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Executive summary

Problem:

e Memory density scaling of DRAM chips causes increasing vulnerability to
RowHammer, but most solutions can’t scale accordingly

e Current solutions often require knowledge of or modification to DRAM internals

Goal:
* Find scalable and efficient way to prevent RowHammer without modifying DRAM chip

Key idea:
e Selectively throttle memory accesses that can cause bit-flips

Mechanism:
e Tracking all row activations and throttline RowHammer unsafe row accesses
 |dentifying and throttling potential attacker threads

Results:
e Hardware complexity: scalable
e Performance & energy consumption: efficient & scalable
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Increased

refresh

@ Increased refresh rate

G What: refresh (all!) DRAM rows more often to reduce probability of
successful bitflip

RowHammer (RH) is getting worse: cannot prevent RH without unacceptable
performance loss and power consumption increase
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Reactive

refresh

Reactive refresh

Q What: observes activations and reacts by refreshing potential victim rows
e.g., TWiCe, PARA, ProHIT, MRLoc, CAT, CBIT, ...

Requires proprietary knowledge on DRAM internals: need to know which rows are
adjacent to aggressor rows

e Faulty rows/cells/columns e Differences in access latency of fastest & slowest cell

Wang, Minghua, et al. "DRAMDig: a knowledge-assisted tool to uncover DRAM address mapping." 2020 57th ACM/IEEE
Design Automation Conference (DAC). IEEE, 2020.

Some are probabilistic methods: do not prevent RowHammer completely
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Physical isolation = Already defeated:

PTHammer, opcode flipping, ...
Physical
isolation
What: separates physically sensitive da4

0 e.g., by adding buffer etiveen (ZebRAM)
e.g., by separating m s of user and kernel mode (CATT)

RowHammer is getting worse: we need to provide greater isolation
® wastes memory capacity

® reduces fraction of cells we can protect from RH

Requires proprietary knowledge on DRAM internals: need to know which rows are
adjacent to aggressor rows

e Faulty rows/cells/columns e Differences in access latency of fastest & slowest cell
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@ Proactive throttling

Proactive
throttling

e.g., by limiting number of accesses to a row within refresh window

What: limit repeated access to the same row
0 e.g., by setting a minimum access delay

Challenge: performance overhead

Will we delay every access?

Challenge: area overhead

How do you track the number of row activations?
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@ In search of a better solution

f7\ Efficient: low performance/area overhead
IL" Scalable: we want things to work in the future

Implemented without knowledge of or modification to DRAM chip

@
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@ Key idea: selectively throttle RowHammer-like memory accesses by

Tracking activation rates of all rows in an area-efficient way

Using tracking data to throttle RowHammer unsafe activations

Identifying and limiting row activation rates of potential attacker
threads (minimizes performance degradation of benign threads)
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Goal 1: Track which rows have been activated and how many times

@ Goal 2: Blacklist when activation rate exceeds blacklisting threshold

How can we do this area-efficiently?
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Recap: Bloom filter
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Counting Bloom filter
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Remember: we want to know how many times a row is activated
(and blacklist it if activation rate > threshold)

@_ Idea: Counting Bloom filter (CBF)
= (tracks number of times an element is inserted into filter)
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Counting Bloom filter
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Remember: we want to know how many times a row is activated
(and blacklist it if activation rate > threshold)

But we can’t prevent false negatives
(without compensating for it in terms of space)

‘@' Idea: Unified Bloom filter (UBF)
= (tracks all elements inserted into filter during specific time window)
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— Unified Bloom filter: active + passive Bloom filter

Both insert all elements into filter

Only active filter responds to test queries

Active filter clears array at end of specified time interval (= epoch)

Switch roles every epoch

Guarantees no false negatives
when tested for elements inserted in the last two epochs
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Remember: we want to know how many times a row is activated
(and blacklist it if activation rate > threshold))

Idea: dual counting Bloom filter (D-CBF)
@ = unified Bloom filter + counting Bloom filter

—d ® both filters use different hash functions
® hash functions of active filter are altered at end of epoch
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RowBlocker History Buffer (HB)




