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Abstract—Given the increasing impact of Rowhammer, and
the dearth of adequate other hardware defenses, many in the
security community have pinned their hopes on error-correcting
code (ECC) memory as one of the few practical defenses against
Rowhammer attacks. Specifically, the expectation is that the ECC
algorithm will correct or detect any bits they manage to flip in
memory in real-world settings. However, the extent to which
ECC really protects against Rowhammer is an open research
question, due to two key challenges. First, the details of the ECC
implementations in commodity systems are not known. Second,
existing Rowhammer exploitation techniques cannot yield reliable
attacks in presence of ECC memory.

In this paper, we address both challenges and provide concrete
evidence of the susceptibility of ECC memory to Rowhammer at-
tacks. To address the first challenge, we describe a novel approach
that combines a custom-made hardware probe, Rowhammer bit
flips, and a cold boot attack to reverse engineer ECC functions
on commodity AMD and Intel processors. To address the second
challenge, we present ECCploit, a new Rowhammer attack based
on composable, data-controlled bit flips and a novel side channel
in the ECC memory controller. We show that, while ECC mem-
ory does reduce the attack surface for Rowhammer, ECCploit
still allows an attacker to mount reliable Rowhammer attacks
against vulnerable ECC memory on a variety of systems and
configurations. In addition, we show that, despite the non-trivial
constraints imposed by ECC, ECCploit can still be powerful in
practice and mimic the behavior of prior Rowhammer exploits.

I. INTRODUCTION

Originally designed to handle accidental and rare occur-

rences of data corruption in DRAM chips due to cosmic rays

or electrical interference [1]–[4], Error-Correcting Code (ECC)

memory is also perceived as one of the few effective bul-

warks against Rowhammer attacks [5]. These attacks exploit

a vulnerability in DRAM hardware that allows attackers to

flip bits in memory that should not be accessible to them [6].

Since the discovery of the Rowhammer vulnerability in 2014,

the security community has devised ever more worrying ex-

ploitation techniques. Starting with fairly simple, probabilistic

corruption of page tables from native x86 code [6], researchers

have extended the Rowhammer attack surface across all sorts

of computing systems (including PCs [6]–[8], clouds [9], [10],

and mobile devices [11], [12]), launching exploits from differ-

ent environments (such as native C binaries [6] and browser-

based JavaScript [7], [8], [12]), using a variety of processors

(notably x86 [6], ARM [11], and GPU [12]), against a variety

of targets (page tables [6], [11], encryption keys [10], object

pointers [7], repository URLs [10], and opcodes [13]), in

different types of memory (DDR3 [6] and DDR4 [11]). As

a result, Rowhammer has grown into a major security concern

in real-world settings.

Not surprisingly, there has been much speculation on the ef-

fectiveness of ECC memory in deterring real-world Rowham-

mer attacks [5], [6], [10], [11], [13], often hypothesizing

ECC memory would reduce Rowhammer to a denial-of-service

vulnerability [6], [13]. As a result, practical Rowhammer

exploits have thus far only targeted non-ECC-equipped plat-

forms. However, once the uncommon case, ECC-equipped

platforms are now on the rise, from large cloud providers (e.g.,

Amazon EC2 [14]) to high-end consumer platforms [15]. In

addition, ECC memory is increasingly deployed on low-power

platforms such as mobile and IoT devices to drop the DRAM

refresh rate below “safe” values and save power [16], [17].

It has therefore become important to quantitatively assess the

effectiveness of ECC memory as a Rowhammer mitigation.

ECC is able to correct n bit errors (with n ≥ 1) and

detect cases where more than n bits have flipped, up to some

maximum. For this purpose, ECC adds redundant ECC bits to

every data word that “check” the other bits. The combination

of the data bits and the ECC bits is known as a code word.

ECC ensures that if any bit in a valid code word changes, it

is no longer a valid code word. Thus, in a chipset with ECC

memory, attackers may still use Rowhammer to cause a bit

flip in physical memory, but the ECC mechanism immediately

catches it on the first subsequent access, and flips it back.

Since the probability of flipping exactly the right set of bits

to turn one valid code word into a new valid code word using

Rowhammer is extremely low, state-of-the-art Rowhammer

attacks either fail, or trigger uncorrectable errors, leading

to denial of service. Better still, modern processors apply

additional memory reliability measures such as data masking

(scrambling) to turn the data that the CPU really writes to main

memory into pseudo-random patterns—making it even harder

for an attacker to flip the right bits. The research question in

this paper is whether the assumption is true that Rowhammer

attacks are really not practical on ECC memory. In particular,

we examine the strength of ECC in several modern chipsets

and show that this is not the case: reliable attacks in real-world

settings are harder, but still possible.

To determine the exact protection offered by ECC, we

must know the details of the ECC algorithms. Unfortunately,

vendors such as Intel and AMD do not release these details.

Moreover, to the best of our knowledge, no prior work has

managed to reverse engineer the ECC functions. Important

contributions of this paper are therefore the recovered ECC

computation for popular chipsets and a detailed description of

the techniques to reverse engineer other ECC algorithms.

A major challenge in examining a DRAM’s susceptibility to
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Rowhammer on ECC memory, both for us and for attackers,

is detecting the bit flips in the first place. How do we even

know that we flipped a bit using Rowhammer, if the hardware

automatically flips it back when we try to read it? Phrased

differently, observing ECC errors is hard, precisely because

the hardware is designed to hide them. To solve this problem,

we describe a novel side channel that allows us to observe bit

flips even when the error correction functionality flips them

back when we read the corresponding memory location.

Armed with the ability to detect (correctable) bit flips

and knowledge of a fully reverse engineered ECC algorithm,

another challenge towards reliable attacks is to surgically

trigger the “right” combination of bit flips in a single code

word to bypass ECC. An invalid combination may be corrected

or, worse, trigger uncorrectable errors and crash the system. To

address this challenge, we develop a new Rowhammer attack

technique based on composable, data-controlled bit flips. The

key insight is that Rowhammer bit flips are data-dependent

and, if we study how specific data patterns determine the

triggering of individual bit flips, we can then reliably isolate/-

compose multiple bit flips by placing the “right” data patterns

in memory. Our attack, termed ECCploit, relies on such insight

to incrementally find an exploitable combination of bit flips

in a code word and bypass ECC memory.

