
Bottleneck Identification and
Scheduling in Multithreaded

Applications

ASPLOS XVII, March 2012

Authors: José A. Joao, M. Aater Suleman, Onur Mutlu, Yale N. Patt

Presenter: Roman Meier

04.11.2021

Executive Summary
ÅProblem: Multi-threaded programs contain «bottlenecks»
ÅBottlenecks force execution to be serialized

ÅBottlenecks can vary in importance over time

ÅGoal: Identify bottlenecks & accelerate the most critical bottlenecks
using fast cores on an Asymetric Chip Multiprocessor (ACMP)

ÅSolution: Cooperative hardware/software ñBottleneck Identification &
SchedulingòBIS
ÅUse special instructions to mark bottlenecks in software

ÅAccelerate most critical bottlenecks at runtime in hardware by scheduling
them on large cores in an ACMP system

ÅOutperforms previous approaches by 15%

Seminar in Computer Architecture - HS2021 2

Outline
ÅBackground

ÅPrevious Work

ÅBottleneck Identification and Scheduling
ÅBottleneck Identification

ÅBottleneck Acceleration

ÅImprovements & Details

ÅEvaluation

ÅCritique

Seminar in Computer Architecture - HS2021 3

Outline
ÅBackground

ÅPrevious Work

ÅBottleneck Identification and Scheduling
ÅBottleneck Identification

ÅBottleneck Acceleration

ÅImprovements & Details

ÅEvaluation

ÅCritique

Seminar in Computer Architecture - HS2021 4

Types of Bottlenecks
ÅAmdahlôs serial portions
ÅSections of the program with only one thread

ÅCritical Sections

ÅBarriers

ÅPipeline Stages

Seminar in Computer Architecture - HS2021 5

Critical Sections
ÅOnly one thread may enter the Critical Section at any time

Seminar in Computer Architecture - HS2021 6

Critical Sections
ÅOnly one thread may enter the Critical Section at any time

7Seminar in Computer Architecture - HS2021

Critical Sections
ÅOnly one thread may enter the Critical Section at any time

8Seminar in Computer Architecture - HS2021

Critical Section
ÅOnly one thread may enter the Critical Section at any tim

9Seminar in Computer Architecture - HS2021

Critical Section
ÅOnly one thread may enter the Critical Section at any time

10Seminar in Computer Architecture - HS2021

Critical Sections (CT)
ÅIdea: Execute Critical Section faster than the rest

11Seminar in Computer Architecture - HS2021

Barriers
ÅEnsure that all threads synchronize before proceeding

12Seminar in Computer Architecture - HS2021

Barriers
ÅThreads may not finish at the same time

13Seminar in Computer Architecture - HS2021

Barriers
ÅResult: Wasted time on all threads that finish early

14Seminar in Computer Architecture - HS2021

Barriers
ÅIdea: Speed up the slowest thread

15Seminar in Computer Architecture - HS2021

Pipelining
ÅProgramming Paradigm to parallelize for-loops and similar

ÅCode in loop split into ὓ stages

16Seminar in Computer Architecture - HS2021

Loop code

Pipelining
ÅProgramming Paradigm to parallelize for-loops and similar

ÅCode in loop split into ὓ stages

17Seminar in Computer Architecture - HS2021

Pipelining
ÅProgramming Paradigm to parallelize for-loops and similar

ÅCode in loop split into ὓ stages

18Seminar in Computer Architecture - HS2021

Pipelining
ÅProgramming Paradigm to parallelize for-loops and similar

ÅCode in loop split into ὓ stages

19Seminar in Computer Architecture - HS2021

Pipelining
ÅProgramming Paradigm to parallelize for-loops and similar

ÅCode in loop split into ὓ stages

20Seminar in Computer Architecture - HS2021

Pipelining ïIdeal Parallel Scenario
ÅIdea: Run the stages in parallel

21Seminar in Computer Architecture - HS2021

Pipelining ïIdeal Parallel Scenario
ÅIdea: Run the stages in parallel

22Seminar in Computer Architecture - HS2021

Pipelining ïIdeal Parallel Scenario
ÅIdea: Run the stages in parallel

23Seminar in Computer Architecture - HS2021

Pipelining ïIdeal Parallel Scenario
ÅIdea: Run the stages in parallel

24Seminar in Computer Architecture - HS2021

Pipelining ïIdeal Parallel Scenario
ÅRun the stages in parallel

25Seminar in Computer Architecture - HS2021

Pipeline Stages in the Real World
ÅAgain: stages may take non-uniform time

ÅWe can vary the distribution of stages-to-cores as we like

26Seminar in Computer Architecture - HS2021

Pipeline Stages in the Real World
ÅAgain: stages may take non-uniform time

ÅWe can vary the distribution of stages-to-cores as we like

27Seminar in Computer Architecture - HS2021

Pipeline Stages in the Real World
ÅThe slowest stage causes others to wait

28Seminar in Computer Architecture - HS2021

Pipeline Stages in the Real World
ÅThe slowest stage causes others to wait

ÅIdea: accelerate stages causing bottlenecks

29Seminar in Computer Architecture - HS2021

Outline
ÅBackground

ÅPrevious Work

ÅBottleneck Identification and Scheduling
ÅBottleneck Identification

ÅBottleneck Acceleration

ÅImprovements & Details

ÅEvaluation

ÅCritique

Seminar in Computer Architecture - HS2021 30

Previous Work
ÅAsymmetric Chip Multiprocessor
ÅExecute serial phases on a large core
ÅExecute parallel phases on multiple large/small cores

ÅFeedback Directed Pipelining (FDP)
ÅPure software framework
ÅAccelerates pipelined workloads using core-to-stage allocation

selection

ÅAccelerated Critical Sections (ACS)
ÅModifies an ACMP hardware system
ÅAdds Instructions to mark Critical Sections

ÅAdds a ñCritical Section Request Bufferò to the large core

ÅAccelerates Critical Sections using a single large core

Seminar in Computer Architecture - HS2021 31

Outline
ÅProblem & Background

ÅPrevious Work

ÅBottleneck Identification and Scheduling

ÅImprovements & Details

ÅEvaluation

ÅCritique

Seminar in Computer Architecture - HS2021 32

Bottleneck Identification and Scheduling
ÅGoal: Identify and accelerate bottlenecks in multithreaded

applications to speed up execution overall.

ÅKey idea:
ÅIdentification: The most critical bottlenecks make other threads wait the

longest
ÅAcceleration: Use (multiple) large cores to accelerate bottlenecks

ÅBIS overview:
ÅMark potential bottlenecks in software
ÅIdentify critical bottlenecks at runtime
ÅAccelerate critical bottlenecks on large cores

Seminar in Computer Architecture - HS2021 33

Bottleneck Identification and Scheduling

1. Identification
ÅAnnotation

ÅHardware Components

2. Acceleration
ÅCritical Bottleneck Selection

Seminar in Computer Architecture - HS2021 34

1. Bottleneck Identification
ÅMove bottlenecks into own function (de-inline)

ÅMark bottlenecks in software using three new instructions:
ÅBottleneckCall bid, targetPC
ÅMarks the beginning of a new bottleneck with a bottleneck-id

ÅTargetPC is the PC of the start of the bottleneck code

ÅBottleneckWait bid
ÅWaits for memory to change

ÅSimilar to mwait

ÅBottleneckReturn bid
ÅEnds a bottleneck function

ÅReturns like normal function return

ÅIdentify critical bottlenecks at run-time

35Seminar in Computer Architecture - HS2021

Critical Section Annotation
call targetPC

targetPC: while canot acquire lock

mwait

acquire lock

(...)

release lock

return

36Seminar in Computer Architecture - HS2021

Critical Section Annotation
BottleneckCall bid, targetPC

targetPC: while canot acquire lock

mwait

acquire lock

(...)

release lock

return

37Seminar in Computer Architecture - HS2021

Critical Section Annotation
BottleneckCall bid, targetPC

targetPC: while canot acquire lock

BottleneckWait bid

acquire lock

(...)

release lock

return

38Seminar in Computer Architecture - HS2021

Critical Section Annotation
BottleneckCall bid, targetPC

targetPC: while canot acquire lock

BottleneckWait bid

acquire lock

(...)

release lock

BottleneckReturn bid

39Seminar in Computer Architecture - HS2021

Hardware ïSingle Large Core
ÅOne Bottleneck Table (BT)
ÅSaves metadata of bottlenecks

ÅEach small core has
Acceleration Index Table (AIT)
ÅAvoids accesses to BT

ÅCaches bid and accel_enable bit
for bottlenecks

ÅLarge core has a Scheduling
Buffer (SB)
ÅSaves which bottlenecks are to

be executed on large core

40

Small Core

Acceleration
Index Table

(AIT)

BottleneckTable
(BT)

Large Core

Scheduling
Buffer (SB)

O
n-ch

ip
 In

te
rco

n
n

e
ct

Seminar in Computer Architecture - HS2021

Hardware ïBottleneck Table
ÅBottleneck Table holds

metadata for bottlenecks

ÅImplemented as an
associative cache
ÅEvict bottleneck with smallest

number of Thread Waiting
Cycles

ÅHalve Thread Waiting
Cycles every ρππὯcycles to
replace stale entries

41

BottleneckTable
(BT)

Large Core

Scheduling
Buffer (SB)

Current
Bottleneck Table

(CBT)

Field Description

bid Bottleneck ID

pid Process ID

executers Current # of threads running bid

executer_vec Bit vect of threads running bid

waiters Current # of threads waiting for bid

waiters_sb Current # of threads on SB waiting for bid

TWC Thread waiting cycles

large_core_id ID of large core

Seminar in Computer Architecture - HS2021

Determine TWC for Bottlenecks

42

Small Core 0

Small Core 1

Large Core 0

Bottleneck Table
(BT)

BottleneckWait x4500

Bid=x4500, waiters=1, twc=0

Seminar in Computer Architecture - HS2021

Determine TWC for Bottlenecks

43

Small Core 0

Small Core 1

Large Core 0

Bottleneck Table
(BT)

BottleneckWait x4500

Bid=x4500, waiters=1, twc=1

Seminar in Computer Architecture - HS2021

Determine TWC for Bottlenecks

44

Small Core 0

Small Core 1

Large Core 0

Bottleneck Table
(BT)

BottleneckWait x4500

Bid=x4500, waiters=2, twc=1

BottleneckWait x4500

Seminar in Computer Architecture - HS2021

Determine TWC for Bottlenecks

45

Small Core 0

Small Core 1

Large Core 0

Bottleneck Table
(BT)

BottleneckWait x4500

Bid=x4500, waiters=2, twc=3

BottleneckWait x4500

Seminar in Computer Architecture - HS2021

Determine TWC for Bottlenecks

46

Small Core 0

Small Core 1

Large Core 0

Bottleneck Table
(BT)

BottleneckWait x4500

Bid=x4500, waiters=2, twc=5

BottleneckWait x4500

Seminar in Computer Architecture - HS2021

Bottleneck Identification and Scheduling

1. Identification
ÅAnnotation

ÅHardware Components

2. Acceleration
ÅCritical Bottleneck Selection

Seminar in Computer Architecture - HS2021 47

2. Acceleration
ÅAccelerate bottleneck with highest Thread Waiting Cycles

(above threshold)

ÅDriven by insight that the most critical bottleneck is the one that
makes other threads wait the longest

48Seminar in Computer Architecture - HS2021

Bottleneck Acceleration

49

Small Core 0

Small Core 1

Large Core 0

Bottleneck Table
(BT)

bid=x4600, twc=100

bid=x4700, twc=10000 Scheduling Buffer (SB)

Acceleration Index
Table (AIT)

Acceleration Index
Table (AIT)

Seminar in Computer Architecture - HS2021

Bottleneck Acceleration

50

Small Core 0

Small Core 1

Large Core 0

Bottleneck Table
(BT)

BottleneckCall x4600

bid=x4600, twc=100

bid=x4700, twc=10000 Scheduling Buffer (SB)

Acceleration Index
Table (AIT)

Acceleration Index
Table (AIT)

Seminar in Computer Architecture - HS2021

No acceleration!
Threshold = 1000

Bottleneck Acceleration

51

Small Core 0

Small Core 1

Large Core 0

Bottleneck Table
(BT)

BottleneckCall x4600

bid=x4600, twc=100

bid=x4700, twc=10000 Scheduling Buffer (SB)

Acceleration Index
Table (AIT)

Acceleration Index
Table (AIT)

Seminar in Computer Architecture - HS2021

Executing Locally

Threshold = 1000

Bottleneck Acceleration

52

Small Core 0

Small Core 1

Large Core 0

Bottleneck Table
(BT)

BottleneckCall x4600

bid=x4600, twc=100

bid=x4700, twc=10000 Scheduling Buffer (SB)

bid=x4700, pc, sp, core1

Acceleration Index
Table (AIT)

Acceleration Index
Table (AIT)bid=x4700, large core 0, accel_enable = 1

Seminar in Computer Architecture - HS2021

Executing Locally

BottleneckCall x4700

Threshold = 1000

Acceleration!

bid=x4700, large core 0, accel_enable = 1

bid=x4700, twc=10000

2. Acceleration ïMultiple Large Cores
ÅOne Scheduling Buffer per core

ÅEach enabled bottleneck assigned to fixed large core
ÅPreserve cache locality
ÅAvoid large cores waiting on each other for same bottleneck
ÅBottleneck entry gains large core ID

ÅHow to accelerate:
ÅTop ὔbottlenecks assigned to ὔlarge cores
ÅRest assigned uniformly at random

ÅFor Simultaneous Multi-Threading (SMT): execute different
bottlenecks from same Scheduling Buffer

54Seminar in Computer Architecture - HS2021

Outline
ÅBackground

ÅPrevious Work

ÅBottleneck Identification and Scheduling

ÅImprovements & Details

ÅEvaluation

ÅCritique

Seminar in Computer Architecture - HS2021 55

False Serialization
ÅSituation:
ÅὄὝ ὄὝ, ὸὭάὩὄὝ τ, ὸὭάὩὄὝ ς, ίὴὩὩὨόὴᾲὥὶὫὩς

ÅBoth are scheduled on the large core

ÅὄὝ starts executing on large core, takes 2 seconds

ÅὄὝ has to wait, ultimately takes 3 seconds until complete

ÅBetter: Execute ὄὝ on small core and ὄὝ on large core

ÅSolution: Abort bottleneck in Scheduling Buffer if
1. Bottleneck does not have highest Thread Waiting Cycles

2. Bottleneck could be run on small core

56Seminar in Computer Architecture - HS2021

Pre-emptive Acceleration
ÅSituation:
ÅWe schedule ὄὝ on small core
ÅOther bottlenecks start executing but start waiting for ὄὝ
ÅThread Waiting Cycles of ὄὝ increase, but it remains on small core
ÅBetter: Run ὄὝ on large core if ὄὝ becomes critical

ÅSolution: Pre-emptive Mechanism
ÅOn update of Thread Waiting Cycles:

1. If ὄὝ has become the most critical bottleneck
2. If the number of executers is number of large cores

ÅPre-empt small core and ship ὄὝ to large core for execution
ÅSave ñarchitectural stateò on stack etc.

ÅPrimary acceleration mechanism for both barriers and pipeline
stages

57Seminar in Computer Architecture - HS2021

Nested & Dependent Bottlenecks
ÅSituation:
ÅὝ is running ὄὝ, but waits for ὄὝ
ÅὝ is waiting for ὄὝ
ÅὝ is indirectly waiting for Ὕ, ὄὝ is indirectly waiting for ὄὝ!

ÅSolution:
ÅFollow dependency chain between bottlenecks until we find a «root

bottleneck»
ÅAdd current number of waiters for «child bottlenecks» to root
ÅNeed to know:

1. Which thread is executing which bottleneck
ÅAdd executer_vec for each Bottleneck Table entry, one bit per hardware thread

2. Which bottleneck is being waited for
ÅAdd Current Bottleneck Table (CBT)

58Seminar in Computer Architecture - HS2021

Current Bottleneck Table

ÅAdd Current Bottleneck
Table (CBT)

ÅMaps hardware thread ids
to bid of bottlenecks
currently being waited for
by the thread

59

Small Core

Acceleration
Index Table

(AIT)

BottleneckTable
(BT)

Large Core

Scheduling
Buffer (SB)

Current
Bottleneck Table

(CBT)

O
n-ch

ip
 In

te
rco

n
n

e
ct

Seminar in Computer Architecture - HS2021

Data Marshaling
ÅSituation:
ÅWhen bottleneck is moved from small to large core cache state is lost

ÅExecution on large core will incur unnecessary cache misses

ÅSolution: Data Marshaling
ÅIdentify and «marshal» cache lines to remote core

60Seminar in Computer Architecture - HS2021

Outline
ÅBackground

ÅPrevious Work

ÅBottleneck Identification and Scheduling

ÅImprovements & Details

ÅEvaluation

ÅCritique

Seminar in Computer Architecture - HS2021 61

Experimental Methodology
ÅWorkloads: ψwith critical sections, ςwith barriers, ςpipelined

applications

ÅSimulations on x86 cycle-level simulator
ÅSmall cores modeled after Intel Pentium
Å4GHz, in-order

ÅFast cores modeled after Intel Core 2
Å4GHz, out-of-order

ÅCaches: Private 32KB L1, private 256KB L2, shared 8MB L3

62Seminar in Computer Architecture - HS2021

Experimental Methodology
ÅSCMP ïSymmetric Core Multi-Processor

Åὔsmall cores

ÅACMP ïAsymmetric Core Multi-Processor

Å1 large core, ὔ τsmall cores

ÅLarge core always runs single-
threaded code

ÅACS ïAccelerated Critical Sections

Å1 large core, ὔ τsmall cores

ÅLarge core always runs single-
threaded code

ÅLarge core accelerates critical
sections

ÅBIS
Åὒlarge cores

ÅὛ ὔɀτὒsmall cores

Å1 large core always runs single-
threaded code

Åσς-entry BT

Åὔ-entry CBT

ÅEach large core: Ὓ-entry SB

ÅEach small core: σς-entry AT

63Seminar in Computer Architecture - HS2021

Bottleneck Identification
ÅAccuracy: identified bottlenecks on the critical path over total identified bottlenecks

ÅχςϷ(ACS/FDP) to χσȢυϷ(BIS)

ÅCoverage: fraction of program critical path that is actually identified as bottlenecks
ÅσωϷ(ACS/FDP) to υωϷ(BIS)

64

Total fraction of time spent accelerating all code segments

Fraction of time spent accelerating code on critical path

Seminar in Computer Architecture - HS2021

Speedup over a single small core

ÅUse as many threads as cores

65Seminar in Computer Architecture - HS2021

Speedup over a single small core

ÅUse as many threads as cores

ÅFor σςcores, BIS matches or
outperforms all other
approaches

66Seminar in Computer Architecture - HS2021

Speedup over a single small core

ÅUse as many threads as cores

ÅFor σςcores, BIS matches or
outperforms all other
approaches

67Seminar in Computer Architecture - HS2021

Speedup over a single small core

ÅUse as many threads as cores

ÅFor σςcores, BIS matches or
outperforms all other
approaches

ÅFor tsp, ACS accelerates fewer
bottlenecks, incuring fewer
cache misses on the large core.

68Seminar in Computer Architecture - HS2021

Speedup Over a Single Small Core

ÅThe more cores, the better BIS

ÅFor small area budgets, large
core replaces σsmall cores for
ACMP/FDP, τsmall cores for
ACS/BIS
ÅLoss of general purpose cores

ÅACMP/FDP run only one thread
on the large core

ÅACS/BIS dedicate large core for
critical sections and bottlenecks

69Seminar in Computer Architecture - HS2021

Optimal Number of Threads

ÅArea budget = 8; τsmall cores, ρlarge core

ÅFor small area budgets, large core replaces 3 small cores for
ACMP/FDP, 4 for ACS/BIS
ÅSCMP uses all cores as normal

70Seminar in Computer Architecture - HS2021

Optimal Number of Threads
Åςψsmall cores, ρlarge core

ÅSCMP loses its advantage

ÅFor tsp we see that BIS underperforms ACS
ÅBIS accelerates more bottlenecks than ACS

Åtsp bottlenecks are only υςinstructions long on average

ÅBIS incurs cache misses without Data Marshalling

71Seminar in Computer Architecture - HS2021

Data Marshaling

ÅWorkloads with many small bottlenecks can incur «inter-segment» cache
penalties
ÅThe benefit of acceleration does not overcome the cost of cache misses

ÅWith DM on average: BIS+DM υȢςϷ, ACS+DM σȢψϷ

ÅEspecially tsp profits

72Seminar in Computer Architecture - HS2021

No free lunch

ÅSMT = Simultenous Multithreading

ÅIplookup executes many independent critical sections
ÅBenefits from more large cores to accelerate

ÅMysql-2 does not benefit from more large cores
ÅCost of reducing number of concurrent threads is larger than the benefit of

accelerating multiple critical sections

73Seminar in Computer Architecture - HS2021

Conclusion
ÅBottleneck Identification and Scheduling (BIS) is the first general

mechanism to identify most critical bottlenecks and accelerate them using
Asymmetric Core Multi-Processor (ACMP)

ÅParticularly, BIS is the first approach to use multiple large cores for
acceleration; with success

ÅBISô identification step improves coverage of bottlecks significantly over
ACS/FDP

ÅBIS improves performance over ACS and FDP by 15% on average in
bottleneck-intensive applications

ÅBIS benefits increase as number of cores increase

74Seminar in Computer Architecture - HS2021

Outline
ÅBackground

ÅPrevious Work

ÅBottleneck Identification and Scheduling

ÅImprovements & Details

ÅEvaluation

ÅCritique

Seminar in Computer Architecture - HS2021 75

Strengths
ÅBottlenecks in multithreaded applications are important

ÅSimple mechanisms for identification & acceleration
ÅMinimal changes to software

ÅComprehensive analysis of results
ÅCare taken to do fair comparisons
ÅUsed representative workloads
ÅIn-depth explanations of results

ÅPerformance increase is significant

76Seminar in Computer Architecture - HS2021

Weaknesses
ÅNot designed to accelerate bottlenecks from multiple applications

ÅPerformance is sensitive to workload and number of large/small
cores

Å«Large» number of cores needed to overcome benefit of more small
cores

ÅNeeds additional hardware (tables etc.)

ÅBlack & white plots difficult to read

77Seminar in Computer Architecture - HS2021

Discussion
ÅHow does varying the performance/cost multiple of the large cores change

the evaluation?

ÅWhat would a complete system using BIS look like?
ÅHow do you solve the problem of multiple applications wanting to use cores at the

same time?
ÅWhat kind of additional performance costs do multiple applications introduce?

ÅHow practical is the addition of hardware + 3 new instructions?
ÅCan this approach work in general or is it only worth it in specialized contexts?
ÅWhich hardware environments use ACMP-like systems today?

ÅWhich specific thing would have been the most important thing for future
work to focus on?

78Seminar in Computer Architecture - HS2021

Bottleneck Identification and
Scheduling in Multithreaded

Applications

ASPLOS XVII, March 2012

Authors: José A. Joao, M. Aater Suleman, Onur Mutlu, Yale N. Patt

Presenter: Roman Meier

04.11.2021

Backup Slides

Seminar in Computer Architecture - HS2021 80

Interrupts
ÅSmall core gets interrupted while waiting for large core:
ÅWait until BottleneckDone or BottleneckCallAbort received
ÅService interrupt

ÅSmall core interrupted while BottleneckWait ing:
ÅForce finish instruction
ÅService interrupt
ÅRe-execute instruction

ÅLarge core interrupted while acclerating:
ÅAbort all bottlenecks on Scheduling Buffer
ÅFinish current bottlenecck
ÅService interrupt

81Seminar in Computer Architecture - HS2021

