Bottleneck Identification and
Scheduling In Multithreaded
Applications

ASPLOS XVII, March 2012
Authors: José A. Joao, M. Aater Suleman, Onur Mutlu, Yale N. Patt

Presenter: Roman Meier

04.11.2021

Executive Summary

AProblem: Multi-threaded programs contain «bottlenecks»
A Bottlenecks force execution to be serialized
A Bottlenecks can vary in importance over time

AGoal: Identify bottlenecks & accelerate the most critical bottlenecks
using fast cores on an Asymetric Chip Multiprocessor (ACMP)

ASolution: Cooperative hardware/software fBottleneck Identification &
SchedulingoBIS
A Use special instructions to mark bottlenecks in software

A Accelerate most critical bottlenecks at runtime in hardware by scheduling
them on large cores in an ACMP system

A Outperforms previous approaches by 15%

ETHzlrich Seminar in Computer Architecture - HS2021

Outline

ABackground
APrevious Work

ABottleneck Identification and Scheduling
ABottleneck Identification
ABottleneck Acceleration

Almprovements & Details
AEvaluation

ACritique

ETHziirich

Outline

ABackground
APrevious Work

ABottleneck Identification and Scheduling
ABottleneck Identification
ABottleneck Acceleration

Almprovements & Details
AEvaluation

ACritique

ETHziirich

Types of Bottlenecks

AAmdah!| 6s serial portions
A Sections of the program with only one thread

ACritical Sections
ABarriers

APipeline Stages

ETHziirich

Critical Sections

AOnly one thread may enter the Critical Section at any time

. T2

T1

T3
T4

ETHziirich

10

Critical Sections

AOnly one thread may enter the Critical Section at any time

ETHziirich

T1 ¢ (N) 3
T2 N @
T3¢ (N))
T4 ¢ @) : . . | time
10 20 30 40 50 60 /70

Critical Sections

AOnly one thread may enter the Critical Section at any time

ETHziirich

T1 ¢ (N)
T2 (NI
T3¢ (N)
T4 ¢ @))I-I . | time
10 20 30 40 50 60 /70

Critical Section

AOnly one thread may enter the Critical Section at any tim

™ Idle

T1 ¢ (N] e msssssmsms===s

T2 C (N @ x (N))

T3 ¢ (N) @ C 1 EDe (»

T4((/I:I\I) ------ () .
\I/ | | @ , time
I I I I I I

e
()
N
-
(@)
-
N
-
@)
-
(@)
()
\I
-

ETHziirich

Critical Section

AOnly one thread may enter the Critical Section at any time

A~ Idle
T1 ¢ (N) S sssssssssssans C @)
T2 C (N X @ X (@) Yammmmmsn
T3¢ (N) @ x (N))
T4 ¢ (N NLLLLIT o X € .
- . | @ ~ ~ time
[| | [

e
()
N
-
(@)
-
N
-
1 |
-
o |
()
\I
-

ETHziirich

Critical Sections (CT)

Aldea: Execute Critical Section faster than the rest

N Idle N
T1 ¢ (N) e EEmmsmEEEEE . C @ X (N)
T2 (N @ (N) IELTTETY @ C1
T3¢ (N) @ C1 D (N) SELTTETY
T4 ¢ (N) NLLLLLL < X (N) p I
_/ | @ ~ time
[

—h
o
N |
-
W
o
1
-
AN
o
o2
o
\I
-

ETHziirich

Barriers

AEnsure that all threads synchronize before proceeding

T
T2
T3

T4 C—

ETHziirich

Barriers

AThreads may not finish at the same time

T1
T2
T3
T4

a8

7Y

e

7

ETHzlrich Seminar in Computer Architecture - HS2021

13

Barriers

AResult: Wasted time on all threads that finish early

T1 ()--------....I(.jl.e
T2 (
T3 ¢)
T4 C e EEsssEsssssEEsssEEEEa. ,
| I | | time

ETHzlrich Seminar in Computer Architecture - HS2021

Barriers

Aldea: Speed up the slowest thread

71| I N - i)

T2 ¢ pesmssmssssm=aas (J

T3 s —)