Given the need to bypass ECC checks, such exploits are

more constrained compared to existing Rowhammer attacks.

For this reason, we reproduce known end-to-end exploits on

ECC memory and analyze the attack surface, that is the

probability of finding the bit flip patterns that bypass the

ECC checks for these exploits. While we do find that ECC

checks significantly reduce the Rowhammer attack surface,

we show ECCploit can still be used to successfully mount

Rowhammer exploits in practical settings. In addition, while

we evaluate ECCploit in an ideal scenario where the system is

configured properly to handle ECC errors (i.e., the worst case

for attackers), we find that in many systems this is not the case.

For example, while we expect a crash in case of uncorrectable

errors, sometimes the system does not immediately crash,

allowing for much simpler exploitation with ECC memory.

Contributions. Our main contribution is showing that ECC

memory, even when combined with data scrambling, does not

offer adequate protection against Rowhammer. We do so by:

• Describing a novel reverse engineering technique for re-

covering ECC implementations on commodity hardware.

• Identifying the ECC implementation on several popular

chipsets and investigating how commodity systems re-

spond to ECC exceptions.

• Presenting ECCploit, a new reliable Rowhammer attack

that leverages undocumented ECC implementation de-

tails, a novel side channel in the memory controller, and

composable, data-controlled bit flips. We show ECCploit
can be used for practical privilege escalation attacks by

reproducing existing exploits on ECC-based systems.

II. BACKGROUND

In the following, we provide a high-level description of the

DRAM architecture, the Rowhammer vulnerability, and ECC

properties we rely on for our ECCploit attack.

A. DRAM organization

Architecture. DRAM uses one of the last parallel buses in

modern systems. In a common setup, 64 lines connect a Dual

Inline Memory Module (DIMM) to the CPU forming a 64-bit

wide data bus. Multiple chips inside a DIMM form the 64 bits

of data every time DRAM is accessed. For example, with 8-bit

wide chips (i.e., 8x), eight chips are involved in each DRAM

read or write operation. Each chip consists of multiple banks.

Multiple rows of DRAM cells are stacked together to form

each of these banks. Cells are the smallest unit of storage in

DRAM and are built using a capacitor and an access transistor.

The amount of charge stored in the capacitors denotes the

value of one or zero depending on the charge level.

Accessing DRAM. The smallest unit of access inside DRAM

is a row. To access DRAM, the same bank is selected in all

chips and the data from the selected row is moved to a cache

called row buffer before being transmitted on the bus (i.e., row

activation). Subsequent accesses to addresses that map to the

same row will be served from the row buffer (i.e., row hit)

and addresses that map to a different row require writing the

contents of the row buffer back to the cells and moving the

target row into the row buffer (i.e., row miss).

Refresh. Given that DRAM cells are built from capacitors,

they lose charge and hence their value over time. To restore

the charge, the cells need to be recharged, a process called

DRAM refreshing. This process is orchestrated by the memory

controller, which is responsible for periodically refreshing

individual DRAM cells at a predetermined refresh rate. The

refresh rate is determined based on the expected amount of

charge leakage (e.g., dependent on the manufacturing process),

and the implementation constraints (e.g., presence of ECC).

Supporting ECC. Cosmic rays and other external events

can cause corruption in DRAM cells by changing the charge

levels in the capacitors [1]–[4]. To address this problem, ECC

memory stores extra parity bits (also known as control bits)

next to the data bits to correct these corruptions. DRAMs with

ECC support come with additional chips. The memory bus is

then enlarged with eight additional lines (i.e., 72-bit wide bus)

to transfer the control bits next to their data bits [18]–[21].

B. Rowhammer

As transistors become smaller, their reliability starts to

suffer. Kim et al. [5] showed that frequent activations of

the same row cause bits to flip in adjacent rows without
accessing them. The reason is the increased amount of charge

leakage from DRAM cell capacitors (built from transistors)

due to parasitic coupling and passing gate effects. Termed

the Rowhammer vulnerability, soon a plethora of attacks

abused a single bit flip to compromise desktops, laptops,

and mobile phones [6]–[8], [10]–[13]. Such attacks come in
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different variants, double-sided, single-sided, or one-location

Rowhammer [13]—depending on the aggressor row(s) used

by the attacker to corrupt the victim row—and exploit the fact

that Rowhammer bit flips are observable and reproducible.

All of these attacks have been executed on systems without

ECC and, while there has been speculation on the possibility of

bypassing simple ECC functions since the original Rowham-

mer paper [5], an end-to-end Rowhammer attack on ECC

memory on a real system has never been attempted for two

main reasons. First, ECC implementations on modern systems

are often undocumented and go beyond the simple SECDED

ECC which we describe shortly. Second, it is challenging to

trigger Rowhammer corruptions without triggering corrections

or crashes on a system protected by ECC. Before further

discussing these challenges, we need to understand how ECC

is currently implemented on modern commodity systems.

C. ECC in DRAM

In current designs, the only ECC-aware unit inside the

processor is its memory controller. Assuming the CPU wants

to write a message of k bits, the memory controller appends r
bits of redundant information for error correction and detection

and stores a codeword of n = k+r bits in DRAM. In practice,

CPU vendors choose k to be a multiple of a memory word

(64 bits) and r = k
8 . In fact, the ratio of redundant to data bits

(1-to-8) is embedded in the current Double Data Rate (DDR)

standards (DDR3 [18] and DDR4 [19]), memory bus standards

with 8 control bits and 64 data bits. For manufacturing

simplicity, the same type of memory chips is used to store

both the data bits and as well the control bits. Concretely,

one can identify DIMMs that provide ECC by counting the

number of memory chips on the module.

Block codes. DRAM ECC uses linear block codes for calcu-

lating the r bits [22]. Differences in the size of r bits and their

actual value provide different trade-offs in terms of reliability

and performance. There are two types of linear block error

correcting codes, binary and non-binary codes. A binary code

is denoted as (n, k) and has a granularity of a single bit while

non-binary codes treat multiple bits as a single symbol. A

particular case of binary code, the (7, 4) code, was first studied

and generalized by Richard Hamming [23] and represents an

improvement from the simple parity checking as it offers error

correcting capabilities with 3 parity bits for 4 bits of data.

