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Executive Summary

Problem: RowHammer flips bits by accessing adjacent memory rows rapidly

Goal: Efficiently and scalably prevent RowHammer attacks without knowledge or      
modifications to DRAM internals

Key Idea: Blacklist rows that are being activated too rapidly and throttle further
accesses

Mechanism: BlockHammer mitigates attacks in two steps

– RowBlocker: Blacklists Rows that are being accessed too rapidly

– AttackThrottler: Throttles memory bandwidth to potential attacking threads

Comparisons: Compared to other techniques BlockHammer’s performance is competitive 
while not under attack and significantly increases performance of benign 
applications when under attack
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1. Problem

■ DRAM is organized as an array of bits. Rows are always accessed entirely

■ Activating a row transfers its content into the row buffer

■ Cells loose state over time and need to be refreshed periodically
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1. Problem

■ RowHammer is a DRAM vulnerability caused by rapid activation of the same memory row
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1. Problem

■ RowHammer is a DRAM vulnerability caused by rapid activation of the same memory row

■ Rapidly activating a row can induce bitflips in nearby rows
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1. Problem

■ It has been shown that RowHammer can be used to gain kernel privileges on certain systems

■ Previous work has shown that chips get more vulnerable to RowHammer over the years

– Cells are getting smaller and have less charge, so less effort is required to make them flip

– Memory becomes denser, so there is less physical distance between each row
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2. Previous Solutions

There are four high level approaches to mitigate the problem

1. Increase refresh rate

– Unnecessary refreshes

2. Reactive refresh

– Unnecessary refreshes

3. Physical isolation

– Waste of memory

4. Proactive Throttling

– Throttling of benign threads
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2. Previous Solutions

Challenge 1: Ability to scale with worsening of RowHammer

1. Increase refresh rate

2. Reactive refresh

3. Physical isolation

4. Proactive Throttling
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2. Previous Solutions

Challenge 2: Compatibility with commodity DRAM Chips

1. Increase refresh rate

2. Reactive refresh

3. Physical isolation

4. Proactive Throttling
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2. Previous Solutions

The goals for RowHammer mitigation mechanism

1. Address a comprehensive threat model

2. Compatibility with commodity DRAM chips

3. Scalability with increasing vulnerability

4. Deterministically prevent all RowHammer attacks
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3. BlockHammer

1. RowBlocker

– Uses Bloom filters to keep track of row activation rates

– Blacklists potentially dangerous rows

– Delays activations on blacklisted rows

→ Deterministically prevents all RowHammer attacks

2. AttackThrottler

– Identifies threads that are likely to be RowHammer attacks

– Reduces memory bandwidth of identified threads 

→ Greatly improves performance of benign threads while under attack
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3. RowBlocker
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3. RowBlocker-BL

■ Keeps track of the number of row activations for each row

■ The naive approach to have a counter for each row is too expensive

■ Infrequent false positives are tolerable

■ False negatives are bad

■ RowBlocker-BL uses Unified Counting Bloom filters for blacklisting

■ Bloom filters consists of a bit array and set of hash functions. It implements:

– Clear

– Insert(x)

– Test(x)
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3. RowBlocker-BL

■ Bloom filter Clear
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3. RowBlocker-BL

■ Bloom filter Insert(x)
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3. RowBlocker-BL

■ Bloom filter Insert (y)
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3. RowBlocker-BL

■ Bloom filter Test(z)
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3. RowBlocker-BL

■ Counting Bloom filter Clear
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3. RowBlocker-BL

■ Counting Bloom filter Insert(x)
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3. RowBlocker-BL

■ Counting Bloom filter Insert(y)
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3. RowBlocker-BL

■ Counting Bloom filter Insert(y) a second time
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3. RowBlocker-BL

■ Counting Bloom filter Test(v)
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3. RowBlocker-BL

Unified Counting Bloom filter

■ (Counting) Bloom filters saturate over time increasing the rate of false 
positives

■ Clearing the Bloom filter looses all the information at once leading to 
potentially dangerous rows not being blacklisted anymore

→ Unified Counting Bloom filters combine two Counting Bloom filters

• Elements are always inserted into both filters

• The filters are taking turns clearing

• Test queries are answered by the filter, that has been active for longer
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3. RowBlocker-BL

■ Unified Counting Bloom filter in action
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3. RowBlocker-BL

■ Unified Counting Bloom filter in action

Assume that the row is 

activated at a high rate

Assume that the row is 

not activated at a high rate
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3. RowBlocker-HB

■ In order to induce a bitflip, the aggressor row has to be activated with a minimum 
frequency. If we keep a certain amount of time 𝑡𝑑𝑒𝑙𝑎𝑦 between each activation, we 
can guarantee RowHammer safety

■ RowBlocker HB maintains a FIFO history buffer containing all row activations in the 
last time window 𝑡𝑑𝑒𝑙𝑎𝑦