T4 l e R 1 | time
10 20 30 40 50 60 70

ETHziirich

Seminar in Computer Architecture - HS2021

15

Pipelining

AProgramming Paradigm to parallelize for-loops and similar

ACode in loop split into U stages

ETHziirich

i fori=1to N)

4 N
Loop code

_ /

Seminar in Computer Architecture - HS2021

16

Pipelining

AProgramming Paradigm to parallelize for-loops and similar

ACode in loop split into U stages

ffori=1toN

-

... // code in stage Aﬁ

L

i ... // code in stage B\

s

§
— ... // code in stage C
t10 t11 t12 time N /

ETHzlrich Seminar in Computer Architecture - HS2021

Pipelining

AProgramming Paradigm to parallelize for-loops and similar

ACode in loop split into U stages

ffori=1toN

-

... // code in stage Aﬁ

L

i ... // code in stage B\

s

§
— ... // code in stage C
t10 t11 t12 time N /

ETHzlrich Seminar in Computer Architecture - HS2021

Pipelining

AProgramming Paradigm to parallelize for-loops and similar

ACode in loop split into U stages

ffori=1toN

-

... // code in stage Aﬁ

L

BO

i ... // code in stage B\

s

§
— ... // code in stage C
t10 t11 t12 time N /

ETHziirich

Seminar in Computer Architecture - HS2021

19

Pipelining

AProgramming Paradigm to parallelize for-loops and similar

ACode in loop split into U stages

ffori=1toN

-

... // code in stage Aﬁ

L

BO

3

N

B1

i ... // code in stage B\

s

§
— ... // code in stage C
t10 t11 t12 time N /

ETHziirich

Seminar in Computer Architecture - HS2021

20

Pipelining T Ideal Parallel Scenario

Aldea: Run the stages in parallel

7 ™
PO
fori=1to N
P1 (... // code in stage A |
P .. // code In stage B\
[.. // code In stage C\
| | | | | | | | | | | | | /
| | [| | [| | [[[[[
time)
L 4L L Loy KLttt b, b,
. v

ETHziirich

Pipelining T Ideal Parallel Scenario

Aldea: Run the stages in parallel

7 ™
P~
PO |.\6_9/
fori=1to N
P1 (... // code in stage A |
P .. // code In stage B\
[.. // code In stage C\
| | | | | | | | | | | | | /
| | [| | [| | [[[[[
time)
L 4L L Loy KLttt b, b,
. v

ETHziirich

Pipelining T Ideal Parallel Scenario

Aldea: Run the stages in parallel

YA
PO \AQJAT)
— fori=1to N
P1 BO (... // code in stage A |
P2 (... // code in stage B
[.. // code In stage C\
| | | | | | | | | | | | | /
| | [| | [| | [[[[[
time)
L 4L L Loy KLttt b, b,
. v

ETHziirich

Pipelining T Ideal Parallel Scenario

Aldea: Run the stages in parallel

r ™
TS AYAR
PO \A0)A1)A2))
fori=1to N
P1 BO B1 (... // code in stage A |
Po a (... // code in stage B
e L - N
.. // code in stage C
| | | | | | | | | | | | | J
| | [| | [| | [[[[[
time)
L 4L L Loy KLttt b, b,
. /

ETHziirich

Pipelining T Ideal Parallel Scenario

ARun the stages in parallel

'd ™
TNV e A\ '_"\l Y™
o (A0)A1)A2)(A3)A4)AS |
fori=1to N
P1 Bo B1 B2 B3 B4 B5 (... // code in stage A |
P2 colci|c2/c3|calcs | o= WEEEEINEERD 1)
p. A AN AN AN AN vy - N
.. // code in stage C
e L I ’
time)
L 4L L Loy KLttt b, b,
. /

ETHziirich

Pipeline Stages in the Real World

AAgain: stages may take non-uniform time
AWe can vary the distribution of stages-to-cores as we like

T1
. T2
T3
T4

10 20 30 40 50 60 /70

ETHzlrich Seminar in Computer Architecture - HS2021 26

Pipeline Stages in the Real World

AAgain: stages may take non-uniform time
AWe can vary the distribution of stages-to-cores as we like

