
BlockHammer: Preventing RowHammer at Low
Cost by Blacklisting Rapidly-Accessed DRAM Rows

A. Giray Yağlıkçı, Minesh Patel, Jeremie S. Kim, Roknoddin Azizi, Ataberk Olgun, Lois Orosa, Hasan
Hassan, Jisung Park, Konstantinos Kanellopoulos, Taha Shahroodi, Saugata Ghose, Onur Mutlu

ETH Zürich University of Illinois at Urbana–Champaign

HPCA 2021

presented by Philipp Niksch

9.12.2021

1

Executive Summary

Problem: RowHammer flips bits by accessing adjacent memory rows rapidly

Goal: Efficiently and scalably prevent RowHammer attacks without knowledge or
modifications to DRAM internals

Key Idea: Blacklist rows that are being activated too rapidly and throttle further
accesses

Mechanism: BlockHammer mitigates attacks in two steps

– RowBlocker: Blacklists Rows that are being accessed too rapidly

– AttackThrottler: Throttles memory bandwidth to potential attacking threads

Comparisons: Compared to other techniques BlockHammer’s performance is competitive
while not under attack and significantly increases performance of benign
applications when under attack

2

Outline

1. Problem

2. Previous Solutions

3. BlockHammer

4. Comparisons

5. Strengths and Weaknesses

6. Discussion

3

1. Problem

■ DRAM is organized as an array of bits. Rows are always accessed entirely

■ Activating a row transfers its content into the row buffer

■ Cells loose state over time and need to be refreshed periodically

4

1. Problem

■ RowHammer is a DRAM vulnerability caused by rapid activation of the same memory row

5

1. Problem

■ RowHammer is a DRAM vulnerability caused by rapid activation of the same memory row

■ Rapidly activating a row can induce bitflips in nearby rows

6

1. Problem

■ It has been shown that RowHammer can be used to gain kernel privileges on certain systems

■ Previous work has shown that chips get more vulnerable to RowHammer over the years

– Cells are getting smaller and have less charge, so less effort is required to make them flip

– Memory becomes denser, so there is less physical distance between each row

7

Outline

1. Problem

2. Previous Solutions

3. BlockHammer

4. Comparisons

5. Strengths and Weaknesses

6. Discussion

8

2. Previous Solutions

There are four high level approaches to mitigate the problem

1. Increase refresh rate

– Unnecessary refreshes

2. Reactive refresh

– Unnecessary refreshes

3. Physical isolation

– Waste of memory

4. Proactive Throttling

– Throttling of benign threads

9

2. Previous Solutions

Challenge 1: Ability to scale with worsening of RowHammer

1. Increase refresh rate

2. Reactive refresh

3. Physical isolation

4. Proactive Throttling

10

2. Previous Solutions

Challenge 2: Compatibility with commodity DRAM Chips

1. Increase refresh rate

2. Reactive refresh

3. Physical isolation

4. Proactive Throttling

11

2. Previous Solutions

The goals for RowHammer mitigation mechanism

1. Address a comprehensive threat model

2. Compatibility with commodity DRAM chips

3. Scalability with increasing vulnerability

4. Deterministically prevent all RowHammer attacks

12

Outline

1. Problem

2. Previous Solutions

3. BlockHammer

4. Comparisons

5. Strengths and Weaknesses

6. Discussion

13

3. BlockHammer

1. RowBlocker

– Uses Bloom filters to keep track of row activation rates

– Blacklists potentially dangerous rows

– Delays activations on blacklisted rows

→ Deterministically prevents all RowHammer attacks

2. AttackThrottler

– Identifies threads that are likely to be RowHammer attacks

– Reduces memory bandwidth of identified threads

→ Greatly improves performance of benign threads while under attack

14

3. RowBlocker

15

3. RowBlocker-BL

■ Keeps track of the number of row activations for each row

■ The naive approach to have a counter for each row is too expensive

■ Infrequent false positives are tolerable

■ False negatives are bad

■ RowBlocker-BL uses Unified Counting Bloom filters for blacklisting

■ Bloom filters consists of a bit array and set of hash functions. It implements:

– Clear

– Insert(x)

– Test(x)

16

3. RowBlocker-BL

■ Bloom filter Clear

17

3. RowBlocker-BL

■ Bloom filter Insert(x)

18

3. RowBlocker-BL

■ Bloom filter Insert (y)

19

3. RowBlocker-BL

■ Bloom filter Test(z)

20

3. RowBlocker-BL

■ Counting Bloom filter Clear

21

3. RowBlocker-BL

■ Counting Bloom filter Insert(x)

22

3. RowBlocker-BL

■ Counting Bloom filter Insert(y)

23

3. RowBlocker-BL

■ Counting Bloom filter Insert(y) a second time

24

3. RowBlocker-BL

■ Counting Bloom filter Test(v)

25

3. RowBlocker-BL

Unified Counting Bloom filter

■ (Counting) Bloom filters saturate over time increasing the rate of false
positives

■ Clearing the Bloom filter looses all the information at once leading to
potentially dangerous rows not being blacklisted anymore

→ Unified Counting Bloom filters combine two Counting Bloom filters

• Elements are always inserted into both filters

• The filters are taking turns clearing

• Test queries are answered by the filter, that has been active for longer

26

3. RowBlocker-BL

■ Unified Counting Bloom filter in action

27

CBFA is

active

CBFB is

active

CBFA is

passive

CBFB is

passive

3. RowBlocker-BL

■ Unified Counting Bloom filter in action

Assume that the row is

activated at a high rate

Assume that the row is

not activated at a high rate

28

3. RowBlocker-HB

■ In order to induce a bitflip, the aggressor row has to be activated with a minimum
frequency. If we keep a certain amount of time 𝑡𝑑𝑒𝑙𝑎𝑦 between each activation, we
can guarantee RowHammer safety