SECDED. The Hamming Distance (HD) between any code-

word (dmin) of the (7, 4) code is at least 3, meaning that it

can detect up to 2 bit errors and correct a single detectable

error. However, distinguishing between a message that has a

corruption of one bit and a message that has a corruption

of two bits is not possible. The implication is that some 2-

bit faulty messages will falsely be “corrected”. An extended
Hamming code adds an extra parity bit to solve this problem

and serves as the basis of the design of ECC used in modern

memory systems as it provides single error correction and

double-bit error detection (SECDED) [22].

Chipkill. High-available systems need to detect multiple ad-

jacent bit errors. This requirement of the error correcting

capabilities is known as the chipkill [21] functionality. BCH

codes [24] have the desired property of precise control of

the error guarantees. The Reed–Solomon (RS) codes [25] are

a class of effective and easy-to-construct non-binary codes

which can be viewed as particular BCH codes. The com-

monly deployed Chipkill implementation, based on BCH/RS

codes [26], provides double-chip error detect and single-chip

error correct (SCDCD). Note that Chipkill can correct bit

errors up to the size of the symbol, which is often chosen

to be the number of bits in a chip. As a result, even if the

system loses an entire chip, it can still continue operation.

More generally, a linear block error detecting and correcting

code with a dmin, can detect dmin − 1 errors and correct
�(dmin − 1)/2� errors. Similarly, an RS code that can correct

t symbols has a HD of 2t + 1 and uses 2t redundant error

correcting symbols. As we shall see in Section V-F, our setups

use a version of RS codes.

ECC functions. For simplicity and compatibility with non-

ECC DIMMs [22], it is desirable for the memory controller

to store the control bits and the data in distinct memory chips.

From a theoretical perspective, this requirement maps over

the systematic encoding procedure, in which the message is

always a prefix in the codeword.

To encode a message d = (d1, d2, · · · , dk), where di
represents a symbol from the alphabet (e.g., a bit), the encoder

performs a multiplication with a generator matrix G, i.e.,

v = d · G, where v is the encoded message (data). For the

practical systematic encoding procedure, G = [Ik|P ], where

Ik is the identity matrix of size k, and P is the parity check
matrix which has k rows and r columns:

v = d ·G
= d · [Ik|P ]
= d · ([Ik|0k,r] + [0k,k|P ]) where 0m,n is a zero matrix

= d · [Ik|0k,r] + d · [0k,k|P ]
(1)

Let ECC(d) be the last r bits from the d · [0k,k|P ] product,

which we loosely call the ECC bits for data d. Using the

Kronecker function (δi,j = 1 if i = j and δi,j = 0 if i �= j),
we can rewrite the ECC bits as:

ECC(d) =

(∑k
i=1 di · [δ1,i, δ2,i, · · · , δk,i]

)
· P

ECC(d) =
∑k

i=1 di · [Pi,1, Pi,2, · · · , Pi,r]

(2)

where Pi,j represents the value (0 or 1) from the parity check

matrix with coordinates row i and column j. Each row of

the parity check matrix can be expressed as an r bit number

called parity value. Parity check matrices are not disclosed by

processor manufacturers. We devise techniques for obtaining

this information on various systems in Section V. Once we

have the parity check matrix, we can predict ECC values for

arbitrary data. On top of ECC, some systems further scramble

data before sending them on the memory bus, complicating

the reverse engineering of parity check matrices.
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TABLE I: Target systems.

ID Manufacturer CPU model Microarchitecture

AMD-1 AMD Opteron 6376 Bulldozer (15h)

Intel-1 Intel Xeon E3-1270 v3 Haswell

Intel-2 Intel Xeon E5-2650 v1 Sandy Bridge

Intel-3 Intel Xeon E5-2620 v1 Sandy Bridge

III. THREAT MODEL

We assume computer systems protected with ECC memory

where bit flips are detected and/or corrected in the memory

controller. This is common in clouds, high-end workstations,

and low-power devices. We further assume the memory chips

to be affected by the Rowhammer vulnerability [5]. In addi-

tion, we assume that the attacker does not have access to ECC

exceptions as these are often exposed to privileged software.

Thus the attack can be carried by a non-privileged local user.

We assume that the attacker can learn the CPU model and

the memory technology. This is trivial to satisfy as access to

/proc/cpuinfo is unrestricted and cloud providers’ public

documentation usually contains a description of the underlying

hardware [27], [28]. Similar to existing Rowhammer attacks,

the attackers’ aim is to reliably compromise co-located virtual

machines [10], [29] or escalate their privilege by executing

unprivileged and/or sandboxed code on the target machine [6]–

[8], [11]–[13].

IV. SUMMARY OF CHALLENGES

To exploit a system protected with ECC memory using

Rowhammer, the attacker first needs to find the ECC algorithm

implemented in the memory controller of the target system’s

processor. Given the knowledge of the ECC function, the

attacker then needs to safely compose enough bit flips to

trigger a Rowhammer corruption that is not detected (and

corrected) by the ECC algorithm—without triggering uncor-

rectable errors that may crash the system. These corruptions

are different than normal Rowhammer corruptions given that

they flip multiple bits at the same time. Because the proba-

bility of bits to be in the “flips-from” state decreases as the

number of bits that flip increases, it becomes challenging to

exploit such constrained bit flips to compromise a system.

In summary, to achieve successful and reliable end-to-end

exploitation, we need to address the following challenges:

[C1] How to reverse engineer unknown ECC functions on

commodity processors?

[C2] How to trigger Rowhammer corruptions on ECC memory

without crashing the system?

[C3] How to exploit the system given that Rowhammer-based

ECC corruptions corrupt multiple bits at the same time?

We address [C1] in Section V, [C2] in Section VI, and [C3]
in Section VI-B and in Section VII.

V. CHALLENGE C1: REVERSE ENGINEERING ECC

To get a rough idea of the ECC functions used by CPU

manufacturers, we first consulted their patents and the CPUs’

public documentation. Unfortunately, these were neither com-

plete nor fully accurate, so additional techniques were neces-

sary. As we shall see, the coding theory behind our attacks is

quite involved, so we first provide the intuition.