T1 C(51) »aahe.
T2 muunn=- (s1
T3 ((s2] X)
T4 ana mmns |
| I I | time

ETHzlrich Seminar in Computer Architecture - HS2021 27

Pipeline Stages in the Real World

AThe slowest stage causes others to wait

T1 T8 remnons AR
R PATTITEY an)me FIVEVE <
T3 (52 X X X >
T4 sun mmmal emma(mmna |
| I | fime
10 20 30 40 50 60 70

ETHziirich

Seminar in Computer Architecture - HS2021

28

Pipeline Stages in the Real World

AThe slowest stage causes others to wait
Aldea: accelerate stages causing bottlenecks

T1 C51) L G) FEPEYE o LEEREEEL

T2 meenen- X (S1] mmmmmns < P ETREEY <

T3 ((s2] X X X X X)

T4 ...:)....:)....:)....lc)....lc).... T
| |

ETHzlrich Seminar in Computer Architecture - HS2021

Outline

APrevious Work

ABottleneck Identification and Scheduling

ABottleneck Identification
ABottleneck Acceleration

Almprovements & Details
AEvaluation

ACritique

ETHzlrich Seminar in Computer Architecture - HS2021

30

Previous Work

AAsymmetric Chip Multiprocessor
AExecute serial phases on a large core
AExecute parallel phases on multiple large/small cores

AFeedback Directed Pipelining (FDP)

APure software framework
AAccelerates pipelined workloads using core-to-stage allocation

selection
AAccelerated Critical Sections (ACS)

AModifies an ACMP hardware Syste 1 gl

A Adds Instructions to mark Critical Sec... T2r===-== s e — ...

AAdds a fiCritical e © = ufferd

11 : : time
AAccelerates Critical Sections using —
10 20 30 40 50 60 70

ETHzlrich Seminar in Computer Architecture - HS2021 31

Outline

ABottleneck ldentification and Scheduling
Almprovements & Details
AEvaluation

ACritique

ETHzlrich Seminar in Computer Architecture - HS2021

32

Bottleneck Identification and Scheduling

AGoal: Identify and accelerate bottlenecks in multithreaded
applications to speed up execution overall.

AKey idea:

Aldentification: The most critical bottlenecks make other threads wait the
longest

AAcceleration: Use (multiple) large cores to accelerate bottlenecks

ABIS overview:
AMark potential bottlenecks in software
Aldentify critical bottlenecks at runtime
A Accelerate critical bottlenecks on large cores

ETHzlrich Seminar in Computer Architecture - HS2021 33

Bottleneck Identification and Scheduling

1. ldentification

AAnnotation
AHardware Components

ETHzlrich Seminar in Computer Architecture - HS2021

34

1. Bottleneck Identification

AMove bottlenecks into own function (de-inline)

AMark bottlenecks in software using three new instructions:

ABottleneckCall bid, targetPC

A Marks the beginning of a new bottleneck with a bottleneck-id
A TargetPC is the PC of the start of the bottleneck code

A BottleneckWait bid

A Waits for memory to change
A Similar to mwait
A BottleneckReturn bid

A Ends a bottleneck function
A Returns like normal function return

Aldentify critical bottlenecks at run-time

ETHzlrich Seminar in Computer Architecture - HS2021

35

Critical Section Annotation

call targetPC

targetPC: while canot acquire lock
mwalit
acquire lock
(...)
release lock
return

Critical Section Annotation

BottleneckCall bid, targetPC

targetPC: while canot acquire lock
mwalit
acquire lock
(...)
release lock
return

ETHzlrich Seminar in Computer Architecture - HS2021

37

Critical Section Annotation

targetPC:

ETHziirich

BottleneckCall bid, targetPC

while canot acquire lock
BottleneckWait bid
acquire lock

(...)

release lock
return

Seminar in Computer Architecture - HS2021

38

Critical Section Annotation

BottleneckCall bid, targetPC

targetPC: while canot acquire lock

ETHziirich

BottleneckWait bid
acquire lock

(...)

release lock
BottleneckReturn bid

Seminar in Computer Architecture - HS2021

39

Hardware 1 Single Large Core

AOne Bottleneck Table (BT)
A Saves metadata of bottlenecks

AEach small core has
Acceleration Index Table (AIT)
A Avoids accesses to BT

A Caches bid and accel_enable bit
for bottlenecks

AlLarge core has a Scheduling
Buffer (SB)

A Saves which bottlenecks are to
be executed on large core

BottleneckTable
(BT)

