BlockHammer: Preventing RowHammer
at Low Cost by Blacklisting Rapidly-
Accessed DRAM Rows

First presented at: 27t |IEEE International Symposium on High-Performance Computer Architecture, 2021

Authors: A. Giray Yaglik¢i:, Minesh Patel’, Jeremie S. Kim?, Roknoddin Azizi, Ataberk Olgun?, Lois Oros?,
Hasan Hassan’, Jisung Park', Konstantinos Kanellopoulos', Taha Shahroodi?, Saugata Ghose?, Onur Mutlu?

1ETH Ziirich 2University of lllinois at Urbana—Champaign

Presented by: Sofie Daniéls

Executive summary

Problem:

e Memory density scaling of DRAM chips causes increasing vulnerability to
RowHammer, but most solutions can’t scale accordingly

e Current solutions often require knowledge of or modification to DRAM internals

Goal:
* Find scalable and efficient way to prevent RowHammer without modifying DRAM chip

Key idea:
e Selectively throttle memory accesses that can cause bit-flips

Mechanism:
e Tracking all row activations and throttline RowHammer unsafe row accesses
 |dentifying and throttling potential attacker threads

Results:
e Hardware complexity: scalable
e Performance & energy consumption: efficient & scalable

Overview

000

BACKGROUND, MECHANISMS & RESULTS
PROBLEM & GOAL IMPLEMENTATION

®© © 0O

SUMMARY STRENGTHS & DISCUSSION
WEAKNESSES

Background, O
Problem & Goal

@ Recap: DRAM

Row Decoder

DRAM Cell
DRAM Bank |

Bitline

| Row Buffer |

Wordline

Access
Transistor

Jojede)

DRAM Cell

DRAM Bank

Bitline

Wordljne

@ DRAM & RowHammer

(Row DecoderJ

: | * | DRAM Row

(Row Buffer J

' DRAM cell size

|j Cause: memory density scaling _
J cell-to-cell spacing

:

ase
I

DRAM Cell

DRAM Bank
Wordline

@ DRAM & RowHammer

(Row Decoder]

4, DRAM cell size

|j Cause: memory density scaling .
J cell-to-cell spacing

RowHammer: rapidly activating (opening) and precharging (closing) DRAM
row can cause bit-flips in nearby rows

DRAM Cell

DRAM Bank

Bitline

Wordline
—

Access
Transistor

DRAM & RowHammer

J' DRAM cell size

J cell-to-cell spacing

(Row Decoder]

J01pede)

u Cause: memory density scaling

RowHammer: rapidly activating (opening) and precharging (closing) DRAM
row can cause bit-flips in nearby rows

| 4 N m - Victim rows
Vhigh Q&% } Aggressor row
o o } Victim rows

b dddd |

DRAM & RowHammer

|/

J' DRAM cell size

Cause: memory density scaling .
J cell-to-cell spacing

(Row Decoder]

DRAM Bank

Bitline

Wordline

DRAM Cell

Wordline

Transistor

RowHammer: rapidly activating (opening) and precharging (closing) DRAM

row can cause bit-flips in nearby rows

—

Access

J01pede)

DRAM & RowHammer

|/

Cause: memory density scaling

J' DRAM cell size

J cell-to-cell spacing

(Row Decoder]

DRAM Bank

Bitline

DRAM Cell

Wordline

Transistor

RowHammer: rapidly activating (opening) and precharging (closing) DRAM
row can cause bit-flips in nearby rows

—

Access

J01pede)

10

DRAM & RowHammer

|/

Cause: memory density scaling

J' DRAM cell size

J cell-to-cell spacing

(Row Decoder]

DRAM Bank

Bitline

Wordline

DRAM Cell

Wordline

Transistor

RowHammer: rapidly activating (opening) and precharging (closing) DRAM
row can cause bit-flips in nearby rows

—

Access

J01pede)

11

DRAM & RowHammer

|/

Cause: memory density scaling

J' DRAM cell size

J cell-to-cell spacing

(Row Decoder]

DRAM Bank

Bitline

DRAM Cell

Wordline

Transistor

RowHammer: rapidly activating (opening) and precharging (closing) DRAM
row can cause bit-flips in nearby rows

—

Access

J01pede)

12

DRAM & RowHammer

|/

Cause: memory density scaling

J' DRAM cell size

J cell-to-cell spacing

(Row Decoder]

DRAM Bank

Bitline

Wordline

DRAM Cell

Wordline

Transistor

RowHammer: rapidly activating (opening) and precharging (closing) DRAM
row can cause bit-flips in nearby rows

—

Access

J01pede)

13

DRAM & RowHammer

|/

Cause: memory density scaling

J' DRAM cell size

J cell-to-cell spacing

(Row Decoder]

DRAM Bank

Bitline

DRAM Cell

Wordline

Transistor

RowHammer: rapidly activating (opening) and precharging (closing) DRAM
row can cause bit-flips in nearby rows

—

Access

J01pede)

14

DRAM & RowHammer

|/

Cause: memory density scaling

J' DRAM cell size

J cell-to-cell spacing

(Row Decoder]

DRAM Bank

Bitline

Wordline

DRAM Cell

Wordline

Transistor

RowHammer: rapidly activating (opening) and precharging (closing) DRAM
row can cause bit-flips in nearby rows

—

Access

J01pede)

15

DRAM & RowHammer

|/

Cause: memory density scaling

J' DRAM cell size

J cell-to-cell spacing

(Row Decoder]

DRAM Bank

Bitline

DRAM Cell

Wordline

Transistor

RowHammer: rapidly activating (opening) and precharging (closing) DRAM
row can cause bit-flips in nearby rows

—

Access

J01pede)

16

DRAM & RowHammer

|/

Cause: memory density scaling

J' DRAM cell size

J cell-to-cell spacing

(Row Decoder]

DRAM Bank

Bitline

Wordline

DRAM Cell

Wordline

Transistor

RowHammer: rapidly activating (opening) and precharging (closing) DRAM
row can cause bit-flips in nearby rows

—

Access

J01pede)

17

DRAM & RowHammer

|/

Cause: memory density scaling

J' DRAM cell size

J cell-to-cell spacing

(Row Decoder]