Whenever an ECC system writes a value in memory, it

will also write some ECC bits. For instance, some ChipKill

implementations write 4 ECC nibbles (for a total of 16 bits)

for every 128 bits of data. The exact calculation of the ECC

nibbles is not important at this point, but the first ECC nibble

will use one set of data nibbles, the second one a slightly

different set, and so on. Upon accessing this value in memory

at a later stage, it will calculate the ECC nibbles again and

XOR them with the ECC nibbles in memory. The result is

known as a syndrome. If the syndrome is non zero, there must

have been an error. By looking at which syndromes indicate

an error, ChipKill can locate the faulty nibble and correct it.

As we shall see, the calculation of the syndromes in math-

ematical terms involves a fairly complicated multiplication

of the transposed and extended parity check matrix with

the error pattern, but in practice the multiplication matrix is

precomputed and stored as a table, while the multiplications

and additions are simply AND and XOR operations (as shown

above). The point is that if we have the syndromes for known

error patterns, we can also perform the inverse operation and

obtain the parity check matrix—and hence the ECC function.

To this end, we artificially injected single bit errors in mem-

ory to see what happens and deduce what the syndrome must

have been, and also performed cold boot attacks to recover the

ECC bits as generated by one machine on another machine. We

detail these techniques after providing a theoretical foundation

for the attacks. To our knowledge, we are the first to reverse

engineer the ECC functions of common CPUs (Table I).

A. Theoretical foundation

Both Hamming and BCH codes are polynomial codes.

Polynomial codes can use exclusive-or instead of addition

and and instead of multiplication in the Galois Field (GF),

simplifying their implementation in hardware.

Proposition 1. We can recover the complete ECC function by
finding the ECC value for every ECC-word with exactly one
data bit asserted.

Each row of the parity check matrix, can be expressed as

a r bit number called parity value. Considering Equation 2,

the ECC value for a data word (d) that has bits asserted on

positions s, can be expressed as an exclusive-or operation

between the parity value of each data word (d′) with a single

d′i asserted (∀i ∈ {s|ds = 1}). �

To decode and correct errors of a received codeword

v′ = (v1, v2, · · · , vk+r), linear codes use an efficient technique

called syndrome decoding. The syndrome is computed as

S(v′) = v′ · HT where H = [−PT |Ik+r] for the systematic

encoding and S has dimensions (1, r). When no error occur

in the transmission (v′ = v) then S(v′) = d · [Ik|P ] ·
[−PT |Ik+r]

T ⇒ S(v′) = 0.
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Proposition 2. The ECC value of a data word with a single
bit asserted on a specific position is equal to the syndrome
obtained when that specific bit is faulted.

In the presence of an error e = (e1, e2, · · · , ek+r) with

e �= 01,k+r, v′ = v+e, and because S(v) = 0, we can rewrite

the syndrome as:

S(v + e) = (v + e) ·HT

= v ·HT + e ·HT

= S(v) + e ·HT

= e ·HT

= e · ([−PT |Ir]T )
= e · ([−PT |0r,r]T + [0Tk,r|Ir]T )

(3)

We use the notation SY ND(v′) = (e1, e2, · · · , ek) · −P , to

refer to the syndrome obtained when errors are inserted only
in the data bits. Using the Kronecker function we can rewrite

the syndrome obtained under faults as:

SY ND(v′) = −
(∑k

i=1 ei · [δ1,i, δ2,i, · · · , δk,i]
)
· P

SY ND(v′) = −∑k
i=1 ei · [Pi,1, Pi,2, · · · , Pi,r]

(4)

As the operations are performed on a binary GF and the code

is cyclic, the “−” sign has no meaning. Therefore by choosing

ei = di in Equation 2 and 4, we obtain the proof below. For

simplicity, we choose ei such that at most one bit is flipped.

∀v : ECC(v) = SY ND(v). � (5)

Assuming the attacker has access to the same machine as the

victim, we show how an attacker can use Proposition 1 and 2 to

inject faults and perform cold boot attacks to reverse engineer

the contents of the parity matrix and the order in which the

output data is mapped to the DRAM bus lines. Note that the

attacker needs to perform this process only once and reuse the

recovered information when attacking victim machines that

use the same CPU model. The CPU model information on the

victim machine is available through sources such as cpuid.

B. Fault Injection

In this section, we describe how to obtain all syndromes

(and thus the ECC function) by observing only the syndromes

for specific errors that we inject ourselves in a controlled way,

where exactly one bit is flipped. For now, we assume that when

the ECC engine corrects an error, the attacker can also read

the syndrome for that specific error. We will show how we

relax this assumption later. The crux of our attack is that if

we repeatedly flip a single bit at every possible bit position

of an ECC word, and obtain all the corresponding syndromes,

the recovery of the ECC function is trivial (Equation 5). For

example, the ECC value of an ECC word where bit i and j
are asserted is the result of the XOR operation between the

syndrome when a 1-to-0 bit is flipped in the i position and

the syndrome when the bit is flipped in the j position. To

recover the syndromes, we flip bits at the desired bit positions

using one of the following three fault injection mechanisms:

1) a custom built shunt probe. 2) facilities provided by some

Fig. 1: DDR3 socket pin-out. DQx ( ), VSS ( ) and other signals ( ).

(a) A custom shunt probe. (b) Tweezers short-circuiting DQ0 and VSS .

Fig. 2: Fault injection with the help of syringe needles.

memory controllers. 3) Rowhammer bit flips. We describe

these mechanisms next.

Error injection with a shunt probe. To reduce noise and

cross-talk between high-speed signals, data pins of the DDR

DIMM (DQx) are physically placed next to a ground (VSS)

signal. As the ground plane (VSS) has a very low impedance

compared to the data signal and because the signal driver is

(pseudo) open drain, short-circuiting the VSS and DQx signals

will pull DQx from its high voltage level to “0”. Depending on

the encoding of the high voltage, this short-circuiting results

in a 1-to-0 or 0-to-1 bit flip on a given DQx line.

Figure 1 displays the locations of the important signals and

shows that a DQx signal is always adjacent to a VSS signal.