RowBlocker HB

Row ID Timestamp |Valid bit

@ Goal 1: Track which rows were activated recently

Q Goal 2: Test if current row is one of them
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RowBlocker HB

RowID| Timestamp |Va|id bit

Y What: circular first-in-first-out (FIFO) queue

4 ; - . .
O (stores record of rows activated in last t,,,, time window)

E Operations: insert, test, (update)
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RowBlocker HB

Row ID Timestamp | Valid bit
6 B3 Row ID: rank-unique ID for all rows

) Timestamp: current time

+ Valid bit

Head pointer
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Row ID Timestamp |Valid bit

@ Now - Timestamp >= ty,,,

v Valid bit: setto 0

Head pointer
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RowBlocker: is this row activation RH-safe?
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RowBlocker: is this row activation RH-safe?




RowBlocker: is this row activation RH-safe?
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Goal 1: identify potential Goal 2: limit their memory
attacker threads bandwidth usage
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AttackThrottler

Goal 1: identify potential
attacker threads




1. Identifying (potential) attacker threads ((

O m

How: RowHammer Likelihood Index (RHLI)

# blacklisted row activations thread performs to DRAM bank

RHLI =
max # times blacklisted row can be activated in protected system
RHLI=0 More and more
(benign - likely to induce
threads) bit-flip

Quantifies similarity between a given thread’s memory access pattern
and a real RowHammer attack



1. Identifying (potential) attacker threads ((
e _‘@'_ Idea: 2 counters per <thread, bank> pair, used same

< time-interleaving mechanism of D-CBF

2 counters: active + passive counter

e Thread activates blacklisted row in bank = increment both counters

* Only active counter is used to calculate RHLI

e RowBlocker clears active filter in bank = AttackThrottler clears all
active counters in bank and switches roles

Calculates RHLI from rows blacklisted in last two epochs



AttackThrottler /
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Goal 2: limit their memory
bandwidth usage
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2. Limiting memory bandwidth usage ((

e Y How: by applying quota to thread’s total in-flight memory requests

Thread keeps activating blacklisted row:
1 RHLI increases - quota decreases

Quota ~ RHLI Thread reaches quota:

can’t make new memory request
(until ongoing request is completed)

Lessens memory bandwidth usage of attacker threads - frees up
memory bandwidth for benign threads



AttackThrottler: 37 goal?



3. Share info with the Operating System ((

A

What: Share <thread, DRAM bank> RHLI values with OS

|r» Goal: mitigate RH attack at software level
e.qg., by killing or descheduling attacker thread
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Results @



We compare BlockHammer with:

@ N Baseline system: no RH mitigation

m@ Three probabilistic mitigation mechanisms: PARA, ProHIT, MRLoc

D Three deterministic mitigation mechanisms: CBT, TWiCe, Graphene
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Hardware complexity analysis Performance & energy consumption
-> scalable & low cost -> scalable & efficient
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Results

Hardware complexity analysis
-> scalable & low cost
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1. Hardware complexity analysis

Area
(%CPU)
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Area
1. Hardware complexity analysis

RowHammer threshold 32K

@ * PARA, PRoHIT, MRLoc - extremely area-efficient (because probabilistic)
* Graphene << TWiCe, BlockHammer < CBT
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Area
1. Hardware complexity analysis

RowHammer threshold 32K

RowHammer threshold 1K

* Graphene x28.5, TWICE x34.5, CBT x19.7 <> BlockHammer x11.2

* New order: Graphene < BlockHammer << TWiCE << CBT
* BlockHammer is catching up!
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1. Hardware complexity analysis

‘- Conclusion 1: BlockHammer is more scalable than other
RowHammer mitigation mechanisms

Conclusion 2: Graphene mostly e RowHammer will get worse >
e better than BlockHammer... maybe < 1K? (currently at 9.6K)

for now at least... ® Graphene does not scale as well!
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Performance & energy consumption
-» scalable & efficient
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2. Performance & energy consumption

@ @ Single-core system

performance
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=== PARA

B ProHit

B2 MRLoc

= CBT

B TWiCe

BE= Graphene
Bl BlockHammer

2. Performance & energy consumption
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Execution Time
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o
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©
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Normalized

