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Executive  Summary
Problem: Current implantable BCIs ( as chips) are realized with custom ASICs ( ASIC: Application-specific integrated circuit) 


and therefore treat only certain diseases or perform specific tasks in specific brain regions ( one architecture for one task ) => low flexibility   

Goal: Design a general-purpose architecture for implantable BCIs which realizes multiple tasks by one common architecture with

low power consumption to satisfy safety constraint for implantable BCIs 

Key Mechanism:  Refactor the underlying algorithm of each task into distinct pieces that realize different phases of the algorithm 

and then implement each piece into distinct hardware block (Processing Element)

• For each supported task: Configure all necessary processing elements into pipeline to execute it

Result: Realizes an extensible and general-purpose hardware architecture for low-power implantable BCIs

Challenge: Keep power consumption low while the circuit becomes complex

General Idea:  Using the principles of hardware-software co-design to preprocess the algorithms before implementing them into hardware
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Brain-Computer Interfaces (BCI)

• Direct pathway between the brain and an external device


• “From brain to computer” direction: Collects neuronal signal from neurons,


 digitize and then process


• “From computer to brain” direction: Change behavior of neurons by:


           1.Stimulating the neurons directly ( rough way ) 


           2.Translating digital signals to a format which can be understood by neurons 


                => Control neurons precisely : bottleneck of BCI
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Brain-Computer Interfaces (BCI)

• Technology of BCI has gained more attention  

• Neuralink  

  - Neurotechnology company  
  - Founded by Elon Musk 

• Used by over 160K patients worldwide 
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Applications of BCI

• Treatment of neurological diseases 

    E.g., epilepsy, Parkinson’s disease, anxiety 

  

• Support research of brain functions 

• Repair of perceptions ( Cochlear implant )
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Realization of BCI

 1. Headsets or electrodes placed on the scalp

2. Implantable BCIs ( as chips embedded in brain tissue)

• Do not require surgical deployment  (safe and beneficial to commercialization)

• Need surgical deployment but enable BCI to record from and simulate large number of 

neurons with high signal fidelity, spatial resolution, and in real time 
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Problem of BCI as headsets (Non-invasive)

BCI as headsets do not satisfy the performance requirements for forward-looking BCI applications

Because:


1. Collected signals are noisy and low resolution


2. Less ideal for real time processing of signals
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Problem of BCI as headsets (Non-invasive)

BCI as headsets do not satisfy the performance requirements for forward-looking BCI applications

Because:


1. Collected signals are noisy and low resolution


2. Less ideal for real time processing of signals

        For this reason, this paper focuses on implantable BCI 
        and aims to improve it 
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Basic structure of implantable BCI
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      - # Channels determine how many neurons can be processed



13

Basic structure of implantable BCI
1. Sensors: record & stimulate neurons (read & write)

      - # Channels determine how many neurons can be processed

2.  Analog front-end: amplify and digitize data from sensors 

         - Via ADCs 

         - Sample resolution determines quality of digitization

         - Sample frequency determines speed of digitization



14

Basic structure of implantable BCI
1. Sensors: record & stimulate neurons (read & write)

      - # Channels determine how many neurons can be processed

3.  Communication links: change data with the outer world

         - Via RF link

2.  Analog front-end: amplify and digitize data from sensors 

         - Via ADCs 

         - Sample resolution determines quality of digitization

         - Sample frequency determines speed of digitization



15

Basic structure of implantable BCI
1. Sensors: record & stimulate neurons (read & write)

      - # Channels determine how many neurons can be processed

4.  Power sources: 

         - Single-use non-rechargeable batteries

         - Rechargeable batteries by using wireless powering

3.  Communication links: change data with the outer world

         - Via RF link

2.  Analog front-end: amplify and digitize data from sensors 

         - Via ADCs 

         - Sample resolution determines quality of digitization

         - Sample frequency determines speed of digitization
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1. Safety constraint: Implantable BCIs must not dissipate more than 15-40mW of power  ( FDA, FCC, and 
IEEE guidelines )

Problems of implantable BCIS

2. Low flexibility: ( Caused by safety constraint)


  - BCIs targeting large numbers of neurons: To keep the circuit simple, they are realized with custom ASICs  
(treat only certain diseases or perform specific tasks in specific brain regions) 


        When we want to realize multiple tasks:  Design ASIC for each task, and then: 


      1. Combine them into one chip: called monolithic ASIC and exceed power constraint in many cases


      2. Put each ASIC into one chip : #tasks = #chips  =>  impractical


  - The few programmable BCIs: Solves flexibility problem to a certain extent, but process only a limited 

number of neurons to meet the low-power requirements  => impractical by real application
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1. Safety constraint: Implantable BCIs must not dissipate more than 15-40mW of power  ( FDA, FCC, and 
IEEE guidelines )