DRAM Bank

Bitline

DRAM Cell

Wordline

Transistor

RowHammer: rapidly activating (opening) and precharging (closing) DRAM
row can cause bit-flips in nearby rows

—

Access

J01pede)

18

DRAM & RowHammer

|/

Cause: memory density scaling

J' DRAM cell size

J cell-to-cell spacing

(Row Decoder]

DRAM Bank

Bitline

Wordline

DRAM Cell

Wordline

Transistor

RowHammer: rapidly activating (opening) and precharging (closing) DRAM
row can cause bit-flips in nearby rows

—

Access

J01pede)

19

DRAM & RowHammer

|/

Cause: memory density scaling

J' DRAM cell size

J cell-to-cell spacing

(Row Decoder]

DRAM Bank

Bitline

DRAM Cell

Wordline

Transistor

RowHammer: rapidly activating (opening) and precharging (closing) DRAM
row can cause bit-flips in nearby rows

—

Access

J01pede)

20

DRAM & RowHammer

|/

Cause: memory density scaling

J' DRAM cell size

J cell-to-cell spacing

(Row Decoder]

DRAM Bank

Bitline

Wordline

DRAM Cell

Wordline

Transistor

RowHammer: rapidly activating (opening) and precharging (closing) DRAM
row can cause bit-flips in nearby rows

—

Access

J01pede)

21

DRAM & RowHammer

|/

Cause: memory density scaling

J' DRAM cell size

J cell-to-cell spacing

(Row Decoder]

DRAM Bank

Bitline

DRAM Cell

Wordline

Transistor

RowHammer: rapidly activating (opening) and precharging (closing) DRAM
row can cause bit-flips in nearby rows

—

Access

J01pede)

22

@ Current solutions to RowHammer

Increased
refresh
rate

Reactive
refresh

Physical Proactive
isolation throttling

23

@ Current solutions to RowHammer

Increased
refresh
rate

Reactive
refresh

Physical Proactive
isolation throttling

24

Increased

refresh

@ Increased refresh rate

G What: refresh (all!) DRAM rows more often to reduce probability of
successful bitflip

RowHammer (RH) is getting worse: cannot prevent RH without unacceptable
performance loss and power consumption increase

@ Increased refresh rate

@ Increased refresh rate

.fffffffff.

@ Increased refresh rate

@ Current solutions to RowHammer

Increased
refresh
rate

Reactive
refresh

Physical Proactive
isolation throttling

29

Reactive

refresh

Reactive refresh

Q What: observes activations and reacts by refreshing potential victim rows
e.g., TWiCe, PARA, ProHIT, MRLoc, CAT, CBIT, ...

Requires proprietary knowledge on DRAM internals: need to know which rows are
adjacent to aggressor rows

e Faulty rows/cells/columns e Differences in access latency of fastest & slowest cell

Wang, Minghua, et al. "DRAMDig: a knowledge-assisted tool to uncover DRAM address mapping." 2020 57th ACM/IEEE
Design Automation Conference (DAC). IEEE, 2020.

Some are probabilistic methods: do not prevent RowHammer completely

@ Reactive refresh

@ Reactive refresh

@ Reactive refresh

@ Current solutions to RowHammer

Increased
refresh
rate

Reactive
refresh

Physical Proactive
isolation throttling

34

Physical isolation = Already defeated:

PTHammer, opcode flipping, ...
Physical
isolation
What: separates physically sensitive da4

0 e.g., by adding buffer etiveen (ZebRAM)
e.g., by separating m s of user and kernel mode (CATT)

RowHammer is getting worse: we need to provide greater isolation
® wastes memory capacity

® reduces fraction of cells we can protect from RH

Requires proprietary knowledge on DRAM internals: need to know which rows are
adjacent to aggressor rows

e Faulty rows/cells/columns e Differences in access latency of fastest & slowest cell

@ Physical isolation D Gl

Physical Proactive
isolation throttling

Buffer row

Buffer row

Buffer row or guard row or isolation row or ... 36

@ Increased
. . . refrfsh refresh
rate
Physical isolation
isolation throttling

Buffer rows

Buffer rows

37

@ Current solutions to RowHammer

Increased
refresh
rate

Reactive
refresh

Physical Proactive
isolation throttling

38

@ Proactive throttling

Proactive
throttling

e.g., by limiting number of accesses to a row within refresh window

What: limit repeated access to the same row
0 e.g., by setting a minimum access delay

Challenge: performance overhead

Will we delay every access?

Challenge: area overhead

How do you track the number of row activations?

Countdown to next

@ P roa Ctive th rOttl | N g row activation

0:00:00:000

Memory

Controller

Can | get access
torow X?

40

Countdown to next

@ P roa Ctive th rOttl | N g row activation

0:00:00:005

—
Can | get access

torow X?

Memory
Controller

41

@ Current solutions to RowHammer

Increased
refresh
rate

Reactive
refresh

Physical Proactive
isolation throttling

42

@ In search of a better solution

f7\ Efficient: low performance/area overhead
IL" Scalable: we want things to work in the future

Implemented without knowledge of or modification to DRAM chip

@

743
)

A §

I

@ Key idea: selectively throttle RowHammer-like memory accesses by

Tracking activation rates of all rows in an area-efficient way

Using tracking data to throttle RowHammer unsafe activations

Identifying and limiting row activation rates of potential attacker
threads (minimizes performance degradation of benign threads)

Mechanisms &
Implementation

BlockHammer =

& -+ X

RowBlocker AttackThrottler

RowBlocker

Memory
Request
Scheduler

47

RowBlocker BL

RowBlocker BL

(7))
C
< O
© O
T ¢
>
Lo

Goal 1: Track which rows have been activated and how many times

@ Goal 2: Blacklist when activation rate exceeds blacklisting threshold

How can we do this area-efficiently?

49

Recap: Bloom filter

(%]
[
< ©
© 5
I c
>
L

? Question: does a set contain a certain element?
[
m Main components: hash functions + bit array

T . :
Eg Operations: insert, test, clear

50

Recap: Bloom filter

e ? Question: does a set contain a certain element?