DRAM Energy
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L M H L M H
Benign Application Groups Benign Application Groups

BlockHammer has no performance or energy overhead for single-

core benign applications




2. Performance & energy consumption

@ Eight-core system

performance

-
—_—
=
|:: Without RH attack (8B)

With RH attack (7B, 1RH)
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2. Performance & energy consumption

o "

A Scalability

=» \Without RH attack
- \With RH attack
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2. Performance & energy consumption

——- PARA —¥— TWiCe ~—4— Graphene —&— BlockHammer

i

o
o0
o

No RowHammer
Attack
= =
o N
o o

Norm. DRAM Energy Consumption

higher = better

higher = better

lower = better

lower = better

Norm. Weighted Speedup
Norm. Harmonic Speedup

Norm. Maximum Slowdown

RowHammer
Attack Present

8K
4K
2K
1K
8K
4K
2K
1K
2K
6K
8K
4K
2K
1K
8K
4K
2K
1K

32K
16K
32K
16K
32K
16K

RowHammer Threshold (Ngy)

BlockHammer has negligible performance and energy consumption

overheads and still does if RH worsens (when no attack is present)



2. Performance & energy consumption
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RowHammer Threshold (Ngy)

BlockHammer has significantly better performance and lower

energy consumption as RH worsens (when attack is present)



2. Performance & energy consumption

Conclusion 1: When the system is not under attack,

@ e BlockHammer is competitive with the other state-of-the-art

mechanisms, also at the lowest RH thresholds

Conclusion 2: In the presence of a RH attack, BlockHammer has
f significantly better performance and lower energy consumption than
all other state-of-the-art mechanisms, even at lower RH thresholds



Summary &



Summary & Conclusion

Problem:

e Memory density scaling of DRAM chips causes increasing vulnerability to RowHammer, but most
solutions can’t scale accordingly

e Current solutions often require knowledge of or modification to DRAM internals

Goal:

* Find a scalable and efficient way to prevent RowHammer, without knowledge of or modification to
DRAM internals

Mechanisms:

* RowBlocker: tracking all row activations efficiently (by using Bloom filters) and throttling
RowHammer unsafe row accesses

e AttackThrottler:identifying (RHLI) and throttling (quota) potential attacker threads

Results:

e Hardware complexity: most scalable solution (Graphene currently more efficient but not as scalable)
* Performance & energy: | No RowHammer attack: competitive, even at lower RH thresholds
RowHammer attack: significantly better than all other solutions
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Strengths & o
Weaknesses



Strengths

* BlockHammer still scales well when DRAM chips are getting more
vulnerable to RowHammer

* Implementation requires no knowledge of or modifications to DRAM
internals (completely implemented in memory controller)

Makes distinction between benign applications and potential attacks

* Introduces many new concepts and even more possible improvements

* Innovative idea - groundwork for new type of RowHammer mitigation:
proactive throttling



Weaknesses

 Completely implemented in memory controller - cannot be
implemented in already manufactured processor chips

* Some empirically-determined parameters (e.g., Bloom filter size)
 Partially determines false positive rate - room for improvement!

e Evaluation is simulated on DDR4-based memory subsystem - what about
LPDDR4?

e Results probably similar

* And hardware designers will redo it anyway...



Discussion @



Discussion

* Should we always aim for deterministic solutions or are probabilistic
methods not that bad?

* Can we lower BlockHammer’s hardware complexity by adopting a
probabilistic approach? What would you change in BlockHammer to
achieve that?

e Remember:
BlockHammer = RowBlocker (D-CBF + HB) + AttackThrottler (RHLI + quota)

* Is it a good idea to modify BlockHammer into a probabilistic
mitigation mechanism? Why (not)?

* Are there other ways to reduce BlockHammer’s hardware

@ complexity?



Discussion

* Once we can quickly reverse-engineer DRAM address mappings, will
BlockHammer still be the best approach?