Problems of implantable BCIS

2. Low flexibility: ( Caused by safety constraint)


  - BCIs targeting large numbers of neurons: To keep the circuit simple, they are realized with custom ASICs  
(treat only certain diseases or perform specific tasks in specific brain regions) 


        When we want to realize multiple tasks:  Design ASIC for each task, and then: 


      1. Combine them into one chip: called monolithic ASIC and exceed power constraint in many cases


      2. Put each ASIC into one chip : #tasks = #chips  =>  impractical


  - The few programmable BCIs: Solves flexibility problem to a certain extent, but process only a limited 

number of neurons to meet the low-power requirements  => impractical by real application

   Flexibility and Performance: One of them as victim to satisfy power constraint
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Goals
Design a general-purpose architecture for implantable BCIs          
     - Realize multiple tasks by one common architecture


       
      - Also target large number of neurons with high sampling frequency and resolution


      - No need to design ASIC individually for each task  


 Meeting power constraint of 15-40mW  ( adequately low-power ) 
      - For safe and chronic implantation in the brain

While: 
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Hardware Architecture for Low-power BCIs 

                                 (HALO)   
    



21

   HALO  & BCIS based on ASIC : Comparison 
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   HALO  & BCIS based on ASIC : Comparison 

• HALO can realize all listed tasks


    - Configurable and flexible

     
         HALO is comprehensive and outperforms existing BCIs 

• HALO has  high sample frequency & resolution


    
• HALO meets safety constraint

    - Safe for chronic use

    - While achieve the outstanding performance
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Key Mechanism
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Key Mechanism
• Determine a list of tasks that we want to support by HALO

• For each task: Refactor the underlying algorithm of it into
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• Identify shared pieces among algorithms 


• Implement these pieces into distinct hardware blocks (PEs) 
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Key Mechanism
• Determine a list of tasks that we want to support by HALO

• For each task: Refactor the underlying algorithm of it into


 distinct pieces that realize different phases of the algorithm 

• Identify shared pieces among algorithms 


• Implement these pieces into distinct hardware blocks (PEs) 

• Arrange all PEs together in a suitable way

• Now for each (supported) task: controller chooses all


required PEs and configure them into pipeline to execute it

Software  
Level

Hardware  
Level

One “piece"

One processing element

One phase of algo
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General Idea

While executing LZMA: 
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General Idea

While executing LZMA: 

(Optional)
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Basic structure of HALO
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Basic structure of HALO
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Basic structure of HALO

For each BCI task :Controller assembles all required PEs for this task into pipelines to execute the task

Each single PE operates at：

•  a frequency catered to its specific computational needs => reduces power consumption (while ASIC ran all logic at same frequency)

• private memory => cannot share large amounts of data ( “Locality Refactoring ’’ by PE decomposition )

• adapter to communicate over the interconnect 

=> PEs communicate with each other via lower-power circuit-switched network built on an asynchronous communication fabric 
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Basic structure of HALO

For each BCI task :Controller assembles all required PEs for this task into pipelines to execute the task

Each single PE operates at：

•  a frequency catered to its specific computational needs => reduces power consumption (while ASIC ran all logic at same frequency)

• private memory => cannot share large amounts of data ( “Locality Refactoring ’’ by PE decomposition )

• adapter to communicate over the interconnect 

=> PEs communicate with each other via lower-power circuit-switched network built on an asynchronous communication fabric 

RISC-V Micro-controller: Assembles PEs into pipelines  for each task and interrupts PEs by power overshoot 
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PE decomposition
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PE decomposition

• Complexity depends on how clearly separated the algorithmic phases are 

• PE decomposition: Process that refactoring underlying algorithm of tasks into distinct pieces

 and then implement pieces into distinct hardware blocks ( Processing Elements )
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PE decomposition: Example
LZMA: One algorithm to realize data compression 

=> reduces radio transmission and useful for high-bandwidth brain interaction 
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PE decomposition: Example

Initial Version: implement Algorithm line by line into hardware blocks
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PE decomposition: Example

 Line 5&6: use Markov (MA) chains to calculate the probability of the current input value

 based on observed history ( frequency table )  
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PE decomposition: Example

 Line 7&8: try to pick more efficient encoding of the input signal based on the calculated

probability in the last step 
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PE decomposition: Example

 Line 9: update frequency table
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PE decomposition: Example

• Duplication of hardware component with similar / same functionality

• Line 5,6 & 9 share the same table, but they are separated into two PEs 

Since each PE has private memory=> unnecessary data movement
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PE decomposition: Example

• Bring together phases that operate on the same data structures 

• Separate the PEs => operate independently with minimal data movement 
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PE decomposition: Example

Green part:  operations related to frequency table 
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PE decomposition: Example

Blue part:  operations related to encoder state
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Seizure prediction, Movement intent, Spike detection 

