
Bottleneck Identification and
Scheduling in Multithreaded

Applications

ASPLOS XVII, March 2012

Authors: José A. Joao, M. Aater Suleman, Onur Mutlu, Yale N. Patt

Presenter: Roman Meier

04.11.2021

Executive Summary
• Problem: Multi-threaded programs contain «bottlenecks»

• Bottlenecks force execution to be serialized

• Bottlenecks can vary in importance over time

• Goal: Identify bottlenecks & accelerate the most critical bottlenecks
using fast cores on an Asymetric Chip Multiprocessor (ACMP)

• Solution: Cooperative hardware/software “Bottleneck Identification &
Scheduling” BIS

• Use special instructions to mark bottlenecks in software

• Accelerate most critical bottlenecks at runtime in hardware by scheduling
them on large cores in an ACMP system

• Outperforms previous approaches by 15%

Seminar in Computer Architecture - HS2021 2

Outline
• Background

• Previous Work

• Bottleneck Identification and Scheduling
• Bottleneck Identification

• Bottleneck Acceleration

• Improvements & Details

• Evaluation

• Critique

Seminar in Computer Architecture - HS2021 3

Outline
• Background

• Previous Work

• Bottleneck Identification and Scheduling
• Bottleneck Identification

• Bottleneck Acceleration

• Improvements & Details

• Evaluation

• Critique

Seminar in Computer Architecture - HS2021 4

Types of Bottlenecks
• Amdahl’s serial portions

• Sections of the program with only one thread

• Critical Sections

• Barriers

• Pipeline Stages

Seminar in Computer Architecture - HS2021 5

Critical Sections
• Only one thread may enter the Critical Section at any time

Seminar in Computer Architecture - HS2021 6

Critical Sections
• Only one thread may enter the Critical Section at any time

7Seminar in Computer Architecture - HS2021

Critical Sections
• Only one thread may enter the Critical Section at any time

8Seminar in Computer Architecture - HS2021

Critical Section
• Only one thread may enter the Critical Section at any tim

9Seminar in Computer Architecture - HS2021

Critical Section
• Only one thread may enter the Critical Section at any time

10Seminar in Computer Architecture - HS2021

Critical Sections (CT)
• Idea: Execute Critical Section faster than the rest

11Seminar in Computer Architecture - HS2021

Barriers
• Ensure that all threads synchronize before proceeding

12Seminar in Computer Architecture - HS2021

Barriers
• Threads may not finish at the same time

13Seminar in Computer Architecture - HS2021

Barriers
• Result: Wasted time on all threads that finish early

14Seminar in Computer Architecture - HS2021

Barriers
• Idea: Speed up the slowest thread

15Seminar in Computer Architecture - HS2021

Pipelining
• Programming Paradigm to parallelize for-loops and similar

• Code in loop split into 𝑀 stages

16Seminar in Computer Architecture - HS2021

Loop code

Pipelining
• Programming Paradigm to parallelize for-loops and similar

• Code in loop split into 𝑀 stages

17Seminar in Computer Architecture - HS2021

Pipelining
• Programming Paradigm to parallelize for-loops and similar

• Code in loop split into 𝑀 stages

18Seminar in Computer Architecture - HS2021

Pipelining
• Programming Paradigm to parallelize for-loops and similar

• Code in loop split into 𝑀 stages

19Seminar in Computer Architecture - HS2021

Pipelining
• Programming Paradigm to parallelize for-loops and similar

• Code in loop split into 𝑀 stages

20Seminar in Computer Architecture - HS2021

Pipelining – Ideal Parallel Scenario
• Idea: Run the stages in parallel

21Seminar in Computer Architecture - HS2021

Pipelining – Ideal Parallel Scenario
• Idea: Run the stages in parallel

22Seminar in Computer Architecture - HS2021

Pipelining – Ideal Parallel Scenario
• Idea: Run the stages in parallel

23Seminar in Computer Architecture - HS2021

Pipelining – Ideal Parallel Scenario
• Idea: Run the stages in parallel

24Seminar in Computer Architecture - HS2021

Pipelining – Ideal Parallel Scenario
• Run the stages in parallel

25Seminar in Computer Architecture - HS2021

Pipeline Stages in the Real World
• Again: stages may take non-uniform time

• We can vary the distribution of stages-to-cores as we like

26Seminar in Computer Architecture - HS2021

Pipeline Stages in the Real World
• Again: stages may take non-uniform time

• We can vary the distribution of stages-to-cores as we like

27Seminar in Computer Architecture - HS2021

Pipeline Stages in the Real World
• The slowest stage causes others to wait

28Seminar in Computer Architecture - HS2021

Pipeline Stages in the Real World
• The slowest stage causes others to wait

• Idea: accelerate stages causing bottlenecks

29Seminar in Computer Architecture - HS2021

Outline
• Background

• Previous Work

• Bottleneck Identification and Scheduling
• Bottleneck Identification

• Bottleneck Acceleration

• Improvements & Details

• Evaluation

• Critique

Seminar in Computer Architecture - HS2021 30

Previous Work
• Asymmetric Chip Multiprocessor

• Execute serial phases on a large core
• Execute parallel phases on multiple large/small cores

• Feedback Directed Pipelining (FDP)
• Pure software framework
• Accelerates pipelined workloads using core-to-stage allocation

selection

• Accelerated Critical Sections (ACS)
• Modifies an ACMP hardware system

• Adds Instructions to mark Critical Sections

• Adds a “Critical Section Request Buffer” to the large core

• Accelerates Critical Sections using a single large core

Seminar in Computer Architecture - HS2021 31

Outline
• Problem & Background

• Previous Work

• Bottleneck Identification and Scheduling

• Improvements & Details

• Evaluation

• Critique

Seminar in Computer Architecture - HS2021 32

Bottleneck Identification and Scheduling
• Goal: Identify and accelerate bottlenecks in multithreaded

applications to speed up execution overall.

• Key idea:
• Identification: The most critical bottlenecks make other threads wait the

longest
• Acceleration: Use (multiple) large cores to accelerate bottlenecks

• BIS overview:
• Mark potential bottlenecks in software
• Identify critical bottlenecks at runtime
• Accelerate critical bottlenecks on large cores

Seminar in Computer Architecture - HS2021 33

Bottleneck Identification and Scheduling

1. Identification
• Annotation

• Hardware Components

2. Acceleration
• Critical Bottleneck Selection

Seminar in Computer Architecture - HS2021 34

1. Bottleneck Identification
• Move bottlenecks into own function (de-inline)

• Mark bottlenecks in software using three new instructions:
• BottleneckCall bid, targetPC

• Marks the beginning of a new bottleneck with a bottleneck-id

• TargetPC is the PC of the start of the bottleneck code

• BottleneckWait bid
• Waits for memory to change

• Similar to mwait

• BottleneckReturn bid
• Ends a bottleneck function

• Returns like normal function return

• Identify critical bottlenecks at run-time

35Seminar in Computer Architecture - HS2021

Critical Section Annotation
call targetPC

targetPC: while canot acquire lock

mwait

acquire lock

(...)

release lock

return

36Seminar in Computer Architecture - HS2021

Critical Section Annotation
BottleneckCall bid, targetPC

targetPC: while canot acquire lock

mwait

acquire lock

(...)

release lock

return

37Seminar in Computer Architecture - HS2021

Critical Section Annotation
BottleneckCall bid, targetPC

targetPC: while canot acquire lock

BottleneckWait bid

acquire lock

(...)

release lock

return

38Seminar in Computer Architecture - HS2021

Critical Section Annotation
BottleneckCall bid, targetPC

targetPC: while canot acquire lock

BottleneckWait bid

acquire lock

(...)

release lock

BottleneckReturn bid

39Seminar in Computer Architecture - HS2021

Hardware – Single Large Core
• One Bottleneck Table (BT)

• Saves metadata of bottlenecks

• Each small core has
Acceleration Index Table (AIT)

• Avoids accesses to BT

• Caches bid and accel_enable bit
for bottlenecks

• Large core has a Scheduling
Buffer (SB)

• Saves which bottlenecks are to
be executed on large core

40

Small Core

Acceleration
Index Table

(AIT)

BottleneckTable
(BT)

Large Core

Scheduling
Buffer (SB)

O
n

-ch
ip

 In
terco

n
n

e
ct

Seminar in Computer Architecture - HS2021

Hardware – Bottleneck Table
• Bottleneck Table holds

metadata for bottlenecks

• Implemented as an
associative cache

• Evict bottleneck with smallest
number of Thread Waiting
Cycles

• Halve Thread Waiting
Cycles every 100𝑘 cycles to
replace stale entries

41

BottleneckTable
(BT)

Large Core

Scheduling
Buffer (SB)

Current
Bottleneck Table

(CBT)

Field Description

bid Bottleneck ID

pid Process ID

executers Current # of threads running bid

executer_vec Bit vect of threads running bid

waiters Current # of threads waiting for bid

waiters_sb Current # of threads on SB waiting for bid

TWC Thread waiting cycles

large_core_id ID of large core

Seminar in Computer Architecture - HS2021

Determine TWC for Bottlenecks

42

Small Core 0

Small Core 1

Large Core 0

Bottleneck Table
(BT)

BottleneckWait x4500

Bid=x4500, waiters=1, twc=0

Seminar in Computer Architecture - HS2021

Determine TWC for Bottlenecks

43

Small Core 0

Small Core 1

Large Core 0

Bottleneck Table
(BT)

BottleneckWait x4500

Bid=x4500, waiters=1, twc=1

Seminar in Computer Architecture - HS2021

Determine TWC for Bottlenecks

44

Small Core 0

Small Core 1

Large Core 0

Bottleneck Table
(BT)

BottleneckWait x4500

Bid=x4500, waiters=2, twc=1

BottleneckWait x4500

Seminar in Computer Architecture - HS2021

Determine TWC for Bottlenecks

45

Small Core 0

Small Core 1

Large Core 0

Bottleneck Table
(BT)

BottleneckWait x4500

Bid=x4500, waiters=2, twc=3

BottleneckWait x4500

Seminar in Computer Architecture - HS2021

Determine TWC for Bottlenecks

46

Small Core 0

Small Core 1

Large Core 0

Bottleneck Table
(BT)

BottleneckWait x4500

Bid=x4500, waiters=2, twc=5

BottleneckWait x4500

Seminar in Computer Architecture - HS2021

Bottleneck Identification and Scheduling

1. Identification
• Annotation

• Hardware Components

2. Acceleration
• Critical Bottleneck Selection

Seminar in Computer Architecture - HS2021 47

2. Acceleration
• Accelerate bottleneck with highest Thread Waiting Cycles

(above threshold)

• Driven by insight that the most critical bottleneck is the one that
makes other threads wait the longest

48Seminar in Computer Architecture - HS2021

Bottleneck Acceleration

49

Small Core 0

Small Core 1

Large Core 0

Bottleneck Table
(BT)

bid=x4600, twc=100

bid=x4700, twc=10000 Scheduling Buffer (SB)

Acceleration Index
Table (AIT)

Acceleration Index
Table (AIT)

Seminar in Computer Architecture - HS2021

Bottleneck Acceleration

50

Small Core 0

Small Core 1

Large Core 0

Bottleneck Table
(BT)

BottleneckCall x4600

bid=x4600, twc=100

bid=x4700, twc=10000 Scheduling Buffer (SB)

Acceleration Index
Table (AIT)

Acceleration Index
Table (AIT)

Seminar in Computer Architecture - HS2021

No acceleration!
Threshold = 1000

Bottleneck Acceleration

51

Small Core 0

Small Core 1

Large Core 0

Bottleneck Table
(BT)

BottleneckCall x4600

bid=x4600, twc=100

bid=x4700, twc=10000 Scheduling Buffer (SB)

Acceleration Index
Table (AIT)

Acceleration Index
Table (AIT)

Seminar in Computer Architecture - HS2021

Executing Locally

Threshold = 1000

Bottleneck Acceleration

52

Small Core 0

Small Core 1

Large Core 0

Bottleneck Table
(BT)

BottleneckCall x4600

bid=x4600, twc=100

bid=x4700, twc=10000 Scheduling Buffer (SB)

bid=x4700, pc, sp, core1

Acceleration Index
Table (AIT)

Acceleration Index
Table (AIT) bid=x4700, large core 0, accel_enable = 1

Seminar in Computer Architecture - HS2021

Executing Locally

BottleneckCall x4700

Threshold = 1000

Acceleration!

bid=x4700, large core 0, accel_enable = 1

bid=x4700, twc=10000

2. Acceleration – Multiple Large Cores
• One Scheduling Buffer per core

• Each enabled bottleneck assigned to fixed large core
• Preserve cache locality
• Avoid large cores waiting on each other for same bottleneck
• Bottleneck entry gains large core ID

• How to accelerate:
• Top 𝑁 bottlenecks assigned to 𝑁 large cores
• Rest assigned uniformly at random

• For Simultaneous Multi-Threading (SMT): execute different
bottlenecks from same Scheduling Buffer

54Seminar in Computer Architecture - HS2021

Outline
• Background

• Previous Work

• Bottleneck Identification and Scheduling

• Improvements & Details

• Evaluation

• Critique

Seminar in Computer Architecture - HS2021 55

False Serialization
• Situation:

• 𝐵𝑇1 > 𝐵𝑇2, 𝑡𝑖𝑚𝑒 𝐵𝑇1 = 4, 𝑡𝑖𝑚𝑒 𝐵𝑇2 = 2, 𝑠𝑝𝑒𝑒𝑑𝑢𝑝_𝑙𝑎𝑟𝑔𝑒 = 2

• Both are scheduled on the large core

• 𝐵𝑇1 starts executing on large core, takes 2 seconds

• 𝐵𝑇2 has to wait, ultimately takes 3 seconds until complete

• Better: Execute 𝐵𝑇2 on small core and 𝐵𝑇1 on large core

• Solution: Abort bottleneck in Scheduling Buffer if
1. Bottleneck does not have highest Thread Waiting Cycles

2. Bottleneck could be run on small core

56Seminar in Computer Architecture - HS2021

Pre-emptive Acceleration
• Situation:

• We schedule 𝐵𝑇1 on small core
• Other bottlenecks start executing but start waiting for 𝐵𝑇1
• Thread Waiting Cycles of 𝐵𝑇1 increase, but it remains on small core
• Better: Run 𝐵𝑇1 on large core if 𝐵𝑇1 becomes critical

• Solution: Pre-emptive Mechanism
• On update of Thread Waiting Cycles:

1. If 𝐵𝑇1 has become the most critical bottleneck
2. If the number of executers is ≤ number of large cores

• Pre-empt small core and ship 𝐵𝑇1 to large core for execution
• Save “architectural state” on stack etc.

• Primary acceleration mechanism for both barriers and pipeline
stages

57Seminar in Computer Architecture - HS2021

Nested & Dependent Bottlenecks
• Situation:

• 𝑇1 is running 𝐵𝑇1, but waits for 𝐵𝑇2
• 𝑇2 is waiting for 𝐵𝑇1
• 𝑇2 is indirectly waiting for 𝑇1, 𝐵𝑇1 is indirectly waiting for 𝐵𝑇2!

• Solution:
• Follow dependency chain between bottlenecks until we find a «root

bottleneck»
• Add current number of waiters for «child bottlenecks» to root
• Need to know:

1. Which thread is executing which bottleneck
• Add executer_vec for each Bottleneck Table entry, one bit per hardware thread

2. Which bottleneck is being waited for
• Add Current Bottleneck Table (CBT)

58Seminar in Computer Architecture - HS2021

Current Bottleneck Table

• Add Current Bottleneck
Table (CBT)

• Maps hardware thread ids
to bid of bottlenecks
currently being waited for
by the thread

59

Small Core

Acceleration
Index Table

(AIT)

BottleneckTable
(BT)

Large Core

Scheduling
Buffer (SB)

Current
Bottleneck Table

(CBT)

O
n

-ch
ip

 In
terco

n
n

e
ct

Seminar in Computer Architecture - HS2021

Data Marshaling
• Situation:

• When bottleneck is moved from small to large core cache state is lost

• Execution on large core will incur unnecessary cache misses

• Solution: Data Marshaling
• Identify and «marshal» cache lines to remote core

60Seminar in Computer Architecture - HS2021

Outline
• Background

• Previous Work

• Bottleneck Identification and Scheduling

• Improvements & Details

• Evaluation

• Critique

Seminar in Computer Architecture - HS2021 61

Experimental Methodology
• Workloads: 8 with critical sections, 2 with barriers, 2 pipelined

applications

• Simulations on x86 cycle-level simulator
• Small cores modeled after Intel Pentium

• 4GHz, in-order

• Fast cores modeled after Intel Core 2
• 4GHz, out-of-order

• Caches: Private 32KB L1, private 256KB L2, shared 8MB L3

62Seminar in Computer Architecture - HS2021

Experimental Methodology
• SCMP – Symmetric Core Multi-Processor

• 𝑁 small cores

• ACMP – Asymmetric Core Multi-Processor

• 1 large core, 𝑁 − 4 small cores

• Large core always runs single-
threaded code

• ACS – Accelerated Critical Sections

• 1 large core, 𝑁 − 4 small cores

• Large core always runs single-
threaded code

• Large core accelerates critical
sections

• BIS
• 𝐿 large cores

• 𝑆 = 𝑁 – 4𝐿 small cores

• 1 large core always runs single-
threaded code

• 32-entry BT

• 𝑁-entry CBT

• Each large core: 𝑆-entry SB

• Each small core: 32-entry AT

63Seminar in Computer Architecture - HS2021

Bottleneck Identification
• Accuracy: identified bottlenecks on the critical path over total identified bottlenecks

• 72% (ACS/FDP) to 73.5% (BIS)

• Coverage: fraction of program critical path that is actually identified as bottlenecks
• 39% (ACS/FDP) to 59% (BIS)

64

Total fraction of time spent accelerating all code segments

Fraction of time spent accelerating code on critical path

Seminar in Computer Architecture - HS2021

Speedup over a single small core

• Use as many threads as cores

65Seminar in Computer Architecture - HS2021

Speedup over a single small core

• Use as many threads as cores

• For 32 cores, BIS matches or
outperforms all other
approaches

66Seminar in Computer Architecture - HS2021

Speedup over a single small core

• Use as many threads as cores

• For 32 cores, BIS matches or
outperforms all other
approaches

67Seminar in Computer Architecture - HS2021

Speedup over a single small core

• Use as many threads as cores

• For 32 cores, BIS matches or
outperforms all other
approaches

• For tsp, ACS accelerates fewer
bottlenecks, incuring fewer
cache misses on the large core.

68Seminar in Computer Architecture - HS2021

Speedup Over a Single Small Core

• The more cores, the better BIS

• For small area budgets, large
core replaces 3 small cores for
ACMP/FDP, 4 small cores for
ACS/BIS

• Loss of general purpose cores

• ACMP/FDP run only one thread
on the large core

• ACS/BIS dedicate large core for
critical sections and bottlenecks

69Seminar in Computer Architecture - HS2021

Optimal Number of Threads

• Area budget = 8; 4 small cores, 1 large core

• For small area budgets, large core replaces 3 small cores for
ACMP/FDP, 4 for ACS/BIS

• SCMP uses all cores as normal

70Seminar in Computer Architecture - HS2021

Optimal Number of Threads
• 28 small cores, 1 large core

• SCMP loses its advantage

• For tsp we see that BIS underperforms ACS
• BIS accelerates more bottlenecks than ACS

• tsp bottlenecks are only 52 instructions long on average

• BIS incurs cache misses without Data Marshalling

71Seminar in Computer Architecture - HS2021

Data Marshaling

• Workloads with many small bottlenecks can incur «inter-segment» cache
penalties

• The benefit of acceleration does not overcome the cost of cache misses

• With DM on average: BIS+DM +5.2%, ACS+DM +3.8%

• Especially tsp profits

72Seminar in Computer Architecture - HS2021

No free lunch

• SMT = Simultenous Multithreading

• Iplookup executes many independent critical sections
• Benefits from more large cores to accelerate

• Mysql-2 does not benefit from more large cores
• Cost of reducing number of concurrent threads is larger than the benefit of

accelerating multiple critical sections

73Seminar in Computer Architecture - HS2021

Conclusion
• Bottleneck Identification and Scheduling (BIS) is the first general

mechanism to identify most critical bottlenecks and accelerate them using
Asymmetric Core Multi-Processor (ACMP)

• Particularly, BIS is the first approach to use multiple large cores for
acceleration; with success

• BIS’ identification step improves coverage of bottlecks significantly over
ACS/FDP

• BIS improves performance over ACS and FDP by 15% on average in
bottleneck-intensive applications

• BIS benefits increase as number of cores increase

74Seminar in Computer Architecture - HS2021

Outline
• Background

• Previous Work

• Bottleneck Identification and Scheduling

• Improvements & Details

• Evaluation

• Critique

Seminar in Computer Architecture - HS2021 75

Strengths
• Bottlenecks in multithreaded applications are important

• Simple mechanisms for identification & acceleration
• Minimal changes to software

• Comprehensive analysis of results
• Care taken to do fair comparisons
• Used representative workloads
• In-depth explanations of results

• Performance increase is significant

76Seminar in Computer Architecture - HS2021

Weaknesses
• Not designed to accelerate bottlenecks from multiple applications

• Performance is sensitive to workload and number of large/small
cores

• «Large» number of cores needed to overcome benefit of more small
cores

• Needs additional hardware (tables etc.)

• Black & white plots difficult to read

77Seminar in Computer Architecture - HS2021

Discussion
• How does varying the performance/cost multiple of the large cores change

the evaluation?

• What would a complete system using BIS look like?
• How do you solve the problem of multiple applications wanting to use cores at the

same time?
• What kind of additional performance costs do multiple applications introduce?

• How practical is the addition of hardware + 3 new instructions?
• Can this approach work in general or is it only worth it in specialized contexts?
• Which hardware environments use ACMP-like systems today?

• Which specific thing would have been the most important thing for future
work to focus on?

78Seminar in Computer Architecture - HS2021

Bottleneck Identification and
Scheduling in Multithreaded

Applications

ASPLOS XVII, March 2012

Authors: José A. Joao, M. Aater Suleman, Onur Mutlu, Yale N. Patt

Presenter: Roman Meier

04.11.2021

Backup Slides

Seminar in Computer Architecture - HS2021 80

Interrupts
• Small core gets interrupted while waiting for large core:

• Wait until BottleneckDone or BottleneckCallAbort received
• Service interrupt

• Small core interrupted while BottleneckWaiting:
• Force finish instruction
• Service interrupt
• Re-execute instruction

• Large core interrupted while acclerating:
• Abort all bottlenecks on Scheduling Buffer
• Finish current bottlenecck
• Service interrupt

81Seminar in Computer Architecture - HS2021