 What would be the ideal RowHammer mitigation mechanism and
why?
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Discussion

* Do you think we can combine (parts of) BlockHammer with other
mitigation mechanisms? What would be the (dis)advantages?
e Remember:
BlockHammer = RowBlocker (D-CBF + HB) + AttackThrottler (RHLI + quota)

* Do you have any other ideas to improve BlockHammer?

refreshing all DRAM rows = Increased : = victim row refresh
Reactive

- high performance loss refresh ofresh - challenge: finding victim rows
& energy consumption rate - some probabilistic methods

using buffer/isolation rows =

L . : : <& BlockHammer
- challenge: finding victim rows Physical Proactive
e - RH gets worse - need more isolation  §  throttling

isolation
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Discussion

e What can we do with the RHLI at the software level?

e E.g. killing or descheduling a thread
* What problems would you encounter?
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Backup Slides



Insert

Row ID Timestamp | Valid bit
6 B3 Row ID: rank-unique ID for all rows

) Timestamp: current time

v Valid bit: setto 1

Head pointer
(oldest entry)

Timestamp Valid bit

\ Tail pointer
(youngest entry) 128



Test: row recently activated?

Row ID Timestamp |Valid bit
6 BE Row ID == to be accessed row

@ Timestamp

We
Wa

nt IOW Iatenc -
 Valid bit == y:

Head pointer
(oldest entry)

o~

Timestamp Valid bit

\ Tail pointer
(youngest entry) 129



Test: row recently activated?

Row ID Timestamp |Valid bit
6 BE Row ID == to be accessed row

@ Timestamp Store row addresses
in CAM

« Valid bit ==

Head pointer
(oldest entry)

o~

Timestamp Valid bit

\ Tail pointer
(youngest entry) 130



Comparison

* Compare BlockHammer with

* (Baseline system: no RH mitigation)
@ * 3 probabilistic mitigation mechanisms
* PARA

* ProHIT
* MRLoc

* 3 deterministic mitigation mechanisms
e CBT
* TWiCe
* Graphene
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PARA: definition

* = Probabilistic Adjacent Row Activation

* Row gets activated - adjacent rows get activated (= refreshed) with
probability p
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PARA: mechanism

e Remember: Reactive refresh

Vhigh \
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PARA: mechanism

e Remember: Reactive refresh
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PARA: mechanism

e Remember: Reactive refresh
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PARA: mechanism

e Remember: Reactive refresh

REFRESH

with probability p

REFRESH
with probability p
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PARA: mechanism

e Remember: Reactive refresh

REFRESH

with probability p

REFRESH
with probability p
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PARA: mechanism

e Remember: Reactive refresh

REFRESH

with probability p

REFRESH
with probability p
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PARA: weaknesses

* Cannot prevent bit-flips with 100% certainty (probabilistic!)

* Performance - vulnerable to applications with mix of few frequently
activated rows and many randomly activated ones (often the case in
memory-intensive programs) - solution: ProHIT

* Knowledge on in-DRAM mapping needed
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ProHIT: definition

e Based on PARA

* Selects victim rows by considering the access patterns of applications
(on top of probabilistic selection) - done by Probabilistic History
Table

* Key operations: row activation -
* Probabilistic table promotion (from cold to hot)
* Probabilistic promotion (from hot to hotter, i.e. higher priority)
* Probabilistic insertion (into highest priority cold table slot)
* Probabilistic eviction (one of the cold entries is evicted)
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ProHIT: mechanism

@ Activate row K Row C
Row D

Row E

Highest priority
A

a|qe1 10H

3|qe1 p|od

Lowest priority
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ProHIT: mechanism

@ Activate row K Row C
\ Row D
In.se" tro Row E
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ProHIT: mechanism

@ Activate row K Row C
\ Row D
In.se" tro Row E

‘Randomly’ select cold
= row to be evicted
(influenced by priority)

Ility P Row F
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ProHIT: mechanism

@ Activate row K Row C
\ Row D
In.se" tro Row J
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ProHIT: mechanism

@ Activate row |

Row C

Row D
Row J
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ProHIT: mechanism

@ Activate row | E—
\ Row D

r
®Mote , Row J
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ProHIT: mechanism

- Promote to ‘random’
Activate row | hot entry (with
(~ Row C probability based on

