USC/review_technology_dictates_algorithms

Accelerating Read Mapping

Genome Analysis Pipeline 4

Genomic Sample Sequencing Machine Reads

Read
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Accelerating

Accelerating Indexing Pre-Alignment Filtering

( g-gram filtering

Reducing
the number of seeds (" Pigeonhole principle

)
L o assorns

[ Reducing data movement

( Base counting
during indexing

( Sparse DP

L oo
)

Accelerating Alignment

Alser+, “Acéeleratin_q Genome Analysis: A Primer on an Ongoing Journey”, IEEE Micro, 2020.
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https://arxiv.org/pdf/2008.00961.pdf

Detailed Analysis of Tackling the Bottleneck

Mohammed Alser, Zulal Bingol, Damla Senol Cali, Jeremie Kim, Saugata Ghose,
Can Alkan, Onur Mutlu

“Accelerating Genome Analysis: A Primer on an Ongoing Journey”

IEEE Micro, August 2020.

Home / Magazines / IEEE Micro / 2020.05

IEEE Micro

Accelerating Genome Analysis: A Primer on
an Ongoing Journey

Sept.-Oct. 2020, pp. 65-75, vol. 40
DOI Bookmark: 10.1109/MM.2020.3013728

Machine Learning for Systems
Mini-Theme: Biology and Systems Interactions.

;‘f“ Authors
- Mohammed Alser, ETH Zilrich
P > Zulal Bingol, Bilkent University
Previous Next Damla Senol Cali, Carnegie Mellon University

Jeremie Kim, ETH Zurich and Carnegie Mellon University
Saugata Ghose, University of lllinois at Urbana—-Champaign and Carnegie Mellon University
Past Issues Can Alkan, Bilkent University

Onur Mutlu, ETH Zurich, Carnegie Mellon University, and Bilkent University
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https://arxiv.org/pdf/2008.00961.pdf

More on Fast Genome Analysis ...

Onur Mutlu,

"Accelerating Genome Analysis: A Primer on an Ongoing Journey"
Invited Lecture at Technion, Virtual, 26 January 2021.

[Slides (pptx) (pdf)]

[Talk Video (1 hour 37 minutes, including Q&A)]

[Related Invited Paper (at IEEE Micro, 2020)]

Insight: Shifting a String Helps Similarity Search

7 matches 1 mismatch

A U

Onur Mutlu - Invited Lecture @Technion: Accelerating Genome Analysis: A Primer on an Ongoing Journey

566 views * Premiered Feb 6, 2021 |. 31 0 SHARE SAVE

@ ?;g;h::;lsl;}‘::::fes ANALYTICS EDIT VIDEO 1 3 5
«T>



https://people.inf.ethz.ch/omutlu/pub/onur-Technion-AcceleratingGenomeAnalysis-Jan-26-2021-final.pptx
https://www.technion.ac.il/en/
https://people.inf.ethz.ch/omutlu/pub/onur-Technion-AcceleratingGenomeAnalysis-Jan-26-2021-final.pptx
https://people.inf.ethz.ch/omutlu/pub/onur-Technion-AcceleratingGenomeAnalysis-Jan-26-2021-final.pdf
https://www.youtube.com/watch?v=r7sn41lH-4A
https://people.inf.ethz.ch/omutlu/pub/AcceleratingGenomeAnalysis_ieeemicro20.pdf

More on Intelligent Genome Analysis ...

Our Solution: GateKeeper

Alignment Filter.

mappings mappings
=}

1] High throughput DNA @ Read Pre-Alignment Filtering 3 Read Alignment
q ing (HTS) technologi Fast & Low False Positive Rate LZ) Slow & Zero False Positives

108

ey
D M ) 20858/2:5418 - GateKeeper > om@m % (= O ]

Q@ ETH ZENTRUM
Computer Architecture - Lecture 8: Intelligent Genome Analysis (ETH Ziirich, Fall 2020)

https://www.youtube.com/watch?v=ygmQpdDTL70
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https://www.youtube.com/watch?v=ygmQpdDTL7o

Detailed Lectures on Genome Analysis

Computer Architecture, Fall 2020, Lecture 3a
o Introduction to Genome Sequence Analysis (ETH Zirich, Fall 2020)

o https://www.youtube.com/watch?v=CrRb32v7S]c&list=PL50Q2s0XY2Zi9xidyIgBxUz7
XRPS-wisBN&index=5