Hash
Functions

Element ——p

h, h, hy h, h

Hash
Functions
V
=
=

51

Recap: Bloom filter

e ! Insert 5

(7))
C
< o
© O
T ¢
>
Lo

— {hy, hy, hyot —> [OIGNGTGN oo o oo

h; h, hy hy hs hg h; hg hg hy

(0]
Hash
Functions

52

Recap: Bloom filter

6 ! Insert 5 @ set={5)

(7))
C
< o
© O
T ¢
>
Lo

= {hy hy, hyo} — [ETONTONT0 0T oo T

h; h, hy hy hs hg h; hg hg hy

(0]
Hash
Functions

53

Recap: Bloom filter

6 ! Insert 7 ﬂ Set = {5}

(7))
C
< o
© O
T ¢
>
Lo

- {hy hy, hy — [ERONONET0 0o oo

h; h, hy hy hs hg h; hg hg hy

~J
Hash
Functions

54

Recap: Bloom filter

6 ! Insert 7 0 Set ={5, 7}

(7))
C
< o
© O
T ¢
>
Lo

- {hy hs, h — (RGOSR o oo

h; h, hy hy hs hg h; hg hg hy

~J
Hash
Functions

55

Recap: Bloom filter

6 ! Insert 9 @ set={57}

(7))
C
< o
© O
T ¢
>
Lo

= {hy he o} — [EEETONEE oo T

h; h, hy hy hs hg h; hg hg hy

(o]
Hash
Functions

56

Recap: Bloom filter

6 ! Insert 9 @ set={579}

(7))
C
< o
© O
T ¢
>
Lo

= {hy he o} — [EEETONEE oo T

h; h, hy hy hs hg h; hg hg hy

(o]
Hash
Functions

57

Recap: Bloom filter

6 ! Test 9 0 Set ={5, 7, 9}

(7))
C
< o
© O
T ¢
>
Lo

9 ——p

—p {h,, h;, hg} =———p

Hash
Functions

h; h, hy hy hs hg h; hg hg hy

58

Recap: Bloom filter

6 ! Test 8 0 Set={5, 7, 9} \

Hash
Functions

False Positive!!

1111

—p {h,, hy, h} =——p

h; h, hy hy hs hg h; hg hg hy

(0 0]
Hash
Functions

59

Counting Bloom filter

(7))
C
< O
© O
T ¢
>
Lo

Remember: we want to know how many times a row is activated
(and blacklist it if activation rate > threshold)

@_ Idea: Counting Bloom filter (CBF)
= (tracks number of times an element is inserted into filter)

60

Counting Bloom filter

6 ! Insert 5 @ set={5)

(7))
C
< o
© O
T ¢
>
Lo

= {hy hy, hyo} — [ETONTONT0 0T oo T

h1 h2 h3 h4 h5 h6 h7 h8 h9 h10

(0]
Hash
Functions

61

Counting Bloom filter

6 ! Insert 7 @ set={57)

(7))
C
< o
© O
T ¢
>
Lo

- {hy hy, h — [EROONEEIE o oo

h1 h2 h3 h4 h5 h6 h7 h8 h9 h10

~J
Hash
Functions

62

Counting Bloom filter

6 ! Insert 9 @ set-={579}

(7))
C
< o
© O
T ¢
>
Lo

- {hy he o} — (2N oo T

h1 h2 h3 h4 h5 h6 h7 h8 h9 h10

(o]
Hash
Functions

63

Counting Bloom filter

6 ! Test 9 0 Set = {5, 7, 9}
1

T Here threshold = 0

Hash
Functions

Min {h;;, h;,, h;3} > threshold

I’
2101120011

—p {h,, h;, hg} =———p

h1 hZ h3 h4 h5 h6 h7 h8 h9 h10

(o]
Hash
Functions

64

Counting Bloom filter

Counting Bloom filter

6 | Delete 8 @ set={5709}

Hash
Functions

b4

—p {h,, hy, h} =——p

(0 0]
Hash
Functions

h1 hZ h3 h4 h5 h6 h7 h8 h9 h10

66

Counting Bloom filter

Q ! Delete 8 0 S

b4

—» {h,, h;, h;} =——p

h1 hZ h3 h4 h5 h6 h7 h8 h9 h10

67

Counting Bloom filter

6 | Tests @ set={57,9)
0

T Here threshold = 0

(7))
C
< o
© O
T ¢
>
Lo

Min {h;;, h;,, h;3} > threshold

Pt !
= {hy, hy hy} —> _

h1 hZ h3 h4 h5 h6 h7 h8 h9 h10

(0 0]
Hash
Functions

68

RowBlocker BL
(per DRAM bank)

v Vv A4

MNEN Rl
v v 4
EMEM {

|

Functions

Unified Bloom filter

R

Hash

|

Remember: we want to know how many times a row is activated
(and blacklist it if activation rate > threshold)

But we can’t prevent false negatives
(without compensating for it in terms of space)

‘@' Idea: Unified Bloom filter (UBF)
= (tracks all elements inserted into filter during specific time window)

Unified Bloom filter

(7))
C
< O
© O
T ¢
>
Lo

— Unified Bloom filter: active + passive Bloom filter

Both insert all elements into filter

Only active filter responds to test queries

Active filter clears array at end of specified time interval (= epoch)

Switch roles every epoch

Guarantees no false negatives
when tested for elements inserted in the last two epochs

70

Epoch 1 Epoch 2 Epoch 3

Filter A

Unified Bloom filter lter B

Filter A

hy h, hy hy hg hg h; hg hy hy

Filter B

h; h, hy hy hs hg h; hg hg hy

Hash
Functions
'

71

Epoch 1 Epoch 2 Epoch 3

Filter A

Unified Bloom filter -

6 ! Insert 5 Q Set = {5} Set, = {5} = Set,
Filter A: active

hy h, hy hy hg hg h; hg hy hy

Filter B: passive

= {hy hy, hyo} E— [ETOTTONT0 0T oo T

h; h, hy hy hs hg h; hg hg hy

(0]
Hash
Functions

72

Epoch 1 Epoch 2 Epoch 3

Filter A

Unified Bloom filter -

6 I Insert7 i Set={5,7} Set,={5,7}=Set,
Filter A: active

hy h, hy hy hg hg h; hg hy hy

Filter B: passive

- {hy hy, e} £— (TGOS o oo

h; h, hy hy hs hg h; hg hg hy

~J
Hash
Functions

73

Epoch 1 Epoch 2 Epoch 3

Filter A

Unified Bloom filter -

6 ! Clear A @ Set = {5, 7} Set, ={}, Set; = {5, 7}
Filter A: active

hy h, hy hy hg hg h; hg hy hy

Filter B: passive

h; h, hy hy hs hg h; hg hg hy

Hash
Functions
'