Therefore, to inject a single correctable bit error, while the

system exercises the memory by writing and reading all ones,

we have to short-circuit a DQx signal with VSS . We can

achieve the short-circuiting effect with the help of a custom-

built shunt probe using syringe needles (Figure 2a). We insert

the probe in the holes of the DIMM socket as shown in

Figure 2b. For clarity, we omit the memory module from

the picture. We then use tweezers to control when the error

is injected by shorts-circuiting the two needles and thus the

targeted DQx and nearby VSS signal. This method, while

simple (and cheap), is effective in the case of a memory

controller that computes ECCs in a single memory transaction

(ECC word size is 64 bits) and can be used instead of

expensive ad-hoc equipment [30], [31].

On some systems (e.g., configuration AMD-1) data is

retrieved in two memory transactions and then interleaved.

Because of the low temporal accuracy of the shunt probe

method, an error inserted on memory line DQk (0 ≤ k < 64)

that appears on data bit 2 ∗ k will also “reflect” on data bit

2∗k+1 inside the 128 bit ECC word. In this case the syndrome

corresponds to two bit errors and contradicts Proposition 1.

To ensure single bit errors, once the interleaved mechanism is

understood, the exercising data can be constructed such that

the reflected positions contain only bits that are encoded to

low voltage, essentially masking the reflections.
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Error injection with memory controller. Some server-grade

processors incorporate memory controllers that provide the

functionality for artificially injecting errors in memory. This

mechanism is useful when testing the error-reporting func-

tionality of the software stack. The error injection facility is

exposed as PCI registers, but the OEM can choose to lock

these resources from the firmware. Furthermore, the way to

specify where the error and what type of error is injected

varies across platforms. For example, on some systems the

error is injected on the next uncached memory access (e.g.,

AMD-1) while on others the error is injected on an address

that is explicitly specified (e.g., Intel-1).

Error injection with Rowhammer. It is also possible to

use Rowhammer to trigger bit flips when support for error

injection in the memory controller is lacking. Note that this

Rowhammer “attack” is merely intended to detect the syn-

dromes and not (yet) to bypass ECC. When a vulnerable

aggressor-victim row is detected (either by observing ECC

error counters or by using the side-channel introduced in

Section VI-A), the position of the bit flip is still unknown

to the attacker. However, as we show in Section VI-B, we

can overwrite the value of the vulnerable bit with the value to

which it flips, to stop the bit from flipping under Rowhammer.

Therefore, no error is observed when the bit is masked. We

can then leverage this property to perform a binary search for

the position of the bit flip. The main problem with this method

is the need to find bit flips on every possible position within

ECC-word size. On the other hand, once attackers own a set

of such vulnerable DIMM(s), they can use these DIMMs to

reverse engineer any target.

C. Dealing with lack of syndromes

On some systems, the entire error-handling stack is exposed

to software and drivers adequately report the syndromes when

ECC errors happen. On other systems, drivers do not always

properly report the syndromes (e.g., Intel-1) and on yet other

systems, syndromes are lacking altogether (e.g., Intel-2 and

Intel-3). We developed our own driver for reading syndromes

for Intel-1. For Intel-2 and Intel-3, it is possible to use

the available error counters (for which we also developed

drivers) and rely on Proposition 1 to reverse engineer the ECC

function. However, this approach is error-prone and requires

more manual effort. Instead, we rely on a cold boot attack for

reverse engineering the ECC functions on these systems.

D. Cold boot attacks

Cold boot attacks, previously used to breach privacy and

reverse engineer the data scrambling performed inside memory

controllers [32], [33], consist of three main steps: 1) interesting

data is written in memory, 2) the temperature of the memory

is lowered such that data retention of the DDR module is high,

and 3) the memory is read back after a reboot, for instance by

removing the DIMM and immediately plugging it into another

machine and booting.

To read the ECC bits, the attacker can perform a cold boot

attack, where the first two steps are similar to other cold

boot attacks. However, because the ECC bits are not exposed

explicitly by the memory controller, we cannot directly access

them in Step 3. We can use a custom FPGA-based memory

controller to read the ECC control bits. While there are existing

solutions to do so for normal DIMMs [34], we did not find

a cost-effective solution for ECC memory. Instead, we opted

for using an off-the-shelf motherboard and CPU combination

for which we already recovered and verified the ECC function

with methods presented in Section V-B. Knowing 1) the data

that was written, 2) the data that we read after the cold boot,

3) the expected ECC value and 4) the observed syndrome, we

can reconstruct the ECC value that was stored by the victim

system for certain data patterns.

One challenge is that ECC memory is normally always

initialized at boot time by the target system to avoid spurious

ECC errors when accessing the memory. This initialization

is usually done by the firmware (BIOS) and stops us from

performing our cold boot attack. To achieve our goal, we

bypassed the memory initialization by reverse engineering and

modifying the parts of the binary BIOS code that performs

DRAM initialization. We will open-source this patch along

with all other necessary details to allow others to build a

generic ECC memory dumper.

E. Reverse engineering approach

Table II summarizes the pros and cons of our available

reverse engineering mechanisms. We now briefly describe

how we employed these mechanisms to reverse engineer ECC

functions on the machines described in Table I.

Machine AMD-1. Here, the data sheet includes the syndrome

table decoding technique for locating ECC errors. The system

supports symbols of 4 or 8 bits wide and uses 128 bits (two 64-

bits beats interleaved) to compute the ECC control bits. The

data sheet further claims that the code can correct any number

of errors in a single symbol and detect two symbols data

corruption, hinting at a variant of the BCH code. We recover

the complete ECC function using the syndrome table. To find

out that the system indeed uses the same ECC functions to

find the mapping of the data bits to DRAM pins, we employ

our shunt probe. Our results conclude that AMD-1’s memory

controller accurately reports errors and we further find how

data bits are mapped to DRAM pins. The mapping of data

bits to DRAM pins is helpful when reverse engineering with

cold boot attacks.

The data sheet of a newer version of the AMD-1 CPU model

mentions the support for error injection. We therefore wrote

a driver for injecting errors through the memory controller of

this system and confirmed that it also supports this mechanism.

We used the error injection functionality to also confirm that

bit errors in different symbols are uncorrectable.

