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Executive Summary
• Problem: Multi-threaded programs contain «bottlenecks»

• Bottlenecks force execution to be serialized

• Bottlenecks can vary in importance over time

• Goal: Identify bottlenecks & accelerate the most critical bottlenecks 
using fast cores on an Asymetric Chip Multiprocessor (ACMP)

• Solution: Cooperative hardware/software “Bottleneck Identification & 
Scheduling” BIS

• Use special instructions to mark bottlenecks in software

• Accelerate most critical bottlenecks at runtime in hardware by scheduling 
them on large cores in an ACMP system

• Outperforms previous approaches by 15%
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Types of Bottlenecks
• Amdahl’s serial portions

• Sections of the program with only one thread

• Critical Sections

• Barriers

• Pipeline Stages
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Critical Sections
• Only one thread may enter the Critical Section at any time
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Critical Sections (CT)
• Idea: Execute Critical Section faster than the rest
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Barriers
• Ensure that all threads synchronize before proceeding
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Barriers
• Threads may not finish at the same time

13Seminar in Computer Architecture - HS2021



Barriers
• Result: Wasted time on all threads that finish early
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Barriers
• Idea: Speed up the slowest thread
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Pipelining
• Programming Paradigm to parallelize for-loops and similar

• Code in loop split into 𝑀 stages
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Pipelining – Ideal Parallel Scenario
• Idea: Run the stages in parallel
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Pipelining – Ideal Parallel Scenario
• Run the stages in parallel
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Pipeline Stages in the Real World
• Again: stages may take non-uniform time

• We can vary the distribution of stages-to-cores as we like
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Pipeline Stages in the Real World
• The slowest stage causes others to wait
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Pipeline Stages in the Real World
• The slowest stage causes others to wait

• Idea: accelerate stages causing bottlenecks
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Previous Work
• Asymmetric Chip Multiprocessor

• Execute serial phases on a large core
• Execute parallel phases on multiple large/small cores

• Feedback Directed Pipelining (FDP)
• Pure software framework
• Accelerates pipelined workloads using core-to-stage allocation 

selection

• Accelerated Critical Sections (ACS)
• Modifies an ACMP hardware system

• Adds Instructions to mark Critical Sections

• Adds a “Critical Section Request Buffer” to the large core

• Accelerates Critical Sections using a single large core
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Bottleneck Identification and Scheduling
• Goal: Identify and accelerate bottlenecks in multithreaded 

applications to speed up execution overall.

• Key idea: 
• Identification: The most critical bottlenecks make other threads wait the 

longest
• Acceleration: Use (multiple) large cores to accelerate bottlenecks

• BIS overview:
• Mark potential bottlenecks in software
• Identify critical bottlenecks at runtime
• Accelerate critical bottlenecks on large cores
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Bottleneck Identification and Scheduling

1. Identification
• Annotation

• Hardware Components

2. Acceleration
• Critical Bottleneck Selection
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1. Bottleneck Identification
• Move bottlenecks into own function (de-inline)

• Mark bottlenecks in software using three new instructions:
• BottleneckCall bid, targetPC

• Marks the beginning of a new bottleneck with a bottleneck-id

• TargetPC is the PC of the start of the bottleneck code

• BottleneckWait bid
• Waits for memory to change

• Similar to mwait

• BottleneckReturn bid
• Ends a bottleneck function

• Returns like normal function return

• Identify critical bottlenecks at run-time
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Critical Section Annotation
call targetPC

targetPC: while canot acquire lock

mwait

acquire lock

(...)

release lock

return
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Critical Section Annotation
BottleneckCall bid, targetPC

targetPC: while canot acquire lock

mwait

acquire lock

(...)

release lock

return
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Critical Section Annotation
BottleneckCall bid, targetPC

targetPC: while canot acquire lock

BottleneckWait bid

acquire lock

(...)

release lock

return
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Critical Section Annotation
BottleneckCall bid, targetPC

targetPC: while canot acquire lock

BottleneckWait bid

acquire lock

(...)

release lock

BottleneckReturn bid
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Hardware – Single Large Core
• One Bottleneck Table (BT)