74

Epoch 1 Epoch 2 Epoch 3

Filter A

Unified Bloom filter lter B

6 | Inserto € set={57,9} Set,={9}, Set, ={5,7,9}
Filter A: passive

hy h, hy hy hg hg h; hg hy hy

Filter B: active

— {n he h} £ [EETONETA T o olaar

h; h, hy hy hs hg h; hg hg hy

(o]
Hash
Functions

75

Epoch 1 Epoch 2 Epoch 3

6 | Test7 € set={(579} Set,={9},Set,={5,7,9}
Filter A: passive

hy h, hy hy hg hg h; hg hy hy

Filter A

Unified Bloom filter lter B

Filter B: active

o {h1r h5; he}

~J
Hash
Functions

hll h, hy h, hi hi h, hy hy hy
1 1Y V1
AND

|

1

76

RowBlocker BL
(per DRAM bank)

v Vv A4

MNEN Rl
v v 4
EMEM {

|

Dual counting Bloom filter

R

Hash

Functions

|

Remember: we want to know how many times a row is activated
(and blacklist it if activation rate > threshold))

Idea: dual counting Bloom filter (D-CBF)
@ = unified Bloom filter + counting Bloom filter

—d ® both filters use different hash functions
® hash functions of active filter are altered at end of epoch

Dual counting Bloom filter

Filter A: passive

o) —>

Row h, h, h; h

Address

m

q

Filter B: active

> {hy by -} — (BB

h, h, h, h

b, ¥ b, ¥ ¥

l

Blacklisted 78

RowBlocker

RowBlocker BL

l (per DRAM bank) '

Memory
Request
Scheduler

79

RowBlocker History Buffer (HB)

RowBlocker HB

Row ID Timestamp |Valid bit

@ Goal 1: Track which rows were activated recently

Q Goal 2: Test if current row is one of them

81

RowBlocker HB

RowID| Timestamp |Va|id bit

Y What: circular first-in-first-out (FIFO) queue

4 ; - . .
O (stores record of rows activated in last t,,,, time window)

E Operations: insert, test, (update)

82

RowBlocker HB

Row ID Timestamp | Valid bit
6 B3 Row ID: rank-unique ID for all rows

) Timestamp: current time

+ Valid bit

Head pointer
(oldest entry)

Timestamp Valid bit

Tail pointer
(youngest entry) 8

Row ID Timestamp |Valid bit

@ Now - Timestamp >= ty,,,

v Valid bit: setto 0

Head pointer
(oldest entry)

o~

Timestamp Valid bit

Tail pointer
(youngest entry) &

RowBlocker: is this row activation RH-safe?

RowBlocker: is this row activation RH-safe?

=

RowBlocker: is this row activation RH-safe?

=

RowBlocker: is this row activation RH-safe?

RowBlocker: is this row activation RH-safe?

Memory I

Request
Scheduler

89

BlockHammer =

& -+ X

RowBlocker AttackThrottler

AttackThrottler /

& @

Goal 1: identify potential Goal 2: limit their memory
attacker threads bandwidth usage

91

AttackThrottler

Goal 1: identify potential
attacker threads

1. Identifying (potential) attacker threads ((

O m

How: RowHammer Likelihood Index (RHLI)

blacklisted row activations thread performs to DRAM bank

RHLI =
max # times blacklisted row can be activated in protected system
RHLI=0 More and more
(benign - likely to induce
threads) bit-flip

Quantifies similarity between a given thread’s memory access pattern
and a real RowHammer attack

1. Identifying (potential) attacker threads ((
e _‘@'_ Idea: 2 counters per <thread, bank> pair, used same

< time-interleaving mechanism of D-CBF

2 counters: active + passive counter

e Thread activates blacklisted row in bank = increment both counters

* Only active counter is used to calculate RHLI

e RowBlocker clears active filter in bank = AttackThrottler clears all
active counters in bank and switches roles

Calculates RHLI from rows blacklisted in last two epochs

AttackThrottler /

O

Goal 2: limit their memory
bandwidth usage

95

2. Limiting memory bandwidth usage ((

e Y How: by applying quota to thread’s total in-flight memory requests

Thread keeps activating blacklisted row:
1 RHLI increases - quota decreases

Quota ~ RHLI Thread reaches quota:

can’t make new memory request
(until ongoing request is completed)

Lessens memory bandwidth usage of attacker threads - frees up
memory bandwidth for benign threads

AttackThrottler: 37 goal?

3. Share info with the Operating System ((

A

What: Share <thread, DRAM bank> RHLI values with OS

|r» Goal: mitigate RH attack at software level
e.qg., by killing or descheduling attacker thread

98

Results @

We compare BlockHammer with:

@ N Baseline system: no RH mitigation

m@ Three probabilistic mitigation mechanisms: PARA, ProHIT, MRLoc

D Three deterministic mitigation mechanisms: CBT, TWiCe, Graphene

Results

Q

Hardware complexity analysis Performance & energy consumption
-> scalable & low cost -> scalable & efficient

101

Results

Hardware complexity analysis
-> scalable & low cost

102

1. Hardware complexity analysis

Area
(%CPU)

103

Area
1. Hardware complexity analysis

RowHammer threshold 32K

@ * PARA, PRoHIT, MRLoc - extremely area-efficient (because probabilistic)
* Graphene << TWiCe, BlockHammer < CBT

104

Area
1. Hardware complexity analysis

RowHammer threshold 32K

RowHammer threshold 1K

* Graphene x28.5, TWICE x34.5, CBT x19.7 <> BlockHammer x11.2

* New order: Graphene < BlockHammer << TWiCE << CBT
* BlockHammer is catching up!