■ A row access is getting delayed when

– The row is blacklisted by RowBlocker-BL

– AND the row was accessed in the last time window 𝑡𝑑𝑒𝑙𝑎𝑦 and is therefore in 
the history buffer
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3. RowBlocker
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3. RowBlocker
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3. AttackThrottler

■ Identify and throttle threads that potentially induce bitflips

■ AttackThrottler uses a Rowhammer Likelyhood Index (RHLI) between 0 and 1, to 
identify dangerous threads

𝑅𝐻𝐿𝐼 ∝ 𝐵𝑙𝑎𝑐𝑘𝑙𝑖𝑠𝑡𝑒𝑑 𝑅𝑜𝑤 𝐴𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 𝐶𝑜𝑢𝑛𝑡

■ A benign thread has a RHLI of ≈ 0 because it never accesses blacklisted rows

■ A thread performing a RowHammer attack will have a RHLI of ≈ 1

■ The maximum memory bandwidth of a thread will be limited more and more 
strictly as its RHLI goes to 1

■ Optionally the operating system has access to the RHLI as well and can take 
further action
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4. Comparisons

■ The paper compares BlockHammers performance to 6 other state of the art 
RowHammer mitigation techniques

– PARA [Y. Kim et al., “Flipping Bits in Memory Without Accessing Them: An Experimental Study of DRAM Disturbance Errors,” in ISCA, 2014.]

– ProHIT [M. Son et al., “Making DRAM Stronger Against Row Hammering,” in DAC, 2017]

– MRLoc [J. M. You and J.-S. Yang, “MRLoc: Mitigating Row-Hammering Based on Memory Locality,” in DAC, 2019. ]

– CBT[S. M. Seyedzadeh et al., “Mitigating Wordline Crosstalk Using Adaptive Trees of Counters,” in ISCA, 2018.]

– TWiCE [E. Lee et al., “TWiCe: Preventing Row-Hammering by Exploiting Time Window Counters,” in ISCA, 2019.]

– Graphene [Y. Park et al., “Graphene: Strong yet Lightweight Row Hammer Protection,” in MICRO, 2020.]

34



4. Comparisons

■ The paper compares the area and energy costs for both a normal and a more 
vulnerable machine

■ The area and energy requriements are higher for 𝑁𝑅𝐻 = 32𝑘, but they scale 
much better than those of other techniques down to 𝑁𝑅𝐻 = 1𝑘
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4. Comparisons

■ The table shows area and power requirements for a RowHammer threshold of 32k

■ The area and energy requirements are competitive to other mitigation techniques
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Mitigation SRAM CAM Area Access Energy Static Power
Mechanism KB KB mm2 %CPU pJ mW

BlockHammer 51.48 1.73 0.14 0.06 20.30 22.27
PARA [73] - - <0.01 - - -
ProHIT [137] - 0.22 <0.01 <0.01 3.67 0.14
MRLoc [161] - 0.47 <0.01 <0.01 4.44 0.21
CBT [132] 16.00 8.50 0.20 0.08 9.13 35.55
TWiCe [84] 23.10 14.02 0.15 0.06 7.99 21.28
Graphene [113] - 5.22 0.04 0.02 40.67 3.11



4. Comparisons

■ The table shows area and power requirements for a RowHammer threshold of 1k

■ The area and energy requirements of RowHammer scale more efficiently with 
increasing vulnerability
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4. Comparisons

■ Latency Analysis shows a latency of 0.97ns for each blacklist lookup

■ DRAM standards enforce a row access latency of 45-50 ns

■ While accessing memory, we can check the blacklist for the next request
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4. Comparisons

■ Evaluating system throughput, job turnaround time, unfairness and DRAM energy 
consumption when no attack is present.

■ BlockHammer introduces (<0.5%) performance and (<0.4%) DRAM energy overheads
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4. Comparisons

■ Evaluating system throughput, job turnaround time, unfairness and DRAM energy 
consumption when an attack is present.

■ BlockHammer improves performance of benign applications (~45%) and reduces 
DRAM energy consumption (~29%)
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5. Strengths

■ The solution described is simple, effective and only involves the memory controller

■ Scales better than other mitigation techniques with worsening vulnerability

■ AttackThrottler increases the performance of benign applications while a 
RowHammer Attack is present

■ The paper clearly motivates the need for another RowHammer mitigation technique

■ The mechanism is deterministic
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5. Weaknesses

■ Some of the benefits are only apparent once RowHammer has worsened

■ An attacker might be able to saturate the Bloom filters to reduce the 
performance of the system

■ The paper mentions other mitigation techniques by name, but only introduces 
them in chapter 7

■ Some of the graphs are too small for the amount of information they contain
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6. Discussion

■ Could we desaturate the bloom filters by dividing the counters by 2 instead of 
clearing them?

■ Could we retrofit AttackThrottler to other existing RowHammer mitigation 
methods?

■ Instead of using Unified Counting Bloom filters, are there any other data 
structures worth considering for a blacklisting mechanism?

45