• Saves metadata of bottlenecks

• Each small core has 
Acceleration Index Table (AIT)

• Avoids accesses to BT

• Caches bid and accel_enable bit 
for bottlenecks

• Large core has a Scheduling 
Buffer (SB)

• Saves which bottlenecks are to 
be executed on large core
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Hardware – Bottleneck Table
• Bottleneck Table holds 

metadata for bottlenecks

• Implemented as an 
associative cache

• Evict bottleneck with smallest 
number of Thread Waiting 
Cycles

• Halve Thread Waiting 
Cycles every 100𝑘 cycles to 
replace stale entries
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BottleneckTable 
(BT)

Large Core

Scheduling 
Buffer (SB)

Current 
Bottleneck Table 

(CBT)

Field Description

bid Bottleneck ID

pid Process ID

executers Current # of threads running  bid

executer_vec Bit vect of threads running bid

waiters Current # of threads waiting for bid

waiters_sb Current # of threads on SB waiting for bid

TWC Thread waiting cycles

large_core_id ID of large core
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Determine TWC for Bottlenecks

42

Small Core 0

Small Core 1

Large Core 0

Bottleneck Table 
(BT)

BottleneckWait x4500

Bid=x4500, waiters=1, twc=0
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Determine TWC for Bottlenecks

43

Small Core 0

Small Core 1

Large Core 0

Bottleneck Table 
(BT)

BottleneckWait x4500

Bid=x4500, waiters=1, twc=1
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Determine TWC for Bottlenecks
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Small Core 0

Small Core 1

Large Core 0

Bottleneck Table 
(BT)

BottleneckWait x4500

Bid=x4500, waiters=2, twc=1

BottleneckWait x4500
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Determine TWC for Bottlenecks
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Small Core 0

Small Core 1

Large Core 0

Bottleneck Table 
(BT)

BottleneckWait x4500

Bid=x4500, waiters=2, twc=3

BottleneckWait x4500
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Determine TWC for Bottlenecks
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Small Core 0

Small Core 1

Large Core 0

Bottleneck Table 
(BT)

BottleneckWait x4500

Bid=x4500, waiters=2, twc=5

BottleneckWait x4500
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Bottleneck Identification and Scheduling

1. Identification
• Annotation

• Hardware Components

2. Acceleration
• Critical Bottleneck Selection
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2. Acceleration
• Accelerate bottleneck with highest Thread Waiting Cycles 

(above threshold)

• Driven by insight that the most critical bottleneck is the one that 
makes other threads wait the longest
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Bottleneck Acceleration
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Small Core 0

Small Core 1

Large Core 0

Bottleneck Table 
(BT)

bid=x4600, twc=100

bid=x4700, twc=10000 Scheduling Buffer (SB)

Acceleration Index 
Table (AIT)

Acceleration Index 
Table (AIT)
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Bottleneck Acceleration
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Small Core 0

Small Core 1

Large Core 0

Bottleneck Table 
(BT)

BottleneckCall x4600

bid=x4600, twc=100

bid=x4700, twc=10000 Scheduling Buffer (SB)

Acceleration Index 
Table (AIT)

Acceleration Index 
Table (AIT)
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Bottleneck Acceleration
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BottleneckCall x4600
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Bottleneck Acceleration
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Small Core 0

Small Core 1

Large Core 0

Bottleneck Table 
(BT)

BottleneckCall x4600

bid=x4600, twc=100

bid=x4700, twc=10000 Scheduling Buffer (SB)

bid=x4700, pc, sp, core1

Acceleration Index 
Table (AIT)

Acceleration Index 
Table (AIT) bid=x4700, large core 0, accel_enable = 1
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2. Acceleration – Multiple Large Cores
• One Scheduling Buffer per core

• Each enabled bottleneck assigned to fixed large core
• Preserve cache locality
• Avoid large cores waiting on each other for same bottleneck
• Bottleneck entry gains large core ID

• How to accelerate:
• Top 𝑁 bottlenecks assigned to 𝑁 large cores
• Rest assigned uniformly at random