105

1. Hardware complexity analysis

‘- Conclusion 1: BlockHammer is more scalable than other
RowHammer mitigation mechanisms

Conclusion 2: Graphene mostly e RowHammer will get worse >
e better than BlockHammer... maybe < 1K? (currently at 9.6K)

for now at least... ® Graphene does not scale as well!

Results

Q

Performance & energy consumption
-» scalable & efficient

107

2. Performance & energy consumption

@ @ Single-core system

performance

108

=== PARA

B ProHit

B2 MRLoc

= CBT

B TWiCe

BE= Graphene
Bl BlockHammer

2. Performance & energy consumption

-
o
N
=
-
Ul

Normalized

Execution Time
(-
o
o

©
oo
a1

(-

O

o0

Normalized

DRAM Energy
-
o
o

L M H L M H
Benign Application Groups Benign Application Groups

BlockHammer has no performance or energy overhead for single-

core benign applications

2. Performance & energy consumption

@ Eight-core system

performance

-
—_—
=
|:: Without RH attack (8B)

With RH attack (7B, 1RH)

110

£

C
O
4

O

-

D

V)

-

®

@

>

o]0

S

D

-

Q
oJ

0

@

-

qu

-

S

@
(

S

Q

P

2

ﬂ-

higher = better lower = better lower = better

higher = better

uonndwnsuo) ABJdud WYHA "WION

:E—O—Q..So_m E:E.XM—)_ "WION

n:uwwnm u_:oE._m_._ "WION

Hd
ydeuo
°DIML
190
D0 I
1IHOJd
VYdvd

Hd
ydeuo
9DIML
190
D0
1IHOJd
vdvd

Hd
ydeuo
9DIML
190
D0
1IHOJd
VdVvd

Hg
ydeun
9DIML
19D
20U
1IHOJd
YdVvd

>
o7 o)
S
()
c
()
©
c
©
()
O
c
©
£
<
L2
L
()
o
()
2
=
o
()
Q.
£
o
o
7
©
i -
|
()
S
S
©
L
=z
O
o
(a)

O T N O Lu

ccececao

~ =~ _..U o
dnpaads pajybiap "wioN
Joeny jussald Yoeny

JowweHmoy oN

JawweHmoy

o
c
)
wv
)
p &
Q.

L

=
I
(1)

o
o
©
@)
c
c
Q

m
c

O
)
Q.
&
-
(7))
c
@)
(&)

erformance & energy consumption

P

2

lower = better

uonndwnsuo) Abisug

lower = better

UMOPMOI|S

' 1 ! 1
wnuwixep "WJIoN

higher = better

- dnpaads >1uo

! | ! 1
wJeH "WJIoN

dnpaads pajybiap "wioN

Hd
ydeuo
°DIML
190
D0 I
1IHOJd
VYdvd

IWVdQ "W.IoN

Hd
ydeuo
9DIML
190
D0
1IHOJd
vdvd

Hd
ydeuo
9DIML
190
D0
1IHOJd
VdVvd

Hg
ydeun
9DIML
19D
20U
1IHOJd
YdVvd

Joeny 7

JowweHmoy oN

JuUSsald Moenvy
JoWWeHMOY

7))
c
2
=
(4°)
B
a
Q.
©
c
20
c
Q
o)
e
O
)
(&)
c
©
&
|
(@
[P
| &
)
Q.
| &
Q
=
20
=
i -
O
-
S
7,]
(g°)
i -
L
()
&
&
©
- -
-
&)
o
(aa)]

=
c
Q
v
Q
|
Q.
gt
4
@
()
)
)
©
c
()
=
S
c
O
)
Q.
&
-
(7))
c
@)
@
>
o0
P
()
c
()]
<
(a'd
()
L &
()
S
0
©
c
©

2. Performance & energy consumption

o "

A Scalability

=» \Without RH attack
- \With RH attack

113

2. Performance & energy consumption

——- PARA —¥— TWiCe ~—4— Graphene —&— BlockHammer

i

o
o0
o

No RowHammer
Attack
= =
o N
o o

Norm. DRAM Energy Consumption

higher = better

higher = better

lower = better

lower = better

Norm. Weighted Speedup
Norm. Harmonic Speedup

Norm. Maximum Slowdown

RowHammer
Attack Present

8K
4K
2K
1K
8K
4K
2K
1K
2K
6K
8K
4K
2K
1K
8K
4K
2K
1K

32K
16K
32K
16K
32K
16K

RowHammer Threshold (Ngy)

BlockHammer has negligible performance and energy consumption

overheads and still does if RH worsens (when no attack is present)

2. Performance & energy consumption

——- PARA —¥— TWiCe ~—4— Graphene —&— BlockHammer

| -
: 5
Q o c B
c¥| S S s o
Is| T T o £
== | @ @) 3
o< Q Q ; 7]
o Q. o) c
o n wn ﬁ 8
< o S|
- 8 higher = better £ higher = better £ lower = better > lower = better
< 2.00 o 3 o
- £ £]
LC — L-
ev | 9 © % o
€Y |3 1.50- T o
EE] . s =
T x € 1.00 £ £ é
5E | 2 2 5 -
n:z 0-50 1 1 1 1 1 1 1 Ll 1 1 1 1 z I I 1 L 1 Ll E. I I I I I 1
Y VY YVYYY ¥Y¥VY¥YYYY ¥Y¥YVY¥V¥VY¥VYEVYVYYYYYV
N WO O <+ N N WO o <t N N OO < T NCHQMN OO0 < N
m m m zm.—|

RowHammer Threshold (Ngy)

BlockHammer has significantly better performance and lower

energy consumption as RH worsens (when attack is present)

2. Performance & energy consumption

Conclusion 1: When the system is not under attack,

@ e BlockHammer is competitive with the other state-of-the-art

mechanisms, also at the lowest RH thresholds

Conclusion 2: In the presence of a RH attack, BlockHammer has
f significantly better performance and lower energy consumption than
all other state-of-the-art mechanisms, even at lower RH thresholds

Summary &

Summary & Conclusion

Problem:

e Memory density scaling of DRAM chips causes increasing vulnerability to RowHammer, but most
solutions can’t scale accordingly

e Current solutions often require knowledge of or modification to DRAM internals

Goal:

* Find a scalable and efficient way to prevent RowHammer, without knowledge of or modification to
DRAM internals

Mechanisms:

* RowBlocker: tracking all row activations efficiently (by using Bloom filters) and throttling
RowHammer unsafe row accesses

e AttackThrottler:identifying (RHLI) and throttling (quota) potential attacker threads

Results:

e Hardware complexity: most scalable solution (Graphene currently more efficient but not as scalable)
* Performance & energy: | No RowHammer attack: competitive, even at lower RH thresholds
RowHammer attack: significantly better than all other solutions

118

Strengths & o
Weaknesses

Strengths

* BlockHammer still scales well when DRAM chips are getting more
vulnerable to RowHammer

* Implementation requires no knowledge of or modifications to DRAM
internals (completely implemented in memory controller)

Makes distinction between benign applications and potential attacks

* Introduces many new concepts and even more possible improvements

* Innovative idea - groundwork for new type of RowHammer mitigation:
proactive throttling

Weaknesses

 Completely implemented in memory controller - cannot be
implemented in already manufactured processor chips

* Some empirically-determined parameters (e.g., Bloom filter size)
 Partially determines false positive rate - room for improvement!

e Evaluation is simulated on DDR4-based memory subsystem - what about
LPDDR4?

e Results probably similar

* And hardware designers will redo it anyway...

Discussion @

Discussion

* Should we always aim for deterministic solutions or are probabilistic
methods not that bad?

* Can we lower BlockHammer’s hardware complexity by adopting a
probabilistic approach? What would you change in BlockHammer to
achieve that?

e Remember:
BlockHammer = RowBlocker (D-CBF + HB) + AttackThrottler (RHLI + quota)

* Is it a good idea to modify BlockHammer into a probabilistic
mitigation mechanism? Why (not)?

* Are there other ways to reduce BlockHammer’s hardware

@ complexity?

Discussion

* Once we can quickly reverse-engineer DRAM address mappings, will
BlockHammer still be the best approach?

 What would be the ideal RowHammer mitigation mechanism and
why?

124

Discussion

* Do you think we can combine (parts of) BlockHammer with other
mitigation mechanisms? What would be the (dis)advantages?
e Remember:
BlockHammer = RowBlocker (D-CBF + HB) + AttackThrottler (RHLI + quota)

* Do you have any other ideas to improve BlockHammer?

refreshing all DRAM rows = Increased : = victim row refresh
Reactive

- high performance loss refresh ofresh - challenge: finding victim rows
& energy consumption rate - some probabilistic methods

using buffer/isolation rows =

L . : : <& BlockHammer
- challenge: finding victim rows Physical Proactive
e - RH gets worse - need more isolation § throttling

isolation
125

Discussion

e What can we do with the RHLI at the software level?

e E.g. killing or descheduling a thread
* What problems would you encounter?

126

Backup Slides

Insert

Row ID Timestamp | Valid bit
6 B3 Row ID: rank-unique ID for all rows

) Timestamp: current time

v Valid bit: setto 1

Head pointer
(oldest entry)

Timestamp Valid bit

\ Tail pointer
(youngest entry) 128

Test: row recently activated?

Row ID Timestamp |Valid bit
6 BE Row ID == to be accessed row

@ Timestamp

We
Wa

nt IOW Iatenc -
 Valid bit == y:

Head pointer
(oldest entry)

o~

Timestamp Valid bit

\ Tail pointer
(youngest entry) 129

Test: row recently activated?

Row ID Timestamp |Valid bit
6 BE Row ID == to be accessed row

@ Timestamp Store row addresses
in CAM

« Valid bit ==

Head pointer
(oldest entry)

o~

Timestamp Valid bit

\ Tail pointer
(youngest entry) 130

Comparison

* Compare BlockHammer with

* (Baseline system: no RH mitigation)
@ * 3 probabilistic mitigation mechanisms
* PARA

* ProHIT
* MRLoc

* 3 deterministic mitigation mechanisms
e CBT
* TWiCe
* Graphene

131

PARA: definition

* = Probabilistic Adjacent Row Activation

* Row gets activated - adjacent rows get activated (= refreshed) with
probability p

132

PARA: mechanism

e Remember: Reactive refresh

Vhigh \

133

PARA: mechanism

e Remember: Reactive refresh

134

PARA: mechanism

e Remember: Reactive refresh

135

PARA: mechanism

e Remember: Reactive refresh

REFRESH

with probability p

REFRESH
with probability p

136

PARA: mechanism

e Remember: Reactive refresh

REFRESH

with probability p

REFRESH
with probability p

137

PARA: mechanism

e Remember: Reactive refresh

REFRESH

with probability p

REFRESH
with probability p

138

PARA: weaknesses

* Cannot prevent bit-flips with 100% certainty (probabilistic!)

* Performance - vulnerable to applications with mix of few frequently
activated rows and many randomly activated ones (often the case in
memory-intensive programs) - solution: ProHIT

* Knowledge on in-DRAM mapping needed

139

ProHIT: definition

e Based on PARA

* Selects victim rows by considering the access patterns of applications
(on top of probabilistic selection) - done by Probabilistic History
Table

* Key operations: row activation -
* Probabilistic table promotion (from cold to hot)
* Probabilistic promotion (from hot to hotter, i.e. higher priority)
* Probabilistic insertion (into highest priority cold table slot)
* Probabilistic eviction (one of the cold entries is evicted)

140

ProHIT: mechanism

@ Activate row K Row C
Row D

Row E

Highest priority
A

a|qe1 10H

3|qe1 p|od

Lowest priority

141

ProHIT: mechanism

@ Activate row K Row C
\ Row D
In.se" tro Row E

142

ProHIT: mechanism

@ Activate row K Row C
\ Row D
In.se" tro Row E

‘Randomly’ select cold
= row to be evicted
(influenced by priority)

Ility P Row F

143

ProHIT: mechanism

@ Activate row K Row C
\ Row D
In.se" tro Row J

144

ProHIT: mechanism

@ Activate row |

Row C

Row D
Row J

145

ProHIT: mechanism

@ Activate row | E—
\ Row D

r
®Mote , Row J

146

ProHIT: mechanism

- Promote to ‘random’
Activate row | hot entry (with
(~ Row C probability based on

\ > Row D) priority)
r —
2Mote ro : \ RowJ 7

t Row E

147

ProHIT: mechanism

- Promote to ‘random’
hot entry (with

Activate row | R
—~ — DL probability based on
Promote rowJ with Row C priority)
probability P Row D
Row E

148

After specific

ProHIT: mechanisMmime interval

i

——

invalidate entry *
refresh highest”
priority row

Row J

Row C
Row D

149

ProHIT: mechanism

i

——

Invalidate entry ¥
refresh highest-
priority row

Row J

Row C
Row D

150

ProHIT: weaknesses

e Still cannot prevent bit-flips with 100% certainty (probabilistic!)