Encryption, Compression ( LZ4, LZMA, DWT) 

Key Mechanism: Recap
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Seizure prediction, Movement intent, Spike detection 

Encryption, Compression ( LZ4, LZMA, DWT) 

Key Mechanism: Recap
②  

③  

④  

⑤  
⑥  

⑦  

① Choose LZMA task and its underlying algorithm to process at first

② &       Implement line 5,6,9 into processing element “MA”③  

④ Implement line 9 into processing element “RC”

⑦ Arrange the resulting PEs together and get the final architecture

⑤ &     The resulting processing elements corresponds 

to square blocks MA and RC in the figure⑧  

⑧ When executing LZMA: configure the corresponding pipeline

⑥  

①  
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Optimization of Processing elements
• Optimization in software level
• Does not change output
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Optimization of Processing elements
• Optimization in software level
• Does not change output

Example: • Wait for all inputs in the block to arrive

• When all inputs arrive, computation occurs in a burst 

• Process data in blocks instead of samples 

• Requires large buffers to sink the bursts, 

or high PE frequency 
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Optimization of Processing elements
• Optimization in software level
• Does not change output

Example:

Optimization: avoid the bursty computation 

• Complete part of computation while reading inputs

• Amount of computation needed in the final step is reduced 

• Power savings of 2.2× over the original algorithm 
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Optimization of Processing elements

• Adapting the precision => reduce power consumption significantly while causing slight error 

Example:

- Unnecessary high resolution by some of the signal processing algorithms (32 bit integers)

- Replace floating point arithmetic with fixed point arithmetic (e.g. in BBF PE) 

- Results in only < 0.1% increase in relative error  and  an order of magnitude reduction in power 
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HALO versus RISC-V and monolithic ASICs   
  

    HALO can satisfy the constraint (red line) for all tasks   
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Power Analysis of HALO

       Compression and seizure prediction: consume the most power   


              Power Consume of each pipeline under 15 mW              
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Power Analysis of HALO

       Compression and seizure prediction: consume the most power   


              Power Consume of each pipeline under 15 mW              


 

  In general: higher operating frequency => higher dynamic power   
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Optimization of PE:  Impact 

• Before optimization: over 15 mW

• After: Spatial reprogramming saves 50% power 

For LZMA ( right diagram ): 

• Spatial reprogramming saves 1.5× power

•   locality refactoring: reduces power further to 11.2mW  

For XCOR ( left diagram ): 
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Conclusion 

HARDWARE-SOFTWARE CO-DESIGN concept: 

•  Provides idea of refactoring the underlying algorithm of each task and implement each piece into a PE 

• Provides idea of optimizing each PE in software level  (spatial programming by XCOR PE)

HALO meets the safety constraint by realizing each task (under 15mW)

HALO realizes many tasks (general-purpose architecture) , not a specific one like in ASIC

HALO is extensible   

• While realizing new BCI tasks: refactor algorithm, design PE for each piece, add new PEs into existing HALO architecture

• Run each PE at minimum clock frequency catered to its need while ASICs run all logic at same frequency=> saves power 

• For each task, controller configures required PEs into pipeline to execute it

• Optimize each PE separately 
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Strengths

Design:

• Great improvement with respect to flexibility  => wider BCI adoption  

• Extensible ( benefit from its modularity ) => can support new tasks by adding PEs into current HALO directly

Paper:

• Can understand the paper without prior background knowledge about BCI

• Highlight the advantage of HALO against BCIs as ASIC through comparison 

• Basic structure and concept of HALO well explained 

• Low power consumption => safe for chronic use
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Weaknesses 

Paper:

• Problems /constraint that HALO meets:  not mentioned in the paper => discussion point 

• Lack of performance evaluation with respect to processing speed ( time to execute a task )


    - Tables focus on evaluation of power consumption and achieved flexibility 
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Discussion 
About HALO: 
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http://www.cs.yale.edu/homes/abhishek/abhishek-micro17.pdfRelated work: 
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Discussion 
About HALO: 

In the paper, author only claims : “ HALO meets a different set of constraints ’’, but doesn’t explain it explicitly 

Constraints that HALO meets / Problems of HALO/ Places that still need to be improved ?

• Need finer grained design than monolithic ASICs

• Does not solve the bottleneck problem of application of BCI in “From computer to brain” direction 

• Power constraint is still a great limitation by designing since HALO belongs to implantable BCI (Key problem of implantable BCI)

About BCI in general: 
Future prospects of brain-computer interface? 

• Fields in which BCI can be applicated? 

• As headsets vs. implantable (as chips embedded on brain) : tradeoff ? 

• Problems/Difficulties that BCI will meet ?

http://www.cs.yale.edu/homes/abhishek/abhishek-micro17.pdfRelated work: 
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Thank you for Listening and Participating 