\ > Row D ) priority)
r —
2Mote ro : \ RowJ 7

t Row E
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ProHIT: mechanism

- Promote to ‘random’
hot entry (with

Activate row | R
—~ — DL probability based on
Promote rowJ with Row C priority)
probability P Row D
Row E
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After specific

ProHIT: mechanisMmime interval

i

——

invalidate entry *
refresh highest”
priority row

Row J

Row C
Row D
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ProHIT: mechanism

i

——

Invalidate entry ¥
refresh highest-
priority row

Row J

Row C
Row D
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ProHIT: weaknesses

e Still cannot prevent bit-flips with 100% certainty (probabilistic!)

* But at least we have better performance!
* Knowledge on in-DRAM mapping still needed
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MRLoc: definition

* Based on PARA
@ * Mitigating Row-hammering based on memory Locality

e Optimizes refresh probability based on memory locality

* If a certain row has been accessed recently, a higher probability is assigned to
its corresponding victim rows

* Victim rows are stored in queue
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MRLoc: mechanism

Queue | | Queue [ Queue ]
Front | 0x00ab 0x00ab 0x0024 A\
0x0024 0x0024 Ox001c
0x001c @ Dxﬂﬂlc 0x00ft
0x00ff 0x00ff H1 0x0004
Rear | 0x0004 0x0004 0x00£f —

Probability
Access: 0x00fe l:alculaugn Address
Victim: 0x00ff I
ictim | 0x00fF |/ Shift

From J. M. You and J.-S. Yang, “MRLoc: Mitigating Row-Hammering Based on Memory Locality,” in DAC, 2019.



MRLoc: mechanism

ant‘ 0x0024 0x0024 | Miss 0x001c 7\

0x001c 0x001c 0x00ft
0x00ff 0x00ft » 0x0004
0x0004 0x0004 0x00£ff

Rear | 0x00ff 0x00ff 0x00fd L

Probability
Access: 0x00fe Calculation Address
| Victim: 0x00fd | oxoofd W Shift

From J. M. You and J.-S. Yang, “MRLoc: Mitigating Row-Hammering Based on Memory Locality,” in DAC, 2019.




MRLoc: mechanism

0x00fF : Hit : [ oxo0004 A

0x0004 0x0004 0x00ff
0x00fF @ 0x00ff | Hit » | 0x00fd
0x00fd

0x0101

0x0101 0x0101 0x00ff i
Probability
Access: 0x0100 Calculation Address
Victim: 0x00ff 0xO00fT Shift

From J. M. You and J.-S. Yang, “MRLoc: Mitigating Row-Hammering Based on Memory Locality,” in DAC, 2019.



MRLoc: weaknesses

* Cannot prevent bit-flips with 100% certainty (probabilistic!)

* Even worse performance now ...
* Knowledge on in-DRAM mapping needed
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Comparison

* Compare BlockHammer with

e (Baseline system: no RH mitigation)
@ e 3 probabilistic mitigation mechanisms
* PARA

* ProHIT
* MRLoc

* 3 deterministic mitigation mechanisms
e CBT
* TWiCe
* Graphene
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CBT: definition

e = Counter-Based Tree

* Tree of counters that count row activations in disjoint memory
regions

 Whenever parent node reaches certain threshold, memory region is halved
(one half for each child)

* Predefined threshold for each level

* Leaf node reaches threshold: counter reset + refresh of respective memory
region
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CBT: mechanism 1,32

@ Threshold =2
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CBT: mechanism 1,32

@ Threshold =2

Activate row 1
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CBT: mechanism 1,32

/ @ Threshold = 2
Activate row 1
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CBT: mechanism 1,32

@ Threshold =2

Activate row 4
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CBT: mechanism 1,32

/ @ Threshold = 2
Activate row 4
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CBT: mechanism 1,32

Threshold = 2

[1, 16] [17, 32]
@ Threshold =5
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CBT: mechanism 1,32

Threshold = 2

Activate row 4

@ [1, 16] [17, 32]
Threshold =5
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CBT: mechanism 1,32

Threshold = 2

Activate row 4

@ \ [1, 16] [17, 32]

Threshold =5
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CBT: mechanism 1,32

Threshold = 2

And soon ...