Machine Intel-1. The ECC function for this system is not

documented. While it has support for error injection through

the memory controller, unfortunately driver support for this

functionality at the moment of writing is non-existent. Given

that writing a device driver for error injection in this processor
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TABLE II: Advantages (�) and disadvantages (�) of the proposed ECC recovery methods in this paper (� indicates ‘neutral or fixable’).

Method Compatibility Price Setup Time Precision

Needle FI �� works on any hardware �� a few dollars � fiddly �� recovers signal mapping
Mem. cntr. �� not always available �� free � software support is rare � potentially imprecise

� no signal mapping
Rowhammer FI � targets’ performance � vulnerable DIMMs � quick � no signal mapping
Cold boot �� works on any hardware � initial investment � rather slow �� recovers signal mapping

� cooling spray

TABLE III: Properties of recovered ECC algorithms.

ID dmin(cw) dmin(data) symbol size

AMD-1 3 4 8
Intel-1 4 4 4

is much more involved than just reading information (such

as syndromes), we opted for using Rowhammer bit flips

themselves for reverse engineering the ECC function. The

data sheet of Intel-1 exposes the ECC error counters and

syndromes of the ECC error. We had to write our own drivers

to access this information. We previously already built a

database of vulnerable bits and DIMMs and used a novel side-

channel attack to leak whether the ECC unit is correcting

a bit flip (which we explain in Section VI-A). Using our

database of bit flips on these vulnerable DIMMs, we found

the syndromes for each vulnerable bit position—only three

DIMMs were required for a complete recovery. We validated

our results using the shunt probe, which showed that the

memory controller shuffles the data when sending them to

various data pins on the DIMMs.

Machines Intel-2 and Intel-3. These two machines are the

least friendly in terms of documentation, but their data sheets

do mention that ECC is generated over 64 bits of information

at a time. Using our shunt probe, we realized that the software

stack in these machines does not report ECC errors. To reverse

engineer the ECC functions on these machines, we employ our

cold boot attack and rely on the already reverse engineered

ECC function on AMD-1 to stage the last step of the cold boot

attack. We re-flashed the BIOS of AMD-1 with changes that

bypass the memory initialization. In this process, we used an

old version of the memory initialization that was contributed

by the manufacturer to the coreboot project [35]. Note that

the two-beats ECC computation and residual errors due to cold

boot complicate the complete recovery of the parity matrix on

these machines. As a result, the recovered ECC functions for

these machines still contain a few incorrect cases.

F. Results

For brevity, since AMD-1 and Intel-1 are representative

of the general trends we observed across all setups, and the

recovery on Intel-2 and Intel-3 is not entirely complete due to

residual errors in the cold boot attacks, we focus on AMD-

1 and Intel-1 in the remainder of the paper. Even so, all the

recovered parity matrices for the configurations in Table I can

be found in Figures 8 and 9 in the Appendix.

TABLE IV: ECC error handling software with a default Debian 9.

ID OS log Firmware log Crash on UE

AMD-1 yes yes yes
Intel-1 no yes no

TABLE V: Error patterns that can circumvent ECC.

ID Pattern Config. # flips Flips location

AMD-1 [P1] Ideal 3-BF-16 3 symbols, 1 in control bits
AMD-1 [P2] Ideal 4-BF-16 Min. 2 symbols
Intel-1 [P3] Ideal 4-BF-8 Min. 2 symbols
Intel-1 [P4] Default 2-BF-8 Min. 2 symbols

Ideal guarantees. We now discuss the ideal guarantees pro-

vided by the ECC functions in the two systems (AMD-1

and Intel-1). In an ideal setting, correctable errors should be

detected and corrected, while uncorrectable errors that are

detected should result in a process or system crash. In this

configuration, the only way an attacker can compromise the

system is by triggering enough bit flips at the right positions

to ensure that the ECC function does not detect a corruption.

Table III shows the minimum number of bit flips required

in either data bits (i.e., dmin(data)) or data bits plus control

bits (i.e., dmin(cw)). Triggering these many bit flips close to

each other is difficult on most DIMMs that are vulnerable to

Rowhammer. However, it is much easier to trigger corruptions

on Intel-1 as discussed next.

State of practice. As shown in Table IV, we found that in

Intel-1 detected uncorrectable errors do not crash the system

and are not even reported by the OS. The main cause seems

to be improper software support for the memory controller in

the OS, i.e., the error reporting driver fails to recognize and

initialize the resources of the error reporting mechanism. As a

consequence, an attacker can exploit the system, in its default

configuration, with a smaller number of bit flips than necessary

with the ideal guarantee provided with the ECC function.

Exploitable patterns. We use Z3, a constraint solver, to mine

exploitable patterns of the ECC functions for AMD-1 and

Intel-1. Table V shows the results for the ideal and default

configurations. For AMD-1, the attacker requires at least three

bit flips in 16 bytes (i.e., an ECC word) when one of the bit

flips is in the control bits ([P1]). The other two bit flips should

target two distinct symbols (i.e., be at least 8 bits apart). When

targeting data bits alone, four bit flips should land in at least

two distinct symbols in an ECC word ([P2]).
For Intel-1, in an ideal configuration, an attacker needs to

find four bit flips in at least two distinct symbols (i.e., at least

4 bits apart) in eight bytes ([P3]). However, given that Intel-1

does not crash on detected uncorrectable errors, with only two
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TABLE VI: Percentages of rows with corruptions in an ECC DIMM.

[P1] [P2] [P3] [P4]
0.12% 0.12% 0.06% 0.60%

TABLE VII: Percentages of rows with corruptions in the flip database of Tatar
et al. [37] with 14 DIMMs.