ETHzlrich Seminar in Computer Architecture - HS2021

Jauuodiau| diys2uo

Small Core

Acceleration
Index Table
(AIT)

Large Core

Scheduling
Buffer (SB)

40

Hardware 1 Bottleneck Table

ABottleneck Table holds
metadata for bottlenecks

BottleneckTable
(BT)
Almplemented as an

assoclative cache - ' -
ield Description

AEvict bottleneck with smallest

glilrg}ggr of Thread Waiting = Process ID

executers Current # of threads runningid

executer vec Bit vect of threads runninbid

Aralve Thread Waiting

CyCIES every p Tt T[CSfaleS {O _waiters sb Current # of threads on SB waiting fid
replace stalé entries [rwewvaimgoes]

large_core_id ID of large core

ETHzlrich Seminar in Computer Architecture - HS2021 41

Determine TWC for Bottlenecks

Small Core O Large Core O

BottleneckWait x4500

Bid=x4500, waiters=1ywc=0

Small Core 1

Bottleneck Tabls
(BT)

1%

ETHzlrich Seminar in Computer Architecture - HS2021

Determine TWC for Bottlenecks

Small Core O Large Core O

BottleneckWait x4500

Bid=x4500, waiters=1ywc=1

Small Core 1

Bottleneck Tabls
(BT)

1%

ETHzlrich Seminar in Computer Architecture - HS2021

Determine TWC for Bottlenecks

Small Core O

BottleneckWait x4500

Small Core 1

BottleneckWait x4500

Bid=x4500waiters=2 twc=1

)

Bottleneck Table
(BT)

ETHziirich

Seminar in Computer Architecture - HS2021

Large Core O

44

Determine TWC for Bottlenecks

Small Core O

BottleneckWait x4500

Small Core 1

BottleneckWait x4500

Bid=x4500, waiters=2yc=3

)

Bottleneck Table
(BT)

ETHziirich

Seminar in Computer Architecture - HS2021

Large Core O

45

Determine TWC for Bottlenecks

Small Core O

BottleneckWait x4500

Small Core 1

BottleneckWait x4500

Bid=x4500, waiters=2yc=5

)

Bottleneck Table
(BT)

ETHziirich

Seminar in Computer Architecture - HS2021

Large Core O

46

Bottleneck Identification and Scheduling

2. Acceleration
ACritical Bottleneck Selection

ETHzlrich Seminar in Computer Architecture - HS2021

47

2. Acceleration

AAccelerate bottleneck with highest Thread Waiting Cycles
(above threshold)

ADriven by insight that the most critical bottleneck is the one that
makes other threads wait the longest

ETHzlrich Seminar in Computer Architecture - HS2021 48

Bottleneck Acceleration

Small Core O Large Core O

Acceleration Index
Table (AIT)
| |
bid=x4600, twc=100
Bottleneck Table
(BT)

Acceleration Index
Table (AIT)

ETHzlrich Seminar in Computer Architecture - HS2021 49

Bottleneck Acceleration

Small Core O

BottleneckCall x4600

Threshold = 1000
No acceleration!

Acceleration Index
Table (AIT)

Small Core 1

| |
bid=x4600, twc=100

bid=x4700, twc=10000

Bottleneck Tabls
(BT)

1%

Acceleration Index
Table (AIT)

ETHziirich

Large Core O

Scheduling Buffer (SB]

Seminar in Computer Architecture - HS2021

50

Bottleneck Acceleration

Small Core O

Threshold = 1000

Executing Locally

BottleneckCall xaeUU

Acceleration Index
Table (AIT)

Small Core 1

Large Core O

bid=x4600, twc=100

bid=x4700, twc=1000(

Bottleneck Tabls

1%

(BT)

Acceleration Index
Table (AIT)

ETHziirich

Seminar in Computer Architecture - HS2021

Scheduling Buffer (SB]

51

Bottleneck Acceleration

Small Core O Threshold = 1000 Large Core O
Executing Locally .
BottleneckCall xa6UU Acceleration
Acceleration Index
Table (AIT) _ ’
bid=x4700, large core 0, accel_enable E1—1 bid=x4700, pc, sp, core|]
PIO=X4600, twc=100
Small Core 1 bld:X4700, twc=10000 SCheduIing Buffer (S B
BottleneckCall x4700 Bottleneck Table
(BT)
Acceleration Index