Computer Architecture, Fall 2020, Lecture 8
o Intelligent Genome Analysis (ETH Zlrich, Fall 2020)

o https://www.youtube.com/watch?v=ygmQpdDTL70&list=PL50Q2s0XY2Zi9xidyIgBxU
Z7XRPS-wisBN&index=14

Computer Architecture, Fall 2020, Lecture 9a

o GenASM: Approx. String Matching Accelerator (ETH Zirich, Fall 2020)

o https://www.youtube.com/watch?v=XolLpzmN-
Pas&list=PL502s0XY2Zi9xidyIlgBxUz7xRPS-wisBN&index=15

Accelerating Genomics Project Course, Fall 2020, Lecture 1

o Accelerating Genomics (ETH Zurich, Fall 2020)

o https://www.youtube.com/watch?v=rgjl8ZyLsAg&list=PL50Q2s0XY2Zi9E2bBVAgCqgL
gwiDRODTyId

https://www.youtube.com/onurmutlulectures 7



https://www.youtube.com/watch?v=CrRb32v7SJc&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=5
https://www.youtube.com/watch?v=ygmQpdDTL7o&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=14
https://www.youtube.com/watch?v=gR7XR-Eepcg&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=10
https://www.youtube.com/watch?v=rgjl8ZyLsAg&list=PL5Q2soXY2Zi9E2bBVAgCqLgwiDRQDTyId
https://www.youtube.com/onurmutlulectures

Prior Research on Genome Analysis (1/2)

= Alser + "SneakySnake: A Fast and Accurate Universal Genome Pre-
Alignment Filter for CPUs, GPUs, and FPGAs.", Bioinformatics, 2020.

= Senol Cali+, "GenASM: A High-Performance, Low-Power Approximate
String Matching Acceleration Framework for Genome Sequence Analysis",
MICRO 2020.

= Alser+, "Technology dictates algorithms: Recent developments in read
alignment"”, arXiv, 2020.

= Kim+, "AirLift: A Fast and Comprehensive Technique for Translating
Alignments between Reference Genomes", arXiv, 2020

= Alser+, “Accelerating Genome Analysis: A Primer on an Ongoing Journey”,
IEEE Micro, 2020.
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https://arxiv.org/pdf/1910.09020.pdf
https://arxiv.org/abs/2009.07692
https://arxiv.org/abs/2003.00110
https://arxiv.org/abs/1912.08735
https://arxiv.org/pdf/2008.00961.pdf

Prior Research on Genome Analysis (2/2)

Firtina+, “Apollo: a sequencing-technology-independent, scalable and
accurate assembly polishing algorithm”, Bioinformatics, 2019.

Alser+, “Shouiji: a fast and efficient pre-alignment filter for sequence
alignment”, Bioinformatics 20109.

Kim+, "GRIM-Filter: Fast Seed Location Filtering in DNA Read Mapping
Using Processing-in-Memory Technologies”, BMC Genomics, 2018.

Alser+, "GateKeeper: A New Hardware Architecture for Accelerating
Pre-Alignment in DNA Short Read Mapping”, Bioinformatics, 2017.

Alser+, "MAGNET: understanding and improving the accuracy of
genome pre-alignment filtering”, IPSI Transaction, 2017.
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https://academic.oup.com/bioinformatics/article-abstract/36/12/3669/5804978
https://doi.org/10.1093/bioinformatics/btz234
https://bmcgenomics.biomedcentral.com/articles/10.1186/s12864-018-4460-0
https://people.inf.ethz.ch/omutlu/pub/gatekeeper_FPGA-genome-prealignment-accelerator_bionformatics17.pdf
https://arxiv.org/pdf/1707.01631.pdf

GateKeeper: A New Hardware Architecture
for Accelerating Pre-Alignment

in DNA Short Read Mapping

Mohammed Alser, Hasan Hassan, Hongyi Xin, Oguz Ergin,
Onur Mutlu, Can Alkan
Bioinformatics, 2017

Presented by: Mohammed Alser
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Thank you. Questions?




Seminar in
Computer Architecture
Meeting 2: GateKeeper

Dr. Mohammed Alser
Y @mealser

ETH Zurich
Fall 2021
30 September 2021
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