ID Bit flips [P1] [P2] [P3] [P4]
A1 200468 18.38% 04.41% 00.79% 29.51%
A2 21542 00.23% 00.03% 00.03% 02.81%
A3 2926 00.00% 00.00% 00.00% 00.30%
A4 256359 26.80% 08.52% 02.10% 37.52%
B1 1504 00.00% 00.00% 00.00% 00.00%
C1 16489 00.09% 00.00% 00.00% 01.32%
D1 2131 00.00% 00.00% 00.00% 00.66%
E1 202630 06.30% 00.76% 00.14% 17.16%
E2 24587 00.06% 00.00% 00.00% 01.51%
F1 413796 51.09% 26.02% 06.00% 53.03%
G1 15990 00.06% 00.00% 00.00% 00.93%
H1 16087 00.03% 00.00% 00.00% 00.77%
I1 130187 00.82% 00.03% 00.00% 06.24%
J1 7185 00.00% 00.00% 00.00% 00.70%

AVG 93705 7.42% 2.84% 0.65% 10.89%

bit flips in distinct symbols in an ECC word, it is possible to

exploit the system ([P4]).
Exploitable ECC DIMMs. We ordered ECC DIMMs from

four different DRAM chip manufacturers. We chose ECC

DIMMs with DRAM chips based on previously published

work [10], [36], [37]. Note that the exact same DRAM chips

are used both in ECC and non-ECC DIMMs. We found that

one out of the four manufacturers produces DIMMs that cause

corruption on both AMD-1 and Intel-1. Table VI shows the

results of hammering 109k pairs of aggressor-victim-rows and

the percentage of rows that have enough bit flips to escape

the patterns discussed in Table V. We later use this DIMM to

evaluate our end-to-end exploits in Section VII.

Other DIMMs. Table VII shows the ECC protection for the

public database of bit flips published by Tatar et al. [37] that

contains 14 desktop DIMMs with the kind of chips that are

used in ECC DIMMs also. We find that every DIMM but

one exhibits bit flips that ECC cannot correct and 10 contain

potentially uncorrectable corruptions that the ECC algorithm

cannot detect. When the ECC detection is used correctly (i.e.,

[P1], [P2] and [P3]), 0.65%-7.42% of all bit flips still cause

silent corruptions. On the default configuration ([P4]), on

average up to 10.89% of the bit flips cannot be corrected.

VI. CHALLENGE C2: ECC-AWARE ROWHAMMER

This section addresses [C2] and shows how an attacker

armed with details on the ECC function can reliably trigger

Rowhammer bit flips that bypass ECC memory with no

crashes. To this end, we show an attacker can observe bit flips

using a side channel and then control bit flips using carefully

selected data patterns in memory.

A. Observing bit flips

We now present a novel side channel that allows an attacker

to observe bit flips that trigger correctable ECC errors. For

this purpose, we use double-sided Rowhammer (i.e., accessing

Fig. 3: ECC memory access time distribution across 3K aggressor-victim pairs
for corrupted vs. uncorrupted data.

two aggressor rows targeting a victim row in between) to

trigger bit flips and then measure the number of clock cycles it

takes to access the victim row. On setup Intel-1, we select 3K

aggressor-victim pairs and measure the DRAM access time

on the victim row after Rowhammer. In case of a bit flip

in the victim, this access triggers a correctable ECC error.

We also randomly select 3K pairs that are potential targets

for Rowhammer (i.e., map to adjacent rows), but that do not

trigger any error after Rowhammer. To confirm ECC error

correction is triggered, we read platform-specific hardware

registers that record the presence of an ECC correctable error.

Figure 3 shows that accesses to data triggering correctable

ECC errors are slower than those to data with no bit flips.

The timing difference is three orders of magnitude, yielding

a reliable timing side channel to distinguish between the two

cases. Furthermore, we note that, in the error case, the access

time has higher dispersion compared to the error-free case.

To show this side channel is present on different platforms,

we target a single vulnerable aggressors-victim pair across

our setups. In this experiment, each pair is hammered in two

rounds each comprising 100 Rowhammer iterations. In the

first round, we choose data such that errors are triggered. In

the second round we change the data such that no errors are

triggered. On setup Intel-1, we confirm the error case is slower

by a factor of 563.1x compared to the error-free case. On setup

AMD-1, however, we observe a difference of only a factor of

1.01x. To closely examine the latter scenario, we randomly

pick 5 vulnerable victim rows, hammer them, and measure

the DRAM access time for each 8-byte word in the victim

row. We repeat this experiment 100 times per victim row and

report the average access time in Figure 4. As evident by the

peaks in the figure (marking synchronously corrected ECC

errors), even a minimal difference in the number of cycles to

access the victim row is sufficient to reliably distinguish error

from error-free cases. Interestingly, we also observe that, in

some cases, error accesses are faster than error-free ones. Such

negative peaks (first and fourth subplot in Figure 4) seem to

only occur in the case of 0-to-1 bit flips. We leave the study

of this phenomenon as future work.

In summary, the presented side channel is reliable enough to

observe bit flips triggering ECC error corrections. Moreover,

the side channel can reveal the exact location and direction of

the bit flip. In the following, we investigate the source of the

side channel in hardware and software.

ECC error handling architecture. ECC error detection is
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Fig. 4: ECC memory access times for all the 8-byte chunks in 5 victim rows.
The peaks correspond to bit flip-induced ECC errors corrected by hardware.

synchronous with respect to a given memory access. In par-

ticular, in response to a memory access request from the CPU,

the memory controller immediately retrieves the data and its

associated ECC bits from memory. Before returning the data

to the CPU, the controller checks the data for errors. Note

that, when so-called scrubbing is enabled, the controller can

also periodically check the memory for errors with no CPU

synchronization. However, given the low scanning frequency

(a few hours for a full memory scan), its impact can be safely

ignored for our purposes (short-lived Rowhammer attacks).

Once an error is detected by the memory controller, error-

correcting operations are immediately performed by the hard-

ware. Since the hardware has to correct (and to write back)

the data via a slow path, this may introduce a measurable

latency on the corresponding memory access and give rise

to a timing side channel. In addition, the hardware needs to

inform the system of the event using one of the following

options (depending on the boot-time configuration): raise an

exception at the software level or invoke a system management

interrupt (SMI) handler.

With the first option, a machine check exception (MCE) is

triggered as soon as the error is detected—even if interrupts

are disabled [38]. With a failing memory cell, correctable

machine check interrupts (CMCIs) become frequent, resulting

in non-trivial system overhead due to excessive time spent

servicing interrupts. To reduce the overhead, an OS driver

may dynamically switch to polling mode, where CMCIs are

blocked and error accounting registers are polled explicitly. In

both cases, errors are logged inside the OS and, depending on

the OS configuration, the memory page containing the error

is masked, the system is restarted, or the faulting process

is killed [39]. However, the OS does not have accurate

knowledge of the physical location of the error (e.g., the

exact DIMM, DRAM address, etc.), which makes it hard to

implement sophisticated error handling policies.