Table (AIT| hjg=x4700, large core 0, accel_enable £ 1

ETHzlrich Seminar in Computer Architecture - HS2021 52

2. Acceleration T Multiple Large Cores

AOne Scheduling Buffer per core

AEach enabled bottleneck assigned to fixed large core

APreserve cache locality
AAvoid large cores waiting on each other for same bottleneck

ABottleneck entry gains large core ID

AHow to accelerate:
ATop 0 bottlenecks assigned to 0 large cores
ARest assigned uniformly at random

AFor Simultaneous Multi-Threading (SMT): execute different
bottlenecks from same Scheduling Buffer

ETHzlrich Seminar in Computer Architecture - HS2021 54

Outline

ABackground
APrevious Work
ABottleneck ldentification and Scheduling

Almprovements & Details
AEvaluation

ACritique

ETHzlrich Seminar in Computer Architecture - HS2021

55

False Serialization

ASituation:
AGY 067Y,0 QYY) 1,0 QEOY) ¢, i nQQe&H QQ
ABoth are scheduled on the large core
A6"Y starts executing on large core, takes 2 seconds
A6"Y has to wait, ultimately takes 3 seconds until complete
ABetter: Execute 6”Y on small core and 6"Y on large core

ASolution: Abort bottleneck in Scheduling Buffer if
1. Bottleneck does not have highest Thread Waiting Cycles
2. Bottleneck could be run on small core

ETHzlrich Seminar in Computer Architecture - HS2021

56

Pre-emptive Acceleration

ASituation:
AWe schedule 6°Y on small core
A Other bottlenecks start executing but start waiting for 6”Y
A Thread Waiting Cycles of 6“Y increase, but it remains on small core
A Better: Run 6"Y on large core if 6"Y becomes critical

ASolution: Pre-emptive Mechanism

A On update of Thread Waiting Cycles:
1. If 6"Y has become the most critical bottleneck
2. If the number of executers is number of large cores

A Pre-empt small core and ship 6“Y to large core for execution
ASave fAarchitectur al stateo on stack etc.

APtrimary acceleration mechanism for both barriers and pipeline
stages

ETHzlrich Seminar in Computer Architecture - HS2021 57

Nested & Dependent Bottlenecks

ASituation:
A“Y is running 7Y, but waits for 6”Y
A"Y is waiting for 6°Y
A"Y is indirectly waiting for Y, 6Y is indirectly waiting for 6“Y!

ASolution:

AFollow dependency chain between bottlenecks until we find a «root
bottleneck»

AAdd current number of waiters for «child bottlenecks» to root

ANeed to know:

1. Which thread is executing which bottleneck

A Add executer_vec for each Bottleneck Table entry, one bit per hardware thread
2. Which bottleneck is being waited for

A Add Current Bottleneck Table (CBT)

ETHzlrich Seminar in Computer Architecture - HS2021

58

Current Bottleneck Table

AAdd Current Bottleneck
Table (CBT)

AMaps hardware thread ids
to bid of bottlenecks
currently being waited for
by the thread

BottleneckTable
(BT)

Current
Bottleneck Table
(CBT)

ETHzlrich Seminar in Computer Architecture - HS2021

Jauuodiau| diys2uo

Small Core

Acceleration
Index Table
(AIT)

Large Core

Scheduling
Buffer (SB)

59

Data Marshaling

ASituation:
AWnhen bottleneck is moved from small to large core cache state is lost
AExecution on large core will incur unnecessary cache misses

ASolution: Data Marshaling
Aldentify and «marshal» cache lines to remote core

ETHzlrich Seminar in Computer Architecture - HS2021

60

Outline

ABackground

APrevious Work

ABottleneck ldentification and Scheduling
Almprovements & Details

AEvaluation

ACritique

ETHzlrich Seminar in Computer Architecture - HS2021

61

Experimental Methodology

AWorkloads: Y with critical sections, ¢ with barriers, ¢ pipelined
applications

ASimulations on x86 cycle-level simulator

ASmall cores modeled after Intel Pentium
A 4GHz, in-order

AFast cores modeled after Intel Core 2
A 4GHz, out-of-order

ACaches: Private 32KB L1, private 256KB L2, shared 8MB L3

ETHzlrich Seminar in Computer Architecture - HS2021

62

Experimental Methodology

ASCMP I Symmetric Core Multi-Processor ABlS

A

U small cores

A0 large cores

AACMP | Asymmetric Core Multi-Processor A"Y 0 z T tsmall cores

A

A Large core always runs single-

AACS T Accelerated Critical Sections

A

1 large core, U

threaded code

1 large core, 0

A1 large core always runs single-
threaded code

Ao eentry BT

AU -entry CBT

A Each large core: “Yentry SB
A Each small core: o eentry AT

T small cores

T small cores

A Large core always runs single-

threaded code

A Large core accelerates critical

ETHziirich

sections

Seminar in Computer Architecture - HS2021

63

Bottleneck Identification

A Accuracy: identified bottlenecks on the critical path over total identified bottlenecks
A x ¢ BACS/FDP)to x & P(BIS)

A Coverage: fraction of program critical path that is actually identified as bottlenecks
A 0 w BACS/FDP) to U w BBIS)

Total fraction of time spent accelerating all code segmeénts

100+

=l _
m= A CS/FDP-non-crit

== ACS/FDP-critical
== B[S-non-critical
== B[S-critical

Execution time (%)
3

Lhi]

Fraction of time spent accelerating code on critical path
NS ’ ¥ .7 Y] x> RN 3
N cp& & 60'\50 %0\?@ <N & IS fcﬁ& &P

& &
\on '@% @ ‘@ %Q Q@p s

ETHzlrich Seminar in Computer Architecture - HS2021

Speedup over a single small core

AUse as many threads as cores

O = MN W 000

(d) mysql-3

ETHzlrich Seminar in Computer Architecture - HS2021

65

Speedup over a single small core

AUse as many threads as cores

AFor o ccores, BIS matches or
outperforms all other
approaches

O = MN W 000

816 32 64
(d) mysql-3

ETHzlrich Seminar in Computer Architecture - HS2021

66

Speedup over a single small core

AUse as many threads as cores

AFor o ccores, BIS matches or
outperforms all other
approaches

L A" B ¥ i A &) R o)

816 32 64

(a) 1plookup

ETHzlrich Seminar in Computer Architecture - HS2021

67

Speedup over a single small core

AUse as many threads as cores

AFor o ccores, BIS matches or
outperforms all other
approaches

O = M W P 00

AFor tsp, ACS accelerates fewer

bottlenecks, incuring fewer
cache misses on the large core.

ETHzlrich Seminar in Computer Architecture - HS2021

68

Speedup Over a Single Small Core

T l7ll T
| A 2RO\

AThe more cores, the better BIS

AFor small area budgets, large
core replaces g small cores for
ACMP/FDP, Tt small cores for
ACS/BIS

ALoss of general purpose cores

AACMP/FDP run only one thread
on the large core

AACS/BIS dedicate large core for
critical sections and bottlenecks

O =N W kA o N
¥ U

11 T

(d) mysql-3

"~ FOP —=— | 1§ FDP —=— ..
BIS —e—] BIS —e— |
1 1 | | 1 1

1 1 1 0
816 32 64 816 32 64 816 32 64

-
O=MNWhLArTIONNWOWO
T T T T T 1T

(k) rank (1) pagemine

ETHzlrich Seminar in Computer Architecture - HSZOglﬂ 69

Optimal Number of Threads

AArea budget = 8; T small cores, p large core

AFor small area budgets, large core replaces 3 small cores for
ACMP/FDP, 4 for ACS/BIS

ASCMP uses all cores as normal

-

6 -----l

ETHzlrich Seminar in Computer Architecture - HS2021

70

Optimal Number of Threads

Ac ysmall cores, p large core

ASCMP loses its advantage

Speedup norm. to ACMP (%)

i,
e ——— |

~ A O O B B
é@ -----1 l

o\ \\

ﬁf‘

,}}é’“
%

AFor tsp we see that BIS underperforms ACS
ABIS accelerates more bottlenecks than ACS
Atsp bottlenecks are only v gnstructions long on average
ABIS incurs cache misses without Data Marshalling