■ RowBlocker HB maintains a FIFO history buffer containing all row activations in the
last time window 𝑡𝑑𝑒𝑙𝑎𝑦

■ A row access is getting delayed when

– The row is blacklisted by RowBlocker-BL

– AND the row was accessed in the last time window 𝑡𝑑𝑒𝑙𝑎𝑦 and is therefore in
the history buffer

29

3. RowBlocker

30

3. RowBlocker

31

3. AttackThrottler

■ Identify and throttle threads that potentially induce bitflips

■ AttackThrottler uses a Rowhammer Likelyhood Index (RHLI) between 0 and 1, to
identify dangerous threads

𝑅𝐻𝐿𝐼 ∝ 𝐵𝑙𝑎𝑐𝑘𝑙𝑖𝑠𝑡𝑒𝑑 𝑅𝑜𝑤 𝐴𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 𝐶𝑜𝑢𝑛𝑡

■ A benign thread has a RHLI of ≈ 0 because it never accesses blacklisted rows

■ A thread performing a RowHammer attack will have a RHLI of ≈ 1

■ The maximum memory bandwidth of a thread will be limited more and more
strictly as its RHLI goes to 1

■ Optionally the operating system has access to the RHLI as well and can take
further action

32

Outline

1. Problem

2. Previous Solutions

3. BlockHammer

4. Comparisons

5. Strengths and Weaknesses

6. Discussion

33

4. Comparisons

■ The paper compares BlockHammers performance to 6 other state of the art
RowHammer mitigation techniques

– PARA [Y. Kim et al., “Flipping Bits in Memory Without Accessing Them: An Experimental Study of DRAM Disturbance Errors,” in ISCA, 2014.]

– ProHIT [M. Son et al., “Making DRAM Stronger Against Row Hammering,” in DAC, 2017]

– MRLoc [J. M. You and J.-S. Yang, “MRLoc: Mitigating Row-Hammering Based on Memory Locality,” in DAC, 2019.]

– CBT[S. M. Seyedzadeh et al., “Mitigating Wordline Crosstalk Using Adaptive Trees of Counters,” in ISCA, 2018.]

– TWiCE [E. Lee et al., “TWiCe: Preventing Row-Hammering by Exploiting Time Window Counters,” in ISCA, 2019.]

– Graphene [Y. Park et al., “Graphene: Strong yet Lightweight Row Hammer Protection,” in MICRO, 2020.]

34

4. Comparisons

■ The paper compares the area and energy costs for both a normal and a more
vulnerable machine

■ The area and energy requriements are higher for 𝑁𝑅𝐻 = 32𝑘, but they scale
much better than those of other techniques down to 𝑁𝑅𝐻 = 1𝑘

35

4. Comparisons

■ The table shows area and power requirements for a RowHammer threshold of 32k

■ The area and energy requirements are competitive to other mitigation techniques

36

Mitigation SRAM CAM Area Access Energy Static Power
Mechanism KB KB mm2 %CPU pJ mW

BlockHammer 51.48 1.73 0.14 0.06 20.30 22.27
PARA [73] - - <0.01 - - -
ProHIT [137] - 0.22 <0.01 <0.01 3.67 0.14
MRLoc [161] - 0.47 <0.01 <0.01 4.44 0.21
CBT [132] 16.00 8.50 0.20 0.08 9.13 35.55
TWiCe [84] 23.10 14.02 0.15 0.06 7.99 21.28
Graphene [113] - 5.22 0.04 0.02 40.67 3.11

4. Comparisons

■ The table shows area and power requirements for a RowHammer threshold of 1k

■ The area and energy requirements of RowHammer scale more efficiently with
increasing vulnerability

37

4. Comparisons

■ Latency Analysis shows a latency of 0.97ns for each blacklist lookup

■ DRAM standards enforce a row access latency of 45-50 ns

■ While accessing memory, we can check the blacklist for the next request

38

4. Comparisons

■ Evaluating system throughput, job turnaround time, unfairness and DRAM energy
consumption when no attack is present.

■ BlockHammer introduces (<0.5%) performance and (<0.4%) DRAM energy overheads

39

4. Comparisons

■ Evaluating system throughput, job turnaround time, unfairness and DRAM energy
consumption when an attack is present.

■ BlockHammer improves performance of benign applications (~45%) and reduces
DRAM energy consumption (~29%)

40

Outline

1. Problem

2. Previous Solutions

3. BlockHammer

4. Comparisons

5. Strengths and Weaknesses

6. Discussion

41

5. Strengths

■ The solution described is simple, effective and only involves the memory controller

■ Scales better than other mitigation techniques with worsening vulnerability

■ AttackThrottler increases the performance of benign applications while a
RowHammer Attack is present

■ The paper clearly motivates the need for another RowHammer mitigation technique

■ The mechanism is deterministic

42

5. Weaknesses

■ Some of the benefits are only apparent once RowHammer has worsened

■ An attacker might be able to saturate the Bloom filters to reduce the
performance of the system

■ The paper mentions other mitigation techniques by name, but only introduces
them in chapter 7

■ Some of the graphs are too small for the amount of information they contain

43

Outline

1. Problem

2. Previous Solutions

3. BlockHammer

4. Comparisons

5. Strengths and Weaknesses

6. Discussion

44

6. Discussion

■ Could we desaturate the bloom filters by dividing the counters by 2 instead of
clearing them?

■ Could we retrofit AttackThrottler to other existing RowHammer mitigation
methods?

■ Instead of using Unified Counting Bloom filters, are there any other data
structures worth considering for a blacklisting mechanism?

45