This problem is solved with the second option, where an

SMI handler can use platform-specific information to recover

the exact physical location of the error. This information can

then be saved in Advanced Configuration and Power Interface

(ACPI) tables or other error-reporting registers. To inform the

OS of the event, the SMI handler ultimately raises an MCE.

This option is widely used on recent Intel Xeon machines and

it is known as Enhanced Machine Check Architecture [40].

In both cases, a software chain that involves expensive

operations is synchronously executed as soon as an error is

triggered in response to a given memory access. This may

introduce significant access latency and give rise to another

timing side channel to detect ECC correctable errors.

ECC error handling in practice. As evidenced earlier,

ECC error handling side channels may originate from both

hardware and software operations. We now revisit our earlier

experiments across setups to exemplify their availability on

real-world platforms in their default configurations.

On setup AMD-1, uncorrectable errors crash the system.

Correctable errors are reported by the OS driver and appended

to a dedicated MCE log file (other than being logged at the

firmware level). These synchronous software operations are

lengthy and give rise to the strong timing signal we observed

in Figure 3. Had an SMI handler been enabled in our setup,

the signal would have been even stronger, given that studies

show that handling an SMI is up to 171x times slower than

simply triggering an MCE [31]. In addition, we observe that,

by default, on the Debian 9 distribution (Linux kernel 4.9.3)

used in our setup, the MCE log file1 is world-readable, yielding

an even more convenient side channel to observe bit flips.

On setup Intel-1, uncorrectable errors do not crash the

system. In addition, the available OS driver recognizes the

memory controller but does not report correctable errors. In

other words, no MCE event is logged by the OS. Correctable

and uncorrectable errors are logged in a firmware log, but only

after a certain threshold is reached. While no logging or other

software/firmware operations take place in the common case,

the error handling operations performed by the hardware at

memory access time are still sufficiently lengthy to give rise

to the crisp timing signal we observed in Figure 4.

In summary, while ECC-equipped platforms may be con-

figured in several different ways, error correcting operations

carried out in hardware or software are consistently observable

across platforms through a variety of side channels. This

allows attackers to reliably observe bit flips as a prelude to

end-to-end Rowhammer attacks on ECC-equipped platforms.

B. Controlling and composing bit flips

It has been long known that Rowhammer bit flips are data-

dependent. For example, the original Rowhammer paper [5]

showed that a stripe pattern in DRAM’s array-of-rows orga-

nization (even/odd rows populated with 0s/1s or vice versa)

induced the most errors. Since then, similar patterns have been

used to maximize the number of bit flips and ease Rowhammer

exploitation. We now aim to show that such data-dependent

behavior can also be used to control and compose bit flips

and enable ECC-aware Rowhammer exploitation. We start

with showing how data patterns can be used to enable/disable

individual bit flips and later show such behavior is independent

of neighboring flips or data patterns enabling composability.

Controlling individual bit flips. We start by exhaustively

testing our memory chips using double-sided Rowhammer

with 4 possible data patterns: (i) 0/1-stripe (aggressor rows

populated with all 0s, victim rows populated with all 1s),

(ii) 1/0-stripe (aggressor rows populated with all 1s, victim

1/var/log/mcelog
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rows populated with all 0s), (iii) 0-uniform (aggressor and vic-

tim rows populated with all 0s), and (iv) 1-uniform (aggressor

and victim rows populated with all 1s). Across our setups,

we observe numerous bit flips in the two stripe configurations

and no bit flips in the uniform ones. To confirm the latter

result, we progressively reduce the DRAM refresh rate until

we observe bit flips for the uniform patterns. This only happens

for unstable system configurations with very low refresh rates,

where bit flips occur even without Rowhammer.

This experiment empirically shows an important property

of Rowhammer: bit flips occur due to parasitic current [41],

which induces capacitors storing opposite electric charges (i.e.,

data values) to interfere with one another and cause charge

leakage in the victim cells. The direction of the bit flip (1 → 0
vs. 0 → 1) triggered by a particular stripe pattern (0/1-stripe
vs. 0/1-stripe) is an artifact of data scrambling operated by the

memory controller, which stores 0s (or 1s) as a charged (or

non-charged) state. However, since scrambling on commodity

systems operates by XORing data values with an address-

dependent bitmask that repeats consistently across (adjacent)

rows [33], the bitwise stripe pattern is preserved even in the

presence of scrambling. In other words, for every bit i in a

given aggressor-victim-aggressor row tuple, data scrambling

can (if at all) turn a 0−1−0 bit column (assuming 0/1-stripe)

into a 1−0−1 column (and vice versa), but always preserve the

stripe (or in other cases uniform) pattern at the bit granularity.

This property shows that, somewhat counterintuitively, we can

ignore data scrambling to control Rowhammer bit flips with

(stripe) data patterns. It also suggests we can enforce bit-

granular stripe patterns to control individual bit flips.

To confirm this intuition, for each bit flip triggered in the

previous experiment, we flip the corresponding (column-wide)

bits in the aggressor rows to enforce a bit-granular uniform
pattern and hammer again. Across our setups, we observe

this is consistently sufficient to disable the original individual

bit flips. Restoring the original bit-granular stripe pattern

consistently re-enables every given bit flip. This experiment

shows we can reliably control individual bit flips. In other

words, for every bit i in a given aggressor-victim-aggressor

row tuple, setting aggressor bit values to enforce a column-

wide uniform pattern (0−0−0 or 1−1−1) prevents occurrence

of any flips in the victim bit, while setting aggressor bit values

to enforce a column-wide stripe pattern (0−1−0 or 1−0−1)

induces flips in the victim bit (assuming the underlying cell is

vulnerable). We can then switch between the two patterns to

selectively enable/disable individual bit flips.

Impact of neighboring bit flips. We now have the ability to

control individual bit flips starting from a given data pattern

configuration in an aggressor-victim-aggressor row tuple. We

now want to verify whether controlling multiple bit