ETHzlrich Seminar in Computer Architecture - HS2021 71

Data Marshaling

AWorkloads with many small bottlenecks can incur «inter-segment» cache
penalties

A The benefit of acceleration does not overcome the cost of cache misses
AWith DM on average: BIS+DM u& b ACS+DM o& b
AEspecially tsp profits

~ 200 247 256 247 256

:lSO: 1

= 160 M

O 140

11120—:

. 100 -

£ 80

g o] = ACS/FDP

g- 40 = ACS/FDP+DM

=] = BIS

2 201

2 %) = BIS+DM
8 O W P N L & s
Ul SIS AN S QN ¥ & F & L
¢ & & ¢ N KR R ¢

FFFFe Sy Iy &8 TS

ETHzlrich Seminar in Computer Architecture - HS2021

No free lunch

ASMT = Simultenous Multithreading

Alplookup executes many independent critical sections
A Benefits from more large cores to accelerate

AMysql-2 does not benefit from more large cores

A Cost of reducing number of concurrent threads is larger than the benefit of
accelerating multiple critical sections

130 130
120 120
110
1004
S 90
< g0
2 701
S 60
g 504
o 40
30
201
10

0_

1 LC 1 LC SMT 2LC 2 LC SMT 3LC 3LCSMT 1LC 1 LC SMT 2LC 2LC SMT JLC 3LC SMT

(a) iplookup at 32-core area budget (b) mysql-2 at 16-core area budget

ETHzlrich Seminar in Computer Architecture - HS2021

73

Conclusion

ABottleneck Identification and S_c_hedulinlg (BIS) is the first general _
mechanism to identify most critical bottlenecks and accelerate them using

Asymmetric Core Multi-Processor (ACMP)

AParticularly, BIS is the first approach to use multiple large cores for
acceleration; with success

AB | Bléntification step improves coverage of bottlecks significantly over
ACS/FDP

ABIS improves performance over ACS and FDP by 15% on average in
bottleneck-intensive applications

ABIS benefits increase as number of cores increase

ETHzlrich Seminar in Computer Architecture - HS2021

74

Outline

ABackground
APrevious Work
ABottleneck ldentification and Scheduling

Almprovements & Details
AEvaluation

ACritique

ETHzlrich Seminar in Computer Architecture - HS2021

75

Strengths

ABottlenecks in multithreaded applications are important

ASimple mechanisms for identification & acceleration
AMinimal changes to software

AComprehensive analysis of results
ACare taken to do fair comparisons
AUsed representative workloads
AlIn-depth explanations of results

APerformance increase is significant

ETHziirich

Weaknesses

ANot designed to accelerate bottlenecks from multiple applications

APerformance is sensitive to workload and number of large/small
cores

A«Large» number of cores needed to overcome benefit of more small
cores

ANeeds additional hardware (tables etc.)

I == A CS/FDP-non-crit

I == A CS/FDP-critical
I == B[S-non-critical
== B]S-critical

ABlack & white plots difficult to read

ETHzlrich Seminar in Computer Architecture - HS2021 77

Discussion

AHow does varying the performance/cost multiple of the large cores change
the evaluation?

AWhat would a complete system using BIS look like?

A How do you solve the problem of multiple applications wanting to use cores at the
same time?

A What kind of additional performance costs do multiple applications introduce?

AHow practical is the addition of hardware + 3 new instructions?
A Can this approach work in general or is it only worth it in specialized contexts?
A Which hardware environments use ACMP-like systems today?

AWhich s]pecific thing would have been the most important thing for future
work to focus on?

ETHziirich

Bottleneck Identification and
Scheduling In Multithreaded
Applications

ASPLOS XVII, March 2012
Authors: José A. Joao, M. Aater Suleman, Onur Mutlu, Yale N. Patt

Presenter: Roman Meier

04.11.2021

Backup Slides

Interrupts

ASmall core gets interrupted while waiting for large core:
A Wait until BottleneckDone or BottleneckCallAbort received
A Service interrupt

ASmall core interrupted while BottleneckWait ing:
A Force finish instruction
A Service interrupt
A Re-execute instruction

ALarge core interrupted while acclerating:
A Abort all bottlenecks on Scheduling Buffer
A Finish current bottlenecck
A Service interrupt

ETHziirich