Threshold =5

Threshold = 7
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CBT: mechanism 1,32

Threshold = 2

Reset & Refresh!!

Threshold =5

Threshold =7
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CBT: mechanism 1,32

@ Threshold =2

At end of refresh period

@ (e.g. 64 ms)
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CBT: weaknesses

* Area vs. performance trade-off

 More levels means smaller memory region size and thus more correct
refreshes (better performance), but at higher area cost

* Assumes rows are contiguous but might not be the case - DRAM
remaps addresses internally
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TWiCe: definition
e = Time Window Counter based row refresh

* Maximum number of DRAM ACTs over tq¢qy is bounded
* Counter table: | Valid bit | Row address | Activation count | Life

e Counter table + counter logic

* Activation count: records number of activations to the target row address
* Valid bit: is entry valid?

 Life: # consecutive pruning intervals for which entry stays valid in the table
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TWiCe: mechanism

* Row activation
* Not in table - allocate entry

valid row_addr act_cnt life valid row_addr act_cnt life

0x50 |32,767 0x50 | 32,767
1 0xCO0 7 2 1 0xCO 7 2
0 0xA0 2 1 1 0xFO 1 1
0 0

—— |
CMD/ADDR ACT/0xFO0 | ACT/0xCO

(D Address not found.
New entry inserted.

From E. Lee et al., “TWiCe: Preventing Row-Hammering by Exploiting Time Window Counters,” in4SCA, 2019.



TWiCe: mechanism

* Row activation
* Not in table - allocate entry
* |n table = increment activation count

valid row_addr act_cnt life

ACT/0x50

(@ Address found.
act_cnt incremented.

From E. Lee et al., “TWiCe: Preventing Row-Hammering by Exploiting Time Window Counters,” in4SCA, 2019.



TWiCe: mechanism

e Activation count reaches threshold = refresh victim rows & set valid
bitto O

valid row_addr act_cnt life

\

(3 thru reached.
Victim rows refreshed.

From E. Lee et al., “TWiCe: Preventing Row-Hammering by Exploiting Time Window Counters,” in45CA, 2019.



TWiCe: mechanism

e After each pruning interval

* All entries with activation count < th,, x life - removed (NOT refreshed)
* Activation count = th;, x life - increment life

valid row_addr act_cnt life
0 | oxs0 |32,768] 3 |

1 0xCo0 8 3
[ OxFO 1 1
0
=
Time

@ Table updated
during auto-refresh.

From E. Lee et al., “TWiCe: Preventing Row-Hammering by Exploiting Time Window Counters,” in4SCA, 2019.



TWiCe: weaknesses

 Relatively large area overhead as RH gets worse! (in comparison to BH
and Graphene)

@ * Needs to identify victim rows = requires knowledge of DRAM
internals!
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Graphene: definition

* Misra-Gries algorithm

* Solves frequent elements problem
@ * Find all elements in a (finite!) stream that occur more than a given fraction of

the time
* Here: elements = memory requests
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Graphene: mechanism

e Activate row
e Row in table = increase count

Row Address Count Row Address Count

0x1010 5 0x1010 6
0x2020 7 - 0x2020 7
0x3030 3 0x1010 0x3030 3

 spilover court [ERNS | spitover count RN

From Y. Park et al., “Graphene: Strong yet Lightweight Row Hammer Protection,” in MICRO, 2020



Graphene: mechanism

e Activate row

* Row not in table AND spillover count < count of all entries = increment
spillover count

Row Address Count Row Address Count

0x1010 6 0x1010 6
0x2020 7 - 0x2020 7
0x3030 3 0x4040 0x3030 3

| spitover count RN

E

From Y. Park et al., “Graphene: Strong yet Lightweight Row Hammer Protection,” in MICRO, 2020



Graphene: mechanism

e Activate row

* Row not in table AND spillover count >= count of some entry X - replace
entry X with new row + increment count of that row

Row Address Count Row Address Count

0x1010 6 0x1010 6
0x2020 7 - 0x2020 7
0x3030 3 0x5050 0x5050 4

E

 spilover court SRS

From Y. Park et al., “Graphene: Strong yet Lightweight Row Hammer Protection,” in MJICRO, 2020