* But at least we have better performance!
* Knowledge on in-DRAM mapping still needed

151

MRLoc: definition

* Based on PARA
@ * Mitigating Row-hammering based on memory Locality

e Optimizes refresh probability based on memory locality

* If a certain row has been accessed recently, a higher probability is assigned to
its corresponding victim rows

* Victim rows are stored in queue

152

MRLoc: mechanism

Queue | | Queue [Queue]
Front | 0x00ab 0x00ab 0x0024 A\
0x0024 0x0024 Ox001c
0x001c @ Dxﬂﬂlc 0x00ft
0x00ff 0x00ff H1 0x0004
Rear | 0x0004 0x0004 0x00£f —

Probability
Access: 0x00fe l:alculaugn Address
Victim: 0x00ff I
ictim | 0x00fF |/ Shift

From J. M. You and J.-S. Yang, “MRLoc: Mitigating Row-Hammering Based on Memory Locality,” in DAC, 2019.

MRLoc: mechanism

ant‘ 0x0024 0x0024 | Miss 0x001c 7\

0x001c 0x001c 0x00ft
0x00ff 0x00ft » 0x0004
0x0004 0x0004 0x00£ff

Rear | 0x00ff 0x00ff 0x00fd L

Probability
Access: 0x00fe Calculation Address
| Victim: 0x00fd | oxoofd W Shift

From J. M. You and J.-S. Yang, “MRLoc: Mitigating Row-Hammering Based on Memory Locality,” in DAC, 2019.

MRLoc: mechanism

0x00fF : Hit : [oxo0004 A

0x0004 0x0004 0x00ff
0x00fF @ 0x00ff | Hit » | 0x00fd
0x00fd

0x0101

0x0101 0x0101 0x00ff i
Probability
Access: 0x0100 Calculation Address
Victim: 0x00ff 0xO00fT Shift

From J. M. You and J.-S. Yang, “MRLoc: Mitigating Row-Hammering Based on Memory Locality,” in DAC, 2019.

MRLoc: weaknesses

* Cannot prevent bit-flips with 100% certainty (probabilistic!)

* Even worse performance now ...
* Knowledge on in-DRAM mapping needed

156

Comparison

* Compare BlockHammer with

e (Baseline system: no RH mitigation)
@ e 3 probabilistic mitigation mechanisms
* PARA

* ProHIT
* MRLoc

* 3 deterministic mitigation mechanisms
e CBT
* TWiCe
* Graphene

157

CBT: definition

e = Counter-Based Tree

* Tree of counters that count row activations in disjoint memory
regions

 Whenever parent node reaches certain threshold, memory region is halved
(one half for each child)

* Predefined threshold for each level

* Leaf node reaches threshold: counter reset + refresh of respective memory
region

158

CBT: mechanism 1,32

@ Threshold =2

159

CBT: mechanism 1,32

@ Threshold =2

Activate row 1

160

CBT: mechanism 1,32

/ @ Threshold = 2
Activate row 1

161

CBT: mechanism 1,32

@ Threshold =2

Activate row 4

162

CBT: mechanism 1,32

/ @ Threshold = 2
Activate row 4

163

CBT: mechanism 1,32

Threshold = 2

[1, 16] [17, 32]
@ Threshold =5

164

CBT: mechanism 1,32

Threshold = 2

Activate row 4

@ [1, 16] [17, 32]
Threshold =5

165

CBT: mechanism 1,32

Threshold = 2

Activate row 4

@ \ [1, 16] [17, 32]

Threshold =5

166

CBT: mechanism 1,32

Threshold = 2

And soon ...

Threshold =5

Threshold = 7

167

CBT: mechanism 1,32

Threshold = 2

Reset & Refresh!!

Threshold =5

Threshold =7

168

CBT: mechanism 1,32

@ Threshold =2

At end of refresh period

@ (e.g. 64 ms)

169

CBT: weaknesses

* Area vs. performance trade-off

 More levels means smaller memory region size and thus more correct
refreshes (better performance), but at higher area cost

* Assumes rows are contiguous but might not be the case - DRAM
remaps addresses internally

170

TWiCe: definition
e = Time Window Counter based row refresh

* Maximum number of DRAM ACTs over tq¢qy is bounded
* Counter table: | Valid bit | Row address | Activation count | Life

e Counter table + counter logic

* Activation count: records number of activations to the target row address
* Valid bit: is entry valid?

 Life: # consecutive pruning intervals for which entry stays valid in the table

171

TWiCe: mechanism

* Row activation
* Not in table - allocate entry

valid row_addr act_cnt life valid row_addr act_cnt life

0x50 |32,767 0x50 | 32,767
1 0xCO0 7 2 1 0xCO 7 2
0 0xA0 2 1 1 0xFO 1 1
0 0

—— |
CMD/ADDR ACT/0xFO0 | ACT/0xCO

(D Address not found.
New entry inserted.

From E. Lee et al., “TWiCe: Preventing Row-Hammering by Exploiting Time Window Counters,” in4SCA, 2019.

TWiCe: mechanism

* Row activation
* Not in table - allocate entry
* |n table = increment activation count

valid row_addr act_cnt life

ACT/0x50

(@ Address found.
act_cnt incremented.

From E. Lee et al., “TWiCe: Preventing Row-Hammering by Exploiting Time Window Counters,” in4SCA, 2019.

TWiCe: mechanism

e Activation count reaches threshold = refresh victim rows & set valid
bitto O

valid row_addr act_cnt life

\

(3 thru reached.
Victim rows refreshed.

From E. Lee et al., “TWiCe: Preventing Row-Hammering by Exploiting Time Window Counters,” in45CA, 2019.

TWiCe: mechanism

e After each pruning interval

* All entries with activation count < th,, x life - removed (NOT refreshed)
* Activation count = th;, x life - increment life

valid row_addr act_cnt life
0 | oxs0 |32,768] 3 |

1 0xCo0 8 3
[OxFO 1 1
0
=
Time

@ Table updated
during auto-refresh.

From E. Lee et al., “TWiCe: Preventing Row-Hammering by Exploiting Time Window Counters,” in4SCA, 2019.

TWiCe: weaknesses

 Relatively large area overhead as RH gets worse! (in comparison to BH
and Graphene)

@ * Needs to identify victim rows = requires knowledge of DRAM
internals!

176

Graphene: definition

* Misra-Gries algorithm

* Solves frequent elements problem
@ * Find all elements in a (finite!) stream that occur more than a given fraction of

the time
* Here: elements = memory requests

177

Graphene: mechanism

e Activate row
e Row in table = increase count

Row Address Count Row Address Count

0x1010 5 0x1010 6
0x2020 7 - 0x2020 7
0x3030 3 0x1010 0x3030 3

 spilover court [ERNS | spitover count RN

From Y. Park et al., “Graphene: Strong yet Lightweight Row Hammer Protection,” in MICRO, 2020

Graphene: mechanism

e Activate row

* Row not in table AND spillover count < count of all entries = increment
spillover count

Row Address Count Row Address Count

0x1010 6 0x1010 6
0x2020 7 - 0x2020 7
0x3030 3 0x4040 0x3030 3

| spitover count RN

E

From Y. Park et al., “Graphene: Strong yet Lightweight Row Hammer Protection,” in MICRO, 2020

Graphene: mechanism

e Activate row

* Row not in table AND spillover count >= count of some entry X - replace
entry X with new row + increment count of that row

Row Address Count Row Address Count

0x1010 6 0x1010 6
0x2020 7 - 0x2020 7
0x3030 3 0x5050 0x5050 4

E

 spilover court SRS

From Y. Park et al., “Graphene: Strong yet Lightweight Row Hammer Protection,” in MJICRO, 2020

Graphene: mechanism

e Count == (multiple of) threshold - refresh victim rows

From Y. Park et al., “Graphene: Strong yet Lightweight Row Hammer Protection,” in MICRO, 2020

Graphene: weaknesses

* Needs to identify victim rows - requires knowledge of DRAM
internals

Currently one of the best solutions (has good performance and low
area overhead)

182

1. Hardware complexity analysis

Nru=32K*

Mitigation Mechanism SRAM CAM Area Access Energy Static Power
KB KB mm? % CPU (pl) (mW)

BlockHammer 5148 1.73 0.14 0.06 20.30 22.27
Dual counting Bloom filters 48.00 - 0.11 0.04 18.11 19.81
H3 hash functions - - <001 < (.01 - -
Row activation history buffer 1.73 1.73 0.03 0.01 1.83 2.05
AttackThrottler counters 1.75 - <001 < (.01 0.36 0.41
PARA [73] - - <0.01 - - -
ProHIT [137]* - 0.22 <0.01 <0.01 3.67 0.14
MrLoc [161]* - 047 <0.01 <0.01 4.44 0.21
CBT [132] 16.00 8.50 0.20 0.08 9.13 35.55
TWICE [84] 23.10 14.02 0.15 0.06 7.99 21.28
Graphene [113] - 5.22 0.04 0.02 40.67 3.11

Neu=1K

SRAM CAM Area Access Energy Static Power

KB KB mm? % CPU (pd) (mW)

441.33 55.58 1.57 0.64 99.04 220.99

384.00 - 0.74 0.30 86.29 158 .46

- - <001 <0.01 - -

55.58 55.58 0.83 0.34 12.99 62.12

1.75 - <001 <0.01 0.36 0.41

- - <0.01 - - -

X X X X X X

* X * X * X

51200 272.00 3.95 L.60 127.93 535.50

738.32 448.27 5.17 2.10 124.79 631.98 183
- 166.03 1.14 0.46 917.55 93.96

1. Hardware complexity analysis

Area
(%CPU)

184

1. Hardware complexity analysis

Area
(%CPU)

185

Area
1. Hardware complexity analysis

RowHammer threshold 32K

@ * PARA, PRoHIT, MRLoc - extremely area-efficient (because probabilistic)
* Graphene << TWiCe, BlockHammer < CBT - still relatively area-efficient

186

Area
1. Hardware complexity analysis

RowHammer threshold 32K

RowHammer threshold 1K

* Graphene x28.5, TWICE x34.5, CBT x19.7 <> BlockHammer x11.2

* New order: Graphene < BlockHammer << TWiCE << CBT
* BlockHammer is catching up!

187

1. Hardware complexity analysis

Area
(%CPU)

188

1. Hardware complexity analysis

RowHammer threshold 32K

RowHammer threshold 1K

* New order: Graphene < BlockHammer << TWiCE << CBT
* BlockHammer is catching up!

189

1. Hardware complexity analysis

Area
(%CPU)

Access
Energy

190

1. Hardware complexity analysis
RowHammer threshold 32K

RowHammer threshold 1K

* New order: BlockHammer <<< TWICE, CBT << Graphene
* BlockHammer is most efficient!

191

1. Hardware complexity analysis

Area
(%CPU)

Static
Power

192

1. Hardware complexity analysis
RowHammer threshold 32K

RowHammer threshold 1K

* New order: Graphene << BlockHammer <<< TWICE << CBT
* BlockHammer is catching up!

193

2. Performance & energy consumption

* Setup: DDR4 memory

Processor 3.2GHz, {1,8} core, 4-wide issue, 128-entry instr. window
@ Last-Level Cache 64-byte cache line, 8-way set-associative, 16 MB
64-entry each read and write request queues; Scheduling
policy: FR-FCFS [122, 164]; Address mapping: MOP [60]
DDR4, 1 channel, 1 rank, 4 bank groups, 4 banks/bank
group, 64K rows/bank

Memory Controller

Main Memory

Table 5: Simulated system configuration.

194

