
ComputeDRAM: In-Memory Compute 
Using Off-the-Shelf DRAMs

Fei Gao
Department of Electrical Engineering

Princeton University

Georgios Tziantzioulis
Department of Electrical Engineering

Princeton University

David Wentzlaff
Department of Electrical Engineering

Princeton University

1

MICRO, 2019

Lorenzo Rai
1.4.2021

Seminar in Computer Architecture ETHZ – Spring 2021



Executive Summary
• Problem: Memory latency and bandwidth are a significant power and 

performance bottleneck in modern computing systems
• Goal: Perform in-memory computing using current off-the-shelf 

commodity DRAM and demonstrate a framework for arbitrary 
computations.
• Key Approach: Violate DRAM timing constraints to achieve non 

standard state
• Evaluation: Test feasibility and reliability of using 32 different modules 

from 7 different vendors. Performance and efficiency of AND/OR and 8-
bit ADD are tested on modules that can reliably perform the operations.
• Results:

• Nearly all chips can perform row copy on at least some rows
• 3 modules were able to perform AND/OR operations
• If an operation is possible then the reliability of the operation is high (between 

92.5% to 99.98% of rows that can perform AND or OR have 100% success rate)
• Peak throughput of 19 GOPS for 8-bit AND/OR and 2.46 GOPS for 8-bit ADD 2



Background, Problem & Goal

3



Memory Wall

4

CPU

Core

Core

Core

Core

Cache
M

em
or

y 
Co

nt
ro

lle
r

Memory Bus

M
em

or
y

• High power usage
• Limited bandwidth
• High latency

Goal: Eliminate unnecessary 
data movement



Idea: Move Computation to Memory

• Data doesn’t need to be moved from main memory to CPU for 
computation

• Reduced power usage of the memory bus
• Bandwidth is available for other data
• CPU is free to work on other stuff

5



How DRAM works

6DRAM Chip
Bank

I/O

Subarray

Ro
w

 D
ec

od
er

Sense amplifier / local row buffer

Columns / bitlines
Typically 8kB

Rows / wordlines
Typically 512

DRAM Cell
1 bit

I/O



DRAM Cell Operation

7

Wordline Bitline

Sense Amplifier 

Single DRAM cell consisting 
of a capacitor and transistor



DRAM Cell Operation

8

Wordline Bitline

Sense Amplifier 

• Bitline is precharged with Vdd/2

• After activation, charge from the cell pulls 
the bitline voltage towards the cell state

• Sense amplifier amplifies the deviation 
pulling the bitline either towards 0 or Vdd

𝑉𝑑𝑑 𝑉𝑑𝑑

0 0



DRAM Commands

9

Command

Data

DRAM Action

ACTIVATE

Open row Activate
sense amplifier

READ

Cache line

PRECHARGE

Close row Drive bitlines
to 𝑉𝑑𝑑/2

Row access strobe: 𝒕𝑹𝑨𝑺

Row precharge: 𝒕𝑹𝑷

Next ACT

To CPU

Minimum delay between ACTIVATE and 
the next PRECHARGE command

Minimum delay between PRECHARGE 
and the next ACTIVATE command

Modified slide from “Understanding Latency Variation in Modern DRAM Chips: Experimental Characterization, Analysis, and Optimization” by Onur Mutlu

https://people.inf.ethz.ch/omutlu/pub/understanding-latency-variation-in-DRAM-chips_sigmetrics16.pdf


In-Memory Copy

RowClone: Fast and Energy-Efficient 
In-DRAM Bulk Data Copy and Initialization

MICRO 2013

1. Open source row to copy data into 
row buffer

2. Open destination row to move row 
buffer data into destination

10



Logical Operations

Ambit: In-Memory Accelerator for 
Bulk Bitwise Operations Using 
Commodity DRAM Technology

MICRO 2017

• Open 3 rows at the same time
• Charge sharing forces line 

towards majority state

11



Logical Operations

12

AND

OR

Open a constant 0 row in addition to the 2 operands.
Majority high is only possible if both operands are high.

Open a constant 1 row in addition to the 2 operands.
Majority high is achieved if any of the operands are high.



Problems With Previous Ideas

• Requires redesign of memory or system architecture
• DRAM is a highly optimized low margin business → Expensive to change

13



Novelty, Key Approach and 
Ideas

14



Novelty

• Is it possible to perform in-memory copy and AND/OR computations 
using standard off-the-shelf commodity DRAM?
• Provide a framework to allow for arbitrary computation using the 

available DRAM commands.

15



Key Approach

• Purposefully violate DRAM timing constraints to achieve non standard 
state which will perform in memory computations

16

Command

DRAM Action

ACTIVATE

Open row Activate
sense amplifier

PRECHARGE

Close row Drive bitlines
to 𝑉𝑑𝑑/2

𝒕𝑹𝑨𝑺



Mechanisms

17



Row Copy in 
Practice

18

• Precharge is required. 
Otherwise subsequent 
activate is ignored

• Make T2 short to 
prevent the bitline from 
being pulled to Vdd/2

Command

DRAM Action

PRECHARGE

Close row Drive bitlines
to 𝑉𝑑𝑑/2

Interrupt this

𝒕𝑹𝑷



What About AND/OR?

19

• Rows need to all be opened before sense amplifiers get activated
• Row copy only has one row open at any time and sense amplifiers are 

activated in between

• Violate 𝑡𝑅𝐴𝑆 to prevent the activation of the sense amplifiers

ACTIVATE

Open row Activate
sense amplifier

Interrupt this

𝒕𝑹𝑨𝑺

Command

DRAM Action



How to Open 3 Rows at the Same Time?

• While switching between selected rows, address 
needs to be updated

• Select the right rows and be fast enough → intermediate 
rows get opened

20

Through testing the authors determined that address 
changes affect the opened rows as follows:
Considering the least significant 2 bits

R1 (From) R2 (To) R3 (Implicitly opened)

01 10 00

10 01 11

R1:XX01

R2:XX10

R3:XX00

Implicitly opened row



Charge Sharing

Ideally as along as all 3 rows are open the majority state should be the 
result

Reality however is different
• Rows aren’t all opened at the same time

• The row that is opened first has the more time to affect the bitline

21



Charge Sharing Results

R1 R2

R3
00 01 10 11

0 0 0 X 1

1 0 1 1 1

22

Use this combination for OR between R1 and R2Use this combination for AND between R2 and R3



Logical AND in 
Practice

23

• Interrupt activation of sense 
amplifiers with low T1

• Prevent closing of the activated 
rows by having no delay between 
the necessary PRECHARGE and 
the next ACTIVATE

Command

DRAM Action

PRECHARGE

Close row Drive bitlines
to 𝑉𝑑𝑑/2

Interrupt both of these

𝒕𝑹𝑷



Logical OR in 
Practice

24

• Interrupt activation of sense 
amplifiers with low T1

• Prevent closing of the activated 
rows by having no delay between 
the necessary PRECHARGE and 
the next ACTIVATE

Command

DRAM Action

PRECHARGE

Close row Drive bitlines
to 𝑉𝑑𝑑/2

Interrupt both of these

𝒕𝑹𝑷



“Bad” Rows

• Some rows are unusable for in-memory operations
• Manufacturing variations can cause problems with unequal capacitance
• Row remapping is employed when some rows are faulty causing addresses to 

not match up
• Deterioration during use can cause rows to become unusable even it they 

once were usable

25

Detect and exclude those rows from operations in software



Is This Enough for General Computation?

AND, OR are not enough to represent all formulas in 
boolean algebra

26

We need negation for functional completeness



The Negation Issue

It is possible to transform any formula with negation in such a way that 
the only negated terms are the inputs variables

see conjunctive normal form / disjunctive normal form

27

𝐴⨁𝐵 = 𝐴 ∨ 𝐵 ∧ 𝐴 ∧ 𝐵 = (�̅� ∧ 𝐵) ∨ (𝐴 ∧ *𝐵)

As long as we have the negated values of the input 
operands we can compute anything in boolean algebra

→ Precompute this on the CPU



The Negation Issue

28

(𝐴 ∨ 𝐵)⨁𝐵 We want to compute this directly without transformation

𝐴 ∨ 𝐵 = 𝐶 𝐶⨁𝐵 We need ̅𝐶 to compute 𝐶⨁𝐵

̅𝐶 = 𝐴 ∨ 𝐵 = �̅� ∧ *𝐵

Require any value to have both its non inverted as well as 
its inverted representation available

𝒗𝒂𝒍 = 𝒗, 0𝒗
Any computation we do has to compute both its result as well as the 

inverse of that result



The Negation Issue

29



The Negation Issue

• CPU needs to compute the inverse at the beginning
• Memory usage is doubled
• Every computation needs to calculate both the non inverted result 

as well as the inverted one.
• Approximately double the computations are required
• This can be improved by logical reduction of complex operations

30



Bit-Parallel Arithmetic

• Data is laid out in rows. Which is how 
data is typically laid out.

• Any operation is applied to all bits of a 
value in parallel

• Can compute AND/OR of up to 8kB in one 
operation

• Data can be directly accessed and used by 
the CPU

• There is no way to perform bit shift which is 
needed for general purpose computations

31

0 1 1 1 0 1

1 1 0 1 1 1

1 0 0 1 1 0

0 1 1 1 1 0

Sense amplifier

00

01

10

11

𝐴

𝐵
0 0 0 0 0 0 0 0 0 0 0 0

0

0 0

0

0 0

1 1 1 1 1

𝐴 ∧ 𝐵

This is a big problem



Bit-Serial Arithmetic

• Data is laid out in columns instead of rows

32

0

1

1

1

1

1

1

0

0

1

1

0

0

0

1

0

1

0

Sense amplifier

𝐴

𝐵

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

Reserved for 
computations

Constant rows 0

1

0

1

0

1

0

1



Bit-Serial Arithmetic

• Data is laid out in columns instead of rows

• Perform operations on each bit in a serial 
manner

• Allows very fine grained control of operations

• Can compute up to 64k values in parallel

• Latency is significantly higher

• Translation needed to read results back into the 
CPU (very expensive without special hardware)

• Memory available is limited by number of rows
33

0

1

0

1

1

1

1

1

0

1

1

0

0

1

1

0

0

1

0

0

1

0

1

0

0

1

Sense amplifier

𝐴

𝐵

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

0 1 0𝐴!
0 0 0 0

1 1 0

1

0𝐵!

𝐴! ∧ 𝐵!



Constraints
• Operands are overwritten by operations

• Copy needed before operation if operands are required again

• Operands must be in specific locations
• Need to be in specific location relative to each other

• Bit-serial operations require extensive data level parallelism to be 
efficient
• All computations need to be in the same subarray

• Inter subarray requires expensive copy through the memory controller and 
bus (what were trying to eliminate in the first place)

• Increased memory usage needed for arbitrary computations
• Constant 0 and 1 rows are required
• Need both inverted and non inverted data (can be optimized) 34



Methodology and Evaluation

35



Methodology

• Host system with FPGA acting as custom memory controller
• FPGA is running modified SoftMC, open source memory controller
• Data bus limited to either 400MHz or 800MHz

• Timings in results are quantized to multiples of 2.5ns

• Issued instructions are buffered on the FPGA
• Prevents PCIe bus latency issues

• 32 different DDR3 modules from 7 different vendors are evaluated.
• Reliability/feasibility is primary testing goal

36



Reminder

37

ACTIVATE ACTIVATEPRECHARGE

T1
Violates 𝒕𝑹𝑨𝑺

T2
Violates 𝒕𝑹𝑷

Row 1 Row 2

• Delay will be displayed as the number of idle clock cycles. 1 cycle is 
equivalent to 2.5ns



Results

38



All Results

39



Reliability

40

If a cell is capable of performing a 
operation then reliability is very high

• 53.9% to 96.9% of rows have a 100% 
success rate when performing row copy

• 92.5% to 99.98% of rows have a 100% 
success rate when performing AND/OR

CDF

CDF

Almost 100% 
success rate

Highest degree 
of variation

Worst success ratio

Fast success ratio drop 
is desirable

Makes it easy to 
determine suitable rows



Performance

Row copy SHIFT AND OR XOR ADD

18 36 172 172 444 1332

41

Number of clock cycles needed to perform the operation on 1 row (i.e. 1 bit)

• Throughput is dependent on high parallelism 
• Assuming that all columns are used:
• Row copy has a peak bandwidth of 182 GB/s
• 8-bit AND/OR has a peak throughput of 19 GOPS 
• 8-bit ADD has a peak throughput of 2.46 GOPS



Energy Efficiency

• Energy usage was modelled using VAMPIRE
• Energy cost model assumes all DRAM commands finish

• In this case though commands are interrupted
• This is likely a conservative estimate

• 347x more energy efficient than vector unit for copying
• 48x more energy efficient than vector unit for 8-bit AND/OR
• 9.3x more energy efficient than vector unit for 8-bit ADD

42



Executive Summary
• Problem: Memory latency and bandwidth are a significant power and 

performance bottleneck in modern computing systems
• Goal: Perform in-memory computing using current off-the-shelf 

commodity DRAM and demonstrate a framework for arbitrary 
computations.
• Key Approach: Violate DRAM timing constraints to achieve non 

standard state
• Evaluation: Test feasibility and reliability of using 32 different modules 

from 7 different vendors. Performance and efficiency of AND/OR and 8-
bit ADD are tested on modules that can reliably perform the operations.
• Results:

• Nearly all chips can perform row copy on at least some rows
• 3 modules were able to perform AND/OR operations
• If an operation is possible then the reliability of the operation is high (between 

92.5% to 99.98% of rows that can perform AND or OR have 100% success rate)
• Peak throughput of 19 GOPS for 8-bit AND/OR and 2.46 GOPS for 8-bit ADD 43



Strengths of the Paper

• Almost no changes in DRAM are required
• Creative approach to solve the negation issue
• Allows highly efficient and performant parallel computations
• Memory can be used for both computing and storage

• Very flexible as subarrays can be switched between being used for computing 
and storage

• Compiler optimizations could reduce many of the inefficiencies in the 
proposed solutions

• If nothing else this paper illustrated that the mechanisms presented 
by RowClone and Ambit are reliable and feasible

44



Weaknesses
• Only intra subarray computations are efficient
• End to end integration is required

• Significant redesign of memory controllers are needed
• System and application software need to implement the features

• Operations on many independent data is required for efficiency
• What happens before and after one computation batch?

• Need to have negated values available
• Doubled memory usage
• Precomputation is needed

• Paper is unfortunately worded implying they invented the row copy and 
AND/OR operation mechanism. (They did prove it works without 
modifications)

45



Thoughts and Ideas

46



Enable Inter Subarray Bulk Data Copy

• Reduces the impact of duplicate data arising from negation 
framework

• Computations are no longer limited to 253 bits since multiple subarrays can 
now be used for storage

47

Low-Cost Inter-Linked Subarrays (LISA):Enabling Fast 
Inter-Subarray Data Movement in DRAM



Add Translation Logic to Memory Controller

• Let memory controller handle translation between bit-serial and 
bit-parallel representation

• No need for expensive translation on CPU

48



Remove Subarrays That Are Used for Computation 
From the Addressable Memory Pool

• Eliminates cache coherence issues
• CPU can’t process bit-serial data anyways so not much is lost

• With added effort this can be made dynamic

49



Discussion

50



Is it worth adding special purpose negation logic 
to DRAM over the presented framework?

51



What kind of software changes need to happen to 
use this?

52



Is it worth it for developers to support this in 
addition to specialized accelerators?

53



How widely applicable is this mechanism?

54



What optimizations could be enabled by 
performing operations in a bit-serial manner?

55