Graphene: mechanism

e Count == (multiple of) threshold - refresh victim rows

From Y. Park et al., “Graphene: Strong yet Lightweight Row Hammer Protection,” in MICRO, 2020



Graphene: weaknesses

* Needs to identify victim rows - requires knowledge of DRAM
internals

Currently one of the best solutions (has good performance and low
area overhead)
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1. Hardware complexity analysis

Nru=32K*

Mitigation Mechanism SRAM CAM Area Access Energy  Static Power
KB KB mm? % CPU (pl) (mW)

BlockHammer 5148 1.73 0.14 0.06 20.30 22.27
Dual counting Bloom filters 48.00 - 0.11 0.04 18.11 19.81
H3 hash functions - - <001 < (.01 - -
Row activation history buffer 1.73 1.73 0.03 0.01 1.83 2.05
AttackThrottler counters 1.75 - <001 < (.01 0.36 0.41
PARA [73] - - <0.01 - - -
ProHIT [137]* - 0.22 <0.01 <0.01 3.67 0.14
MrLoc [161]* - 047 <0.01 <0.01 4.44 0.21
CBT [132] 16.00 8.50 0.20 0.08 9.13 35.55
TWICE [84] 23.10 14.02 0.15 0.06 7.99 21.28
Graphene [113] - 5.22 0.04 0.02 40.67 3.11

Neu=1K

SRAM CAM Area Access Energy Static Power

KB KB mm? % CPU (pd) (mW)

441.33 55.58 1.57 0.64 99.04 220.99

384.00 - 0.74 0.30 86.29 158 .46

- - <001 <0.01 - -

55.58 55.58 0.83 0.34 12.99 62.12

1.75 - <001 <0.01 0.36 0.41

- - <0.01 - - -

X X X X X X

* X * X * X

51200 272.00 3.95 L.60 127.93 535.50

738.32  448.27 5.17 2.10 124.79 631.98 183
- 166.03 1.14 0.46 917.55 93.96




1. Hardware complexity analysis

Area
(%CPU)
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1. Hardware complexity analysis

Area
(%CPU)
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Area
1. Hardware complexity analysis

RowHammer threshold 32K

@ * PARA, PRoHIT, MRLoc - extremely area-efficient (because probabilistic)
* Graphene << TWiCe, BlockHammer < CBT - still relatively area-efficient
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Area
1. Hardware complexity analysis

RowHammer threshold 32K

RowHammer threshold 1K

* Graphene x28.5, TWICE x34.5, CBT x19.7 <> BlockHammer x11.2

* New order: Graphene < BlockHammer << TWiCE << CBT
* BlockHammer is catching up!
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1. Hardware complexity analysis

Area
(%CPU)
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1. Hardware complexity analysis

RowHammer threshold 32K

RowHammer threshold 1K

* New order: Graphene < BlockHammer << TWiCE << CBT
* BlockHammer is catching up!
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1. Hardware complexity analysis

Area
(%CPU)

Access
Energy
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1. Hardware complexity analysis
RowHammer threshold 32K

RowHammer threshold 1K

* New order: BlockHammer <<< TWICE, CBT << Graphene
* BlockHammer is most efficient!
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1. Hardware complexity analysis

Area
(%CPU)

Static
Power
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1. Hardware complexity analysis
RowHammer threshold 32K

RowHammer threshold 1K

* New order: Graphene << BlockHammer <<< TWICE << CBT
* BlockHammer is catching up!
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2. Performance & energy consumption

* Setup: DDR4 memory

Processor 3.2GHz, {1,8} core, 4-wide issue, 128-entry instr. window
@ Last-Level Cache 64-byte cache line, 8-way set-associative, 16 MB
64-entry each read and write request queues; Scheduling
policy: FR-FCFS [122, 164]; Address mapping: MOP [60]
DDR4, 1 channel, 1 rank, 4 bank groups, 4 banks/bank
group, 64K rows/bank

Memory Controller

Main Memory

Table 5: Simulated system configuration.
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