• For Simultaneous Multi-Threading (SMT): execute different 
bottlenecks from same Scheduling Buffer
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False Serialization
• Situation: 

• 𝐵𝑇1 > 𝐵𝑇2, 𝑡𝑖𝑚𝑒 𝐵𝑇1 = 4, 𝑡𝑖𝑚𝑒 𝐵𝑇2 = 2, 𝑠𝑝𝑒𝑒𝑑𝑢𝑝_𝑙𝑎𝑟𝑔𝑒 = 2

• Both are scheduled on the large core

• 𝐵𝑇1 starts executing on large core, takes 2 seconds

• 𝐵𝑇2 has to wait, ultimately takes 3 seconds until complete

• Better: Execute 𝐵𝑇2 on small core and 𝐵𝑇1 on large core

• Solution: Abort bottleneck in Scheduling Buffer if
1. Bottleneck does not have highest Thread Waiting Cycles

2. Bottleneck could be run on small core
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Pre-emptive Acceleration
• Situation:

• We schedule 𝐵𝑇1 on small core
• Other bottlenecks start executing but start waiting for 𝐵𝑇1
• Thread Waiting Cycles of 𝐵𝑇1 increase, but it remains on small core
• Better: Run 𝐵𝑇1 on large core if 𝐵𝑇1 becomes critical

• Solution: Pre-emptive Mechanism
• On update of Thread Waiting Cycles: 

1. If 𝐵𝑇1 has become the most critical bottleneck
2. If the number of executers is ≤ number of large cores

• Pre-empt small core and ship 𝐵𝑇1 to large core for execution
• Save “architectural state” on stack etc.

• Primary acceleration mechanism for both barriers and pipeline 
stages
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Nested & Dependent Bottlenecks
• Situation: 

• 𝑇1 is running 𝐵𝑇1, but waits for 𝐵𝑇2
• 𝑇2 is waiting for 𝐵𝑇1
• 𝑇2 is indirectly waiting for 𝑇1, 𝐵𝑇1 is indirectly waiting for 𝐵𝑇2!

• Solution: 
• Follow dependency chain between bottlenecks until we find a «root 

bottleneck»
• Add current number of waiters for «child bottlenecks» to root
• Need to know:

1. Which thread is executing which bottleneck
• Add executer_vec for each Bottleneck Table entry, one bit per hardware thread

2. Which bottleneck is being waited for 
• Add Current Bottleneck Table (CBT)
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Current Bottleneck Table 

• Add Current Bottleneck 
Table (CBT) 

• Maps hardware thread ids 
to bid of bottlenecks 
currently being waited for 
by the thread
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Data Marshaling
• Situation:

• When bottleneck is moved from small to large core cache state is lost

• Execution on large core will incur unnecessary cache misses

• Solution: Data Marshaling
• Identify and «marshal» cache lines to remote core
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Experimental Methodology
• Workloads: 8 with critical sections, 2 with barriers, 2 pipelined 

applications

• Simulations on x86 cycle-level simulator
• Small cores modeled after Intel Pentium

• 4GHz, in-order

• Fast cores modeled after Intel Core 2
• 4GHz, out-of-order

• Caches: Private 32KB L1, private 256KB L2, shared 8MB L3
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Experimental Methodology
• SCMP – Symmetric Core Multi-Processor

• 𝑁 small cores

• ACMP – Asymmetric Core Multi-Processor

• 1 large core, 𝑁 − 4 small cores

• Large core always runs single-
threaded code

• ACS – Accelerated Critical Sections

• 1 large core, 𝑁 − 4 small cores

• Large core always runs single-
threaded code

• Large core accelerates critical 
sections

• BIS
• 𝐿 large cores

• 𝑆 = 𝑁 – 4𝐿 small cores

• 1 large core always runs single-
threaded code

• 32-entry BT

• 𝑁-entry CBT

• Each large core: 𝑆-entry SB

• Each small core: 32-entry AT
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Bottleneck Identification
• Accuracy: identified bottlenecks on the critical path over total identified bottlenecks

• 72% (ACS/FDP) to 73.5% (BIS)

• Coverage: fraction of program critical path that is actually identified as bottlenecks
• 39% (ACS/FDP) to 59% (BIS)

64

Total fraction of time spent accelerating all code segments

Fraction of time spent accelerating code on critical path
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Speedup over a single small core

• Use as many threads as cores
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Speedup over a single small core

• Use as many threads as cores

• For 32 cores, BIS matches or 
outperforms all other 
approaches
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Speedup over a single small core

• Use as many threads as cores

• For 32 cores, BIS matches or 
outperforms all other 
approaches

• For tsp, ACS accelerates fewer 
bottlenecks, incuring fewer 
cache misses on the large core.
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Speedup Over a Single Small Core

• The more cores, the better BIS

• For small area budgets, large 
core replaces 3 small cores for 
ACMP/FDP, 4 small cores for 
ACS/BIS

• Loss of general purpose cores

• ACMP/FDP run only one thread 
on the large core

• ACS/BIS dedicate large core for 
critical sections and bottlenecks
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Optimal Number of Threads

• Area budget = 8; 4 small cores, 1 large core

• For small area budgets, large core replaces 3 small cores for 
ACMP/FDP, 4 for ACS/BIS

• SCMP uses all cores as normal
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Optimal Number of Threads
• 28 small cores, 1 large core

• SCMP loses its advantage

• For tsp we see that BIS underperforms ACS
• BIS accelerates more bottlenecks than ACS

• tsp bottlenecks are only 52 instructions long on average

• BIS incurs cache misses without Data Marshalling
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Data Marshaling

• Workloads with many small bottlenecks can incur «inter-segment» cache 
penalties

• The benefit of acceleration does not overcome the cost of cache misses

• With DM on average: BIS+DM +5.2%, ACS+DM +3.8%

• Especially tsp profits
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No free lunch

• SMT = Simultenous Multithreading

• Iplookup executes many independent critical sections
• Benefits from more large cores to accelerate

• Mysql-2 does not benefit from more large cores
• Cost of reducing number of concurrent threads is larger than the benefit of 

accelerating multiple critical sections
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Conclusion
• Bottleneck Identification and Scheduling (BIS) is the first general 

mechanism to identify most critical bottlenecks and accelerate them using 
Asymmetric Core Multi-Processor (ACMP)

• Particularly, BIS is the first approach to use multiple large cores for 
acceleration; with success

• BIS’ identification step improves coverage of bottlecks significantly over 
ACS/FDP

• BIS improves performance over ACS and FDP by 15% on average in 
bottleneck-intensive applications

• BIS benefits increase as number of cores increase
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Strengths
• Bottlenecks in multithreaded applications are important

• Simple mechanisms for identification & acceleration
• Minimal changes to software

• Comprehensive analysis of results
• Care taken to do fair comparisons
• Used representative workloads
• In-depth explanations of results

• Performance increase is significant
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Weaknesses
• Not designed to accelerate bottlenecks from multiple applications

• Performance is sensitive to workload and number of large/small 
cores

• «Large» number of cores needed to overcome benefit of more small 
cores

• Needs additional hardware (tables etc.)

• Black & white plots difficult to read
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Discussion
• How does varying the performance/cost multiple of the large cores change 

the evaluation?

• What would a complete system using BIS look like?
• How do you solve the problem of multiple applications wanting to use cores at the 

same time?
• What kind of additional performance costs do multiple applications introduce?

• How practical is the addition of hardware + 3 new instructions?
• Can this approach work in general or is it only worth it in specialized contexts?
• Which hardware environments use ACMP-like systems today?

• Which specific thing would have been the most important thing for future 
work to focus on?
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Interrupts
• Small core gets interrupted while waiting for large core:

• Wait until BottleneckDone or BottleneckCallAbort received
• Service interrupt

• Small core interrupted while BottleneckWaiting:
• Force finish instruction
• Service interrupt
• Re-execute instruction

• Large core interrupted while acclerating:
• Abort all bottlenecks on Scheduling Buffer
• Finish current bottlenecck
• Service interrupt
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