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ABSTRACT

Physically Unclonable Functions (PUFs) have proved to be an ef-
fective and low-cost measure against counterfeiting by providing
device authentication and secure key storage services. Memory
based PUF implementations are an attractive option due to the ubiq-
uitous nature of memory in electronic devices and the requirement
of minimal (or no) additional circuitry., DRAM based PUFs are
particularly advantageous due to their large address space and mul-
tiple controllable parameters during response generation. However,
prior works on DRAM PUFs use a static response generation mech-
anism making them vulnerable to security attacks. Further, they
result in very slow device authentication, are not applicable to off-
the-shelf DRAM modules, or require DRAM power cycling prior
to authentication.

In this paper, we propose D-PUF, an intrinsically reconfigurable
DRAM PUF based on refresh pausing. A key feature of the pro-
posed DRAM PUF is that it can be reconfigured by varying the
refresh-pause interval, which changes it’s challenge-response be-
havior, making it robust against various attacks. We use the PUF to
design a secure, low-overhead methodology for performing device
authentication. The design is implemented and validated using an
Altera Stratix IV GX FPGA based Terasic TR4-230 development
board and several off-the-shelf 1GB DDR3 DRAM modules. Our
experimental results demonstrate a 4 . 3X—6 . 4X reduction in au-
thentication time, compared to previous work. Using controlled
temperature and accelerated aging tests, we also demonstrate the
robustness of our authentication mechanism to temperature varia-
tions and aging effects.
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eSecurity and privacy — Embedded systems security; Hard-
ware security implementation; eHardware — Dynamic memory;
Integrated circuits;
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1. INTRODUCTION

The last decade has seen a rapid proliferation of embedded com-
puting devices, fueled in part by the advent of the Internet-of-Things
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Figure 1: Examples of embedded systems containing DRAM

(IoT) era. The increasingly network-connected nature of these de-
vices, coupled with their ability to access potentially sensitive or
confidential information, has given rise to a plethora of new secu-
rity and privacy concerns. A particularly worrisome trend is the
growing number of counterfeit Integrated Circuits (ICs) and Intel-
lectual Property (IP) cores in these devices, which not only has
profound security and reliability implications, but has also led to
a tremendous revenue loss (estimated to be in excess of $100 bil-
lion in annual global revenue) to the electronics industry [1]. To
combat this challenge, researchers have proposed the use of vari-
ous hardware-intrinsic security mechanisms such as Physically Un-
clonable Functions (PUFs) [2], which have proved to be a secure,
low-cost, and robust authentication measure against issues of coun-
terfeiting and information leakage. PUFs exploit the random phys-
ical variations inherent to any manufacturing process to generate
device-specific and unclonable fingerprints. These unique finger-
prints can be used as the basis for a challenge-response mechanism
for device authentication or secure key generation.

While a large variety of PUF implementations have been pro-
posed, memory-based PUFs [3, 4, 5], in particular, are an attractive
candidate due to the ubiquitous presence of memory in virtually
every embedded system. Moreover, these memory-based PUFs do
not require any additional circuitry for their operation, giving them
a distinct advantage over other PUF implementations. One such
example of a memory-based PUF, which we focus on in this paper,
is based on Dynamic Random Access Memory (DRAM). DRAM
is used as main memory in a large number of modern embedded
systems (as illustrated in Figure 1) due to its high density and low
cost. As is well-known, DRAM cells must be refreshed periodi-
cally to preserve the stored data. This need for refresh operations
also makes DRAM an attractive candidate for use as a PUF, espe-
cially for challenge-response based authentication [3, 4, 6]. The
key idea of a DRAM PUF based on refresh pausing is as follows (a
more detailed explanation is given in Section 3). If data is stored in
a large (say 64KB) block of DRAM cells and refresh operations to
the entire block are paused for an extended amount of time (hence-
forth referred to as the refresh-pause interval), some of the DRAM
cells in the block will lose their data. How many and which cells
in the DRAM block lose their contents (for a given refresh-pause
interval) is unique to a device and can, therefore, be used as the
basis for implementing a PUF.

Prior approaches to DRAM-based PUFs suffer from several short-
comings such as low speed of authentication [3], non-applicability
to commercial off-the-shelf (COTS) devices [6], and the need for



power cycling the DRAM module prior to authentication [4]. More-
over, the near static nature of the response generation mechanism
in some of the works [3, 4] makes them vulnerable to various secu-
rity attacks [7]. To address these limitations, we propose a DRAM
PUF based on refresh pausing that not only supports a very large
number of challenge-response pairs (CRPs) through the variation of
different parameters, but is also intrinsically reconfigurable, i.e., its
challenge-response behavior can be substantially modified without
the use of any additional circuitry. Hence, the PUF can be easily
implemented in most off-the-shelf systems and provides consid-
erable protection from various security attacks. Specifically, this
paper makes the following contributions:

e We perform a comprehensive error characterization of DRAM
modules by varying different parameters (refresh-pause interval,
data patterns, and temperature) to gain a deep insight into DRAM
behavior. This insight allows us to systematically select DRAM
blocks that are best suited for use as a PUF.

e We propose an intrinsically reconfigurable DRAM PUF (D-PUF),
based on refresh pausing, for device authentication. Reconfigu-
ration is achieved through variation of the refresh-pause interval
and changes the challenge-response behavior of the PUF, making
it robust against various attacks. We use D-PUF to design a se-
cure, low-overhead methodology for performing device authen-
tication. The methodology operates robustly even in the presence
of environmental and temporal variations.

e We implement D-PUF and our proposed authentication mech-
anism in a real system using off-the-shelf DRAM modules and

evaluate it thoroughly. In particular, we demonstrate a 4 . 3X-6.4X

reduction in authentication time, compared to previous work.
Using controlled temperature and accelerated aging tests, we
demonstrate the robustness of our authentication mechanism to
temperature and aging effects. Results demonstrate 100% true-
positive (successful authentication) rate for a 10°C temperature
variation with 0% false-positive rate. For a nine-month old DRAM
module, our authentication mechanism also ensured 100% true-
positive rate and 0% false-positive rate.

The remainder of this paper is organized as follows. Sec. 2
gives a brief description of DRAM operation and how PUFs work.
Sec. 3 explains the design of the proposed reconfigurable DRAM
PUF and the associated authentication methodology. Sec. 4 and
Sec. 5 describe our experimental setup and present the results of
our experiments, respectively. A discussion about implementation-
related considerations and a summary of prior work in the PUF
domain are provided in Sec. 6 and Sec. 7, respectively. Finally,
Sec. 8 concludes the paper.

2. BACKGROUND

Before describing our design, we briefly explain the principles
behind PUFs and DRAM refresh operation.

2.1 Physically Unclonable Functions

A PUF [2] maps a set of challenges to a set of responses based
on random physical variations during the manufacturing of a de-
vice (containing the PUF). As a result, the challenge-response be-
havior of the PUF is highly unpredictable. In addition, the fact
that it is impossible to manufacture a PUF with the same behavior
as another, makes it unclonable and unique. These features make
PUF an ideal candidate for generation of secret keys and authenti-
cation. Secret keys are used by various cryptographic applications
such as keyed-hash message authentication code (HMAC), encryp-
tion/decryption, efc., besides serving as unique fingerprints or sig-
natures that could be used to identify a device. PUFs enable the
generation of secret keys on demand rather than permanently stor-
ing them in non-volatile memory, drastically reducing the implica-
tions of physically invasive attacks. Authentication can be consid-
ered an extension of the above key generation process but involves
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Figure 2: Variation in DRAM cell leakage

a multiple challenge-response mechanism in order to authenticate
the target device. This is further explained in Sec. 3.

PUFs have been divided into two broad categories [8] - strong
PUFs and weak PUFs. Strong PUFs can support a very large num-
ber of CRPs and are well suited for authentication. Weak PUFs,
on the other hand, are primarily used for secret key generation as
they support a relatively much smaller number of CRPs. As will be
clear in the following sections, our proposed DRAM PUF closely
resembles a strong PUF.

2.2 Dynamic Random Access Memory

The fundamental building block of a DRAM module is a DRAM
bit-cell, which consists of a single capacitor and an access tran-
sistor, as shown in Figure 2. The bit-cells are arranged in a two-
dimensional matrix structure and carry a binary value of ‘0’ or ‘1°,
depending on whether the capacitors are in a fully charged or dis-
charged state. The capacitors, however, leak charge over time due
to various factors related to the non-ideality of the access transis-
tors, e.g., sub-threshold leakage, gate-induced drain leakage, etc.
This charge leakage will eventually result in loss of data stored in
the DRAM bit-cell after a certain time interval and hence, requires
the bit-cell to be refreshed (charge replenishment) periodically. The
memory controller, in charge of the DRAM module, uses a single
refresh rate for simplicity and refreshes each row every 64 ms (stan-
dard refresh interval) for guaranteeing data integrity.

3. DESIGN

Authentication involves the use of CRPs in order to authenti-
cate/identify a device, e.g., a client device trying to connect to
a restricted network first needs to be authenticated by a trusted
authority such as the network gateway. Towards this objective,
we present the design of our proposed intrinsically reconfigurable
DRAM PUF (D-PUF). Subsequently, we describe a secure, low-
overhead methodology that uses D-PUF and performs device au-
thentication without the need for additional cryptographic resources
that are used in traditional encrypted-password based methods. We
also provide a low-complexity algorithm for selecting the blocks
in D-PUF that ensure the minimum required entropy at the lowest
refresh-pause intervals.

3.1 D-PUF

We first describe the motivation behind our choice of DRAM for
implementing a PUF and then present our proposed design of an
intrinsically reconfigurable DRAM PUF.

3.1.1 Motivation

Memory-based PUFs have a distinct advantage over other PUF
implementations as they use components (SRAM, DRAM, erc.)
that are inherent to most modern embedded systems. Hence, they
require minimal or no additional circuitry for their operation and
could enable energy-efficient designs for emerging IoT devices [9].
Over the past few years, SRAM-based PUFs have been widely
studied and used as security primitives for various state-of-the art
systems [5, 10]. However, these PUFs suffer from several short-
comings such as limited entropy, requirement of power cycling,
high cost, etc., and are hence, limited to applications based on
secure key generation only. Authentication, however, demands a
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challenge-response mechanism utilizing multiple CRPs. DRAM
based PUFs, with their large address space, high density and dy-
namic challenge-response behavior, can generate a very large num-
ber of CRPs for use during authentication.

A light weight approach towards implementing DRAM PUFs is
to use refresh pausing. Refresh pausing involves stopping the re-
fresh operation in a DRAM module for a specified interval. In
other words, the refresh operation is carried out at an interval higher
than the standard 64 ms leading to improved memory performance
and refresh energy savings at the cost of bit-errors [11, 12]. In
DRAMs, inter-die and intra-die variations lead to highly variable
bit-cell strengths distributed randomly across different modules as
well as within a module. During refresh pausing, these variations
cause DRAM cells to leak charge at different rates (as shown in
Figure 2) resulting in highly random yet unique bit-errors in the
data stored in the DRAM module. We exploit this randomness (en-
tropy) to derive a fingerprint or secret key out of a DRAM module,
as well as generate CRPs for authentication. Moreover, the exis-
tence of bit-cells experiencing both ‘1° — ‘0 bit-flips (true-cells)
and ‘0 — ‘1’ bit-flips (anti-cells) [13] enables us to extract more
randomness out of the DRAM PUF.

3.1.2 Intrinsically reconfigurable DRAM PUF

Most DRAM PUF implementations are not strong PUFs and are
vulnerable to various sophisticated attacks [7]. One way of guard-
ing against such attacks is altering the challenge-response behavior
of a PUF, in other words, reconfiguring the PUF [10, 14, 15]. The
new challenge-response behavior is unpredictable and cannot be
modeled based on the knowledge of the PUF behavior before re-
configuration. Towards this end, we propose an intrinsically recon-
figurable DRAM PUF (D-PUF) based on refresh pausing. The re-
configurability is intrinsic in nature because our choice of refresh-
pause interval as the reconfiguration parameter enables alteration
of the PUF behavior without the requirement of any additional re-
source. Also, it must be noted that the refresh-pause intervals that
are chosen ensure considerable entropy difference before and after
reconfiguration. Hence, an attacker cannot predict the behavior of
the reconfigured PUF completely even if he knows the behavior of
the same before reconfiguration.

Next, we briefly describe the sequence of steps involved in the
generation of a response from D-PUF. A random binary bit-stream
of a particular size, referred to as challenge, is first written onto a
specified memory address in D-PUF, following which, the memory
controller pauses the refresh operation for a pre-decided time in-
terval. Next, the data bit-stream is read out from the same mem-
ory address and processed for subsequent error-correction using
some data already stored at the device containing the PUF. The
error corrected bit-stream is then sent out as the response. When-
ever needed, reconfiguration is carried out by simply changing the
refresh-pause interval associated with the generation of the response.

3.2 Design Overview

The overall authentication methodology is divided into three phases
- (i) characterization phase, (ii) enrollment phase, and (iii) authen-
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tication phase. Figures 6, 7, and 8 present flow diagrams of the
different phases. The dotted lines between the device (containing
the PUF) and the authenticator represent the interactions between
them, while the solid lines show the actions inside each of these
entities. The characterization phase ensures the usage of mini-
mum refresh-pause interval for authentication by carrying out a
coarse-grained error characterization of the DRAM module used
as the PUF and simultaneously guarantees that it meets the mini-
mum required entropy. During enrollment phase, the PUF responds
to random challenges sent by an authenticator, generating a CRP
database that is stored at the latter. It is followed by the authenti-
cation phase, where responses are generated by the PUF for one or
more challenges picked from the CRP database. These responses
are then compared against the ones stored in the database; if there
is an exact match or the difference is within a small threshold, the
device containing the PUF is authenticated. Note that, by varying
different parameters associated with the generation of a response, a
very large number of CRPs can be generated for carrying out CRP-
based authentication. Hence, D-PUF closely resembles a strong
PUF. Figure 3 provides a high-level overview of the entire process.

Before delving into the details of the authentication methodol-
ogy, we define a few terms and briefly discuss our assumptions.
We also present the formats for the challenge and response used in
our design below.

3.2.1 Definitions and assumptions

e Device (D): An untrusted client device that requests authenti-
cation and contains D-PUF. It is assumed to possess sufficient
computational and memory resources to carry out error correc-
tion and store kilobytes of binary data. An example of such a
device is a smartphone.

e Reconfigurable DRAM PUF or D-PUF (P): The DRAM module
that implements PUF functionality in the device D. Note that,
when we mention that a response is generated by D, it should
be assumed that the same is actually generated by D-PUF (P)
present in D.

o Authenticator (A): A trusted party which authenticates the de-
vice D. A is assumed to have access to the CRP database and
limited information about the characteristics of the PUF present
in D. It possesses relatively greater computational and memory
resources than D in order to process and store gigabytes of data,
e.g., a server.

3.2.2 Challenge and response message format

In the proposed design, challenges and responses are represented
as 5-tuple and 2-tuple messages respectively, as depicted in Fig-
ure 4. An entry in the CRP database comprises of a challenge
message (CM) and a golden response message (GRM) (Sec. 3.2.4).
The response generated during authentication is referred to as a re-
sponse message (RM). Id refers to the index number assigned by
A to an entry in the CRP database. Bitstream is a random binary
sequence of size bytes generated by A (in a CM) or D (in an RM
and a GRM). In a CM, bitstream is the data written onto P while
in an RM and a GRM, it refers to the data read from P. Address
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Figure 5: Variation of bit-flips across different DRAM modules

specifies the start memory address in P where this write or read oc-
curs. Wrapper pattern represents a predefined binary sequence and
is explained next.

Wrapper pattern: We observed that the number, position, and
nature of bit-flips in a response generated by a memory block in P
were influenced by the peripheral data-bits surrounding the block
(Sec. 5.1.3). These peripheral data-bits, written just before the be-
ginning and after the end of the block, are collectively referred to as
wrapper data and are specified by a wrapper pattern. The wrapper
pattern is a part of the challenge message and can be one of several
predefined types, e.g., all 1s, all Os, checkered, efc. The challenge
bitstream is padded with the corresponding wrapper data before it
is written into the block. However, the wrapper data is not part of
the response message that is sent back to A. Wrapper pattern, thus,
serves as another variable parameter for CRP generation.

3.2.3 Characterization phase

Error characterization provides valuable insights into the behav-
ior of DRAM modules, some of which are presented below. These
insights enable D-PUF to have a lower authentication overhead
compared to prior art, while meeting the specified entropy require-
ments. In addition, characterization carried out at different temper-
atures guides the design of a robust authentication methodology.
Figure 5 shows the characterization results for two DRAM modules
at different refresh-pause intervals with other parameters remaining
the same. A few key observations from these characterization re-
sults that are leveraged in the D-PUF design are given below:

1. The choice of a conservative refresh-pause interval [3], though
satisfies entropy requirements, can lead to very slow authentica-
tion in refresh pausing based DRAM PUFs.

2. Given a refresh-pause interval, some blocks in the DRAM ad-
dress space may not contain the required entropy (bit-flips), mak-
ing them unsuitable for PUF operation. For example, only some
of the blocks in Module A satisfy an entropy requirement of 250
bit-flips at 40s refresh-pause interval, as shown in Figure 5(a).

3. The variation in entropy is more pronounced across modules,
making a constant refresh-pause interval potentially unsuitable
for some modules. For example, for the same entropy require-
ment of 250 bit-flips, a relatively lower interval of 20s is suit-
able for Module B, as shown in Figure 5(b), unlike in the case
of Module A.

4. Higher temperatures will result in an exponential rise in the
number of bit-flips, which can potentially hinder the authenti-
cation process, as described later in Sec. 5.3.1.
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Figure 6: D-PUF Characterization phase

A coarse-grained characterization of a DRAM module (P) was
carried out with standard input-data patterns and different refresh-
pause intervals, the details of which are given in Sec. 4. Figure 6
provides the flow diagram of our proposed characterization phase
where the numbers adjacent to each step specify the sequence of
steps followed during a phase. It starts with the generation of char-
acterization results as described in Sec. 4. It should be noted that
DRAM manufacturers may choose to provide these results in the
DRAM module itself, which could then be utilized by the PUF
designer. The authenticator uses these characterization results to
select blocks that meet the minimum entropy requirements at a
refresh-pause interval. The block selection process is presented as
pseudo-code in Algorithm 1 and is described next. Note that an at-
tacker may be able to get some insights into the DRAM behavior if
he has access to these characterization results. As a result, it needs
to be ensured that the characterization results are shared with the
authenticator securely. Therefore, we assume that the character-
ization phase occurs in a secure environment [10, 16, 17]. Also,
the characterization phase is much less frequent than the other two
phases as it occurs only before initial deployment or in case D runs
out of address space (in P) for the PUF operation.

Block selection: The characterization results provide insights
into the number, position, and nature of bit-flips within a particular
module, which could then be utilized to choose the best blocks with
respect to entropy requirements and at the optimum refresh-pause
intervals. Algorithm 1 describes the proposed algorithm for the se-
lection of blocks. During enrollment phase (Sec. 3.2.4), D sends
the characterization results of a sub-address space (S) (in P) for a
mutually-decided refresh-pause interval (f) and different input-data
patterns (C) to A. Block selection at A starts by finding the bit-
flip positions (represented as ‘1’ in F;) for each of the input-data
patterns followed by combining them to generate all possible bit-
flip positions (F). Beginning with the lowest specified block-size
first, selection of blocks is carried out such that they meet the min-
imum entropy requirements (E ). Ep represents the entropy of a
block b and is specified by the number of ‘1’s in F' corresponding
to that block. Moreover, the selected blocks are non-overlapping,
i.e., they do not share any memory address (and bit-flips) with each
other. Though it may seem like a conservative approach, it ensures
that the bit-flip positions are not shared among any two blocks and
hence, selects blocks with sufficient number of unique bit-flips.

An aggressive (very low) choice for refresh-pause interval may
lead to none (or very few) of the blocks in a particular sub-address
space (S) meeting the entropy requirements. Also, as the characteri-
zation process is computation and time-intensive, sufficient number
of blocks (greater then Np,;;) should be selected upfront to create
enough CRPs without the need for re-characterizing anytime soon.
In such a situation, A may request D to provide either the charac-



Algorithm 1: Pseudo-code for block selection

Input: I ={Iy,I5,....,Is}: Set of input data-patterns for
characterization,

C={Cy,Cy,....,Cn}: Set of characterization results of a

sub-address space S at a refresh-pause interval ¢ for different

input data-patterns,

Z=A{Zy,Z3,.....,Zn}: Set of specified block-sizes in

increasing order,

E nin = Minimum required entropy specified in terms of

number of bit-flips

Output: L = {L;,Ly,....,Lyn}: Set of list of selected blocks

where L; is the list of blocks with size Z;

1 F=¢,L={¢} // F represents combined
bit-flips for S

fori=1tondo
Fi=Ci®l; // Bitwise XOR
F=F+F; // Bitwise OR

L B; = Get_All_NonOverlapBlocks(S,Z;);

for k =1 tomdo
foreach b € By do

2
3
4
5 for j=1tomdo
6
7
8
9 Ey, = Get_Entropy(b,F)

10 if £, > E;i, then

11 OL = Check_Overlap(b,L)
12 if OL = False then

13 L Ly =LgUb

4 | L=LUL

terization results for a new sub-address space (') at ¢ or those for
S at a higher refresh-pause interval (/). The former will enable fast
authentication but will also exhaust the address space fast. This
may be suitable for PUFs that demand fast authentication but re-
quire a small number of CRPs or have a large address space. The
latter, on the contrary, will result in relatively slower authentication
but will also exhaust the address space slowly. This may be suit-
able for devices that can tolerate slower authentication but require
a large number of CRPs or have a small address space. The PUF
designer can take the decision based on the authentication speed
vs. available address space trade-off.

3.2.4 Enrollment phase

The enrollment phase primarily involves the generation of the
CRP database (Figure 4) and is also assumed to be carried out in
a secure environment [10, 16, 17]. Figure 7 presents the flow di-
agram for the enrollment phase. First, a refresh-pause interval ¢
is mutually decided by A and D. Initially, ¢ is the minimum inter-
val that meets entropy requirements but may assume higher values
later due to reconfiguration. Note that during an attack by an ad-
versary or scenarios such as exhaustion of usable CRPs, authen-
tication involving multiple authenticators, efc., P can start operat-
ing at a different interval, generating a new and unpredictable re-
sponse. Next, a sub-address space S (in P) is selected by D to be
used for PUF operation. This choice is based on available sub-
address spaces as well as results obtained from the characteriza-
tion phase. The CRP database is then generated by A by send-
ing challenge messages (CMs) to D, which responds by sending
back golden response messages (GRMs). The golden responses to-
gether with the corresponding challenges form entries in the CRP
database against which subsequent responses are compared during
the authentication phase. The helper data, for error correction, is
also generated during the enrollment phase (described next) and is
stored at D. Note that the effects of variable retention time (VRT)

Device (D) Authenticator (4)

1 [ Send enrollment request to 4 --»2 ?ecelve RO TG e T
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Figure 7: D-PUF Enrollment phase

during the generation of golden responses could be mitigated by
acquiring multiple instances of the golden responses (for the same
challenge) and taking a bit-wise intersection of the same.

Helper data for error correction: PUFs are governed by random
physical processes, which are affected by numerous environmental
and temporal variations. Error correction can be utilized to sup-
press some of these variations and enhance the reliability of the
response generation process. During the enrollment phase, some
redundant information is also generated from the golden responses
that is capable of correcting the subsequent responses from D. This
redundant information, known as helper data, is stored at D. In our
work, helper data was generated by implementing a lightweight er-
ror correction algorithm - (31,26) Hamming Encoder/Decoder in
software. Our experiments showed that this was enough to correct
most of the errors at room temperature (20°C) and ensured success-
ful authentication. Although more complex error correction [10]
can also be utilized, the choice is finally left to the PUF designer
and is orthogonal to the core idea of this work.

3.2.5 Authentication phase

Actual authentication of D is assumed to happen in an insecure
environment during the authentication phase and is depicted in Fig-
ure 8. It starts with a request for authentication from D, which is
followed by a challenge sent by A. A response is then generated by
D, corrected for errors, and sent to A. Upon receiving the response,
A calculates its hamming distance (HD) with the golden response
stored in the CRP database. This HD is then compared with the
match threshold (described next) to determine the authentication
outcome.

Match threshold: The existing error-correction infrastructure in
D may not be sufficient to correct all the errors in the response gen-
erated during the authentication phase. This is more pronounced
in DRAMs due to their high entropy (bit-flips) and susceptibility
to several environmental and temporal variations. In such sce-
narios, an exact match of the generated response with the CRP
database may not happen even if D is authentic. Hence, we fol-
low a fuzzy authentication strategy and define a match threshold
(MT), the maximum HD between the GRM bitstream and RM bit-
stream beyond which D is not authenticated. Refs. [5, 16] use a
similar technique for unique identification of devices.

In order to set the appropriate value of MT, we refer to Figure 13
that shows a probability distribution of the HD for five different
DRAM modules at three temperatures and 50 different CMs. MT
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is given as MT = u + ¢ + T, where u and G represent the mean
and standard deviation of the distribution (same-module compar-
isons). We include T to accommodate for environmental (tempera-
ture) and temporal (aging, variable retention time, efc.) variations.
This enables us to perform robust authentication even under high
variations. Sec. 5.3.2 explains this in detail. Note that setting the
match threshold can be done by the authenticator during the char-
acterization phase on the basis of characterization results and, thus,
represents a one-time overhead.

4. EXPERIMENTAL METHODOLOGY
4.1 Experimental Setup

This section provides a brief description of the experimental setup
used to validate the D-PUF design. All experiments were per-
formed using an Altera Stratix IV GX FPGA based Terasic TR4-
230 development board [18], consisting of a 1IGB SODIMM DDR3
DRAM. The entire experimental setup is shown in Figure 9.

The FPGA was programmed with a soft Nios II processor [19]
along with an Altera UniPHY DDR3 memory controller for con-
trolling the DRAM module. This controller provides the control
signals required to pause the refresh operations. In modern embed-
ded systems, these refresh control signals are usually exposed to
the lower layers of the operating system. A custom slave running
on the processor was also created, which can instruct the memory
controller to start and stop the refresh operations. A total of six
COTS 1GB DRAM DDR3 SODIMMs belonging to five different
manufacturers were used for the experiments. The temperature and
aging experiments were carried out by operating the DRAM mod-
ules inside the Quincy Lab 12-140E Incubator. Note that, during
validation, error-correction was performed using software running
on the Nios II processor, while the authentication was done on a
local computer connected directly to the FPGA.

4.2 Characterization Methodology

We now describe the details of the DRAM error characterization
process, which was performed in a number of sequential steps:

1. First, an input-data pattern was written throughout the selected
DRAM sub-address space. Subsequently, the DRAM was re-
freshed normally (at 64 ms) so that 100% data is retained.

2. Next, the custom slave (implemented on the FPGA) disabled
the refresh and waited for the selected refresh-pause interval,

SODIMM
DDR3 DRAM

Altera Stratix IV
FPGA

TR4-230
board

Temperature
control

Figure 9: Experimental setup

which was maintained by a precise timer controlled directly by
the FPGA hardware.

3. The data from the DRAM was then read out and normal refresh
operation was restored. The acquired data was compared with
the input-data to determine the number, position, and nature of
bit-flips.

4. This process was repeated for different data patterns (e.g., all
‘I’s, all ‘0’s, checkered pattern (alternate ‘0’s and °1’s), etc.,) as
well as different refresh-pause intervals (20s, 30s, 40s, 60s, 80s,
and 90s) and temperatures (20°C, 30°C, and 40°C).

In a real system, we envision that a fixed segment of the DRAM
(say 5%) will be dedicated for PUF functionality so that the DRAM
can be shared simultaneously with other tasks running on the de-
vice. For generic DDR DRAMEs, this segment can be selected ei-
ther randomly or by an initial lightweight characterization process,
where the PUF section will be refreshed at a much higher refresh
interval than the rest of the module. The Partial Array Self-Refresh
functionality [20] in LPDDRs inherently meets this requirement
and can refresh a portion of the DRAM at a different interval than
the standard 64 ms.

S. EXPERIMENTAL RESULTS

This section presents the results obtained from experiments con-
ducted to validate our work. It is divided into four parts. First, we
show the effects of variation of different parameters (refresh-pause
interval, block-size, and wrapper pattern) on the number of bit-
flips in one of the DRAM modules. An analysis of the results ob-
tained provides useful insights for setting design parameters asso-
ciated with the proposed authentication methodology. An unique-
ness analysis of the responses obtained from different DRAM mod-
ules as well as from different blocks belonging to the same DRAM
module is presented next and shows the effectiveness of D-PUF for
authentication. We then analyze the robustness of our proposed au-
thentication methodology under temperature and aging effects us-
ing five DRAM modules. Finally, we present the test results for the
authentication of a sample DRAM module.

5.1 Effects of Parameter Variations

We characterized 512 memory blocks in a DRAM module using
the process described in Sec. 4.2. The results are presented in Fig-
ures 10, 11, and 12. Table 1 provides a summary of the parameter
values used for each characterization.

5.1.1 Variation of bit-flips with refresh-pause inter-
val

As described in Sec. 3.1.2, reconfigurability is achieved in the

presented design by modifying the refresh-pause interval. Fig-

ures 10(a) and 10(b) show the variation of bit-flips with refresh-

pause interval across 512 blocks in a DRAM module. Figure 10(a)
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Table 1: Parameter values used in our evaluation
Figure | Pause-int. | BIK. size Address ‘Wrp. Pattern
Fig. 10 Varied 128 KB 0x38000000 — - - - All ‘0’s
Fig. 11 60s Varied 0x38000000 — - - - AIl“0’s
Fig. 12 60s 128 KB | 0x38000000 — - - - Varied

depicts the number of bit-flips across different blocks while Fig-
ure 10(b) shows the number of blocks having a particular number
of bit-flips. Assuming a minimum required entropy of 400 bit-flips,
it can be clearly seen that a refresh-pause interval of 20s is un-
suitable for PUF operation. On the other hand, an interval of 60s
generates entropy in excess of 1200 bit-flips across all the blocks
while 40s does it across some of the blocks, hence, both are suit-
able refresh-pause intervals. The entropy variation across suitable
intervals is quite high, thus, reinforcing our intuition for the use of
refresh-pause interval as the parameter for reconfiguration. More-
over, Figure 10 provides us the minimum interval (for the given
DRAM module) that meets the entropy requirements. As compared
to Ref. [3], our choice of the minimum refresh-pause interval (60s)
reduces the authentication time by 4. 3X for an entropy require-
ment of 512 bit-flips. Note that, the minimum interval may vary
from one module to another, e.g., generation of the same entropy
for some of the other modules required a minimum interval of 40s.

5.1.2  Variation of bit-flips with block-size

Blocks of different sizes starting at the same address can contain
widely varying bit-flips. Figures 11(a) and (b) show the variation
of bit-flips with block-size across 512 blocks in a DRAM module.
The block-size, which is a part of the challenge message, can be
varied to generate more CRPs for authentication. Also, for a rel-
atively resilient (to bit-flips) DRAM module, a designer may need
to use higher block-sizes at a given refresh-pause interval in order
to meet the minimum entropy requirements. For example, an en-
tropy of 1000 bit-flips is met by all 128 KB blocks and some 64 KB
blocks but not by any of the 32 KB blocks, as shown in Figure 11.
Characterization provides us with valuable insights for choosing
the minimum block-size for a given interval.

5.1.3  Variation of bit-flips with wrapper pattern

An interesting observation of the characterization process is the
variation of bit-flips in a block with the wrapper data (or pattern)
surrounding the block. Figure 12 shows the variation of bit-flips
with the wrapper pattern across 512 blocks in a DRAM module.
The wrapper pattern serves as an additional parameter that can be
varied to extract more entropy (and hence, more number of CRPs)
from a DRAM module. However, not all blocks respond to the
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Figure 11: Variation of bit-flips with block-size

variation in wrapper pattern, as is evident in the first half of Fig-
ure 12(a). Thus, a careful block-specific utilization of this parame-
ter is required. An off-shoot of this analysis is the revelation of the
pattern that generates maximum bit-flips (all ‘0’s here), enhancing
the entropy of the block.

5.2 Uniqueness Analysis

In order to demonstrate the uniqueness offered by D-PUF, we
generated response bit-streams (or fingerprints) from five different
DRAM modules using the same refresh-pause interval and other
parameters. This is shown in Figure 15, where different colors rep-
resent the degree of variation in the number and position of bit-
flips in the generated bit-streams. A dark (blue) color represents
a smaller number of bit-flips in the corresponding location within
a block. Figure 16 gives a pictorial representation of the differ-
ent responses generated using the same refresh-pause interval and
other parameters (except address) from different blocks belonging
to a single DRAM module. It can be seen that the responses are
not only unique across different modules but also across different
blocks within a module. This goes to show the viability of D-PUF
for authentication.

5.3 Robustness Analysis

The reproducibility of responses (to the same challenge) under
varying operating conditions such as temperature and aging is im-
portant to PUF operation and is referred to as robustness. We quan-
tify robustness as the average HD resulting from the comparisons
between golden responses and the responses generated by D-PUF
during authentication. These comparisons are referred to as same-
module comparisons. Also, in order to demonstrate the unique-
ness of responses generated from different DRAM modules, we
compared the golden response generated by one module (for a par-
ticular challenge) with the corresponding responses (for the same
challenge) generated by all the other modules during authentica-
tion. We refer to such comparisons as different-module compar-
isons. While same-module comparisons produce the true-positive
(genuine authentication) rate, different-module comparisons give
an estimate of the probable false-postive (false authentication) rate.

We performed a robustness analysis of D-PUF under varying en-
vironmental and temporal conditions and present our results be-
low. The relative frequency refers to the fraction of total compar-
isons, either same-module or different-module, that yields a partic-
ular HD.

5.3.1 Robustness under temperature variations

Figure 13 shows the relative frequency versus HD correspond-
ing to 50 different challenges, each applied to five different DRAM
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modules at three different temperatures. The golden-responses were
generated at 20°C (during enrollment phase) while the responses
for authentication were generated at 20°C, 30°C, and 40°C (during
authentication phase). A total of 250 same-module comparisons
and 1000 different-module comparisons were made altogether for
the five modules. As shown, the maximum HD for same-module
comparisons was less than 27 at 30°C but rose exponentially at
40°C. Setting an MT of 27 authenticated all the five modules at
30°C for every challenge. However, at 40°C this led to a num-
ber of false-negatives. Hence, our design is robust under a tem-
perature variation of +10°C. Note that this range also depends on
the error correction algorithm utilized which happens to be (31,26)
Hamming Encoder/Decoder in our case. Beyond this range, ei-
ther re-enrollment needs to be performed at the new temperature
or a more powerful error correction algorithm needs to be used.
The HD margin between the same-module comparisons and the
different-module comparisons re-emphasizes the uniqueness of the
responses generated by different modules. The margin also plays
an important role in setting the appropriate value for MT at a par-
ticular temperature, as is described below.

5.3.2 Setting match threshold (MT)

Sec. 3.2.5 defines u, 6, and T that are used for determining MT.
p and o correspond to the temperature at which enrollment hap-
pens (20°C in our case) as shown in Figure 13(a). At 20°C, u+o
was observed to be ~ 2. T represents the maximum allowable HD
between responses (golden responses and responses during authen-
tication) due to temperature variations only and guarantees that au-
thentication is carried out with a high true-positive rate but, more
importantly, 0% false-positive rate. We consider T to be a fraction
of the minimum entropy (bit-flips) observed in a block and set it at
25% of the same. Hence, the MT equals 27 (= 2 + 25) for a min-
imum entropy of 100 bit-flips observed at 20°C. This value of T,
in turn, allows us to determine the temperature range within which
the CRP database generated at a particular temperature is valid. For
the choice of (31,26) Hamming Encoder/Decoder, this temperature
range came out to be close to £10°C when averaged over five dif-
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ferent modules, as depicted in Figure 13. This enabled us to use the
same CRP database (generated at 20°C) for 30°C too, achieving a
100% true-positive rate while also ensuring 0% false-positive rate.
However, aggressively setting the T value for incorporating higher
temperature ranges may lead to false positives during authentica-
tion, as shown in Figure 13(c), and should be avoided.

5.3.3 Robustness under aging

In order to approximate nine months of aging, one of the DRAM
modules was subjected to a temperature of 85°C for 48 hours (ac-
cording to the Arrhenius equation [21]).

Figure 14 gives the relative frequency (of same-module compar-
isons) versus HD before and after aging of a DRAM module for
50 different challenges at a constant temperature of 20°C. In an ap-
proach similar to addressing temperature variation, we also define T
with respect to aging (t4) and set the MT equal to 10. Note that the
enrollment was done at 20°C before the aging process was carried
out. As shown, aging seemed to generate much lesser HD as com-
pared to temperature variations. Setting an MT of 10 was enough
to successfully authenticate the module for every challenge.

5.4 Authentication of a sample DRAM mod-
ule

In order to verify our approach, we carried out authentication of
a sample DRAM module using 50 different challenges at three dif-
ferent temperatures. Figure 17 shows the results for the authentica-
tion test. We also used four other DRAM modules as false devices
(or attacker devices) and subjected them to the same challenges.
Their responses were compared against the golden responses of the
sample DRAM module and the corresponding HDs are depicted as
red bars in the figure. The enrollment was done at 20°C. We en-
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Figure 16: Unique responses generated from different blocks of DRAM Module 4 (Size = 128 KB, Wrapper pattern = All ‘0’s,
Refresh-pause interval = 60 s); Average HD = 503, Minimum HD = 486

sured a minimum entropy of 100 bit-flips again, which resulted in
an MT of 27 and an operational temperature range of £10°C. As
expected, we observed 100% true-positive rate at 20°C and 30°C.
40°C yielded a true-positive rate of 94%. Note that, by re-enrolling
at 30°C or by employing a more powerful error correction algo-
rithm, a 100% true-positive rate could have been achieved at 40°C.
At all temperatures, the wide margin between the MT and the HDs
from false modules guaranteed that there were no false authentica-
tions, i.e., 0% false-positive rate.

6. DISCUSSIONS

6.1 Attack Scenarios and Assumptions

Before describing our attacker model, we state our assumptions
for D-PUF (P). First, the responses generated by P are assumed
to be unpredictable and P itself is unclonable. The randomness
in bit-flips coupled with the reconfigurability of P validate this as-
sumption. Second, the characterization results of P are only shared
with the authenticator in a secure environment and are inaccessible
to an external entity.

We envision three major types of attack that could be mounted
on P — snooping-based, physical invasion-based, and replay attacks.
The most probable type, i.e., snooping-based attack, happens when
an attacker learns a subset of the CRPs corresponding to a partic-
ular block and refresh-pause interval, by passively listening to the
communication between D and A during the authentication phase.
The attacker could then employ sophisticated techniques such as
machine learning [7] to predict the behavior of P. However, the
probability of success for such an attack is very low due to the fol-
lowing reasons. First, if a different block is used for subsequent
authentications, it is near impossible for an attacker to predict the
response of the block based on the response of a known one due
to random yet unique bit-flips across different blocks (Figure 16).
Second, if the PUF is reconfigured, it becomes even more difficult
for the attacker. To explain this, we refer to Figure 10. Suppose,
passive snooping allows the attacker to have complete information
about the number, position, and nature of all the possible bit-flips of
a certain block (128 KB size) in P for the 40s refresh-pause interval.
The same block when used during another authentication phase,
employing 60s interval, would generate ~1400 new bit-flips. So,
the probability of predicting the correct response is extremely low

(close to ), given the limited number of times the

128x 1024><8C1400
attacker can request authentication. Third, even if the same block

is continued to be used for authentication, such an attack could be
prevented by generating (and using) challenges (Sec. 6.3) that uti-
lize some minimum unique entropy (or bit-flips).

The second type of attack requires a highly skilled and well
equipped attacker. Through physically invasive means, he/she can
access the DRAM module in D and characterize it to learn about
all the possible bit-flips in the module. However, such an attack is
unlikely due to the following reasons. First, the attacker needs to
possess the DRAM module for a sufficiently long period of time to
be able to characterize it exhaustively. In the worst-case scenario,
he may be able to characterize a portion of the DRAM for a few
values of the parameters. But, the PUF can be easily reconfigured
preventing the attacker from predicting the DRAM behavior com-
pletely. Second, though the attacker may extract the helper data
(usually stored in the public NVM of D) that leaks some informa-
tion about the expected response, it is unusable as each challenge
(and the corresponding response and helper data) is used only once
during authentication.

Finally, replay attacks cannot be mounted on a PUF as a CRP is
never used twice during authentication.

6.2 Mitigation of Authentication Latency
Sometimes D-PUF may not be able to generate the response
for a challenge instantaneously due to a high refresh-pause inter-
val or non-availability of a sub-address space (due to the sharing
of DRAM among multiple applications). One potential way of
mitigating this latency is by piggybacking future challenges with
the current one and caching the corresponding responses within D,
which could be then sent during the next authentication cycle.

6.3 Generation of Challenge Bit-Stream

The randomly generated challenge may contain a bit-stream such
that none of the bits flip during response generation. For example,
a memory block containing only true-cells (‘1 — ‘0’ bit-flips),
when subjected to a challenge bit-stream containing all Os, would
generate a response same as the challenge itself. To prevent this,
the challenge bit-stream can be constructed with the help of the
characterization results obtained prior to enrollment. By putting
‘1’ and ‘0’ atthe true-cell and anti-cell positions respectively in
a challenge bit-stream, the inherent entropy of the module can be
properly utilized.

6.4 Temperature-Specific CRP Database

In order to ensure robust authentication across varying tempera-
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Figure 17: Authentication of a sample DRAM module (Mod. 6)

tures, temperature-specific CRP databases could be utilized in con-
junction with the match threshold technique. During authentica-
tion, the device can send its operating temperature as a part of the
authentication request. The authenticator can accordingly select the
challenge from the appropriate CRP database.

7. RELATED WORK

One of the earliest works on PUFs was carried out in Ref. [22],
resulting in an optical PUF based on the scatter pattern of a laser
beam. Ref. [2] introduced the concept of silicon PUFs and pro-
vided various circuit realizations that could be integrated into an
electronic circuit. Due to this ease of integration, silicon PUFs have
become extremely popular in present day implementations. Some
of the notable works on silicon PUFs are mentioned next.

Ring Oscillator and Arbiter PUFs [23] exploit the inherent de-
lay characteristics in IC components for authentication and gener-
ation of secret keys. However, both these implementations require
dedicated circuitry that is added solely for the PUF operation and
present an area overhead. Memory-based PUFs, on the other hand,
utilize the memory module already present on the IC/SoC and do
not require any dedicated circuitry. For example, Ref. [5] used the
start-up state of an SRAM module to identify its fingerprint and
generate true random numbers. The start-up state approach has
also been used to derive a fingerprint out of a DRAM module, as
presented in Ref. [4]. However, both these approaches have an in-
herent disadvantage, i.e., they require power cycling of the memory
module for generating the responses, which may hinder the contin-
uous execution of applications.

7.1 DRAM PUFs

Reduction of the write-duty cycle in a DRAM module is em-
ployed in Ref. [6] to implement a strong PUF. However, the reduc-
tion is achieved by adding a delay generator to the write-circuitry
of the DRAM module. This not only requires very precise con-
trol over the write signal but is also not applicable to off-the-shelf
DRAM modules. Ref. [3] utilizes refresh pausing to generate unique
identifiers and random numbers from a DRAM module. However,
the work employs a constant refresh-pause interval of 256 - 8192 s
that may be considered too slow for authentication.

7.2 Reconfigurable PUFs

A parallel approach to the development of strong PUFs has fo-
cused on reconfiguration. Reconfigurable PUFs (rPUFs) [14, 15]
have a mechanism to transform themselves, generating a new and
unpredictable challenge-response behavior. Ref. [10] implements
a logically reconfigurable SRAM PUF for secure key storage by
hashing the start-up state of the SRAM with a stored bit-stream,
referred to as the logical state.

We proposed the design of an intrinsically reconfigurable strong
PUF based on refresh pausing in DRAM. Unlike Ref. [10], our
design enables reconfiguration without the requirement of any ad-
ditional hardware resource (e.g., private NVM) and hence, can be
applied to any commercially available DRAM module (in contrast
to Ref. [6]). It also alleviates the problem of a large refresh-pause
interval which was required in Ref. [3]. The refresh pausing ap-
proach also ensures that there is no need for power cycling, unlike
Ref. [4].

8. CONCLUSION

In this paper, we proposed an intrinsically reconfigurable DRAM
PUF based on refresh pausing and also presented a secure, low-
overhead methodology that uses the PUF for device authentication.
We validated our work on a real system using off-the-shelf DRAM
modules and evaluated it thoroughly. The overall design performed
robustly under various environmental and temporal variations and
achieved a 4 . 3X—6 . 4X reduction in authentication time compared
to prior work. We envision that our work will pave the way for the
wide adoption of DRAM PUFs into a large number of modern em-
bedded devices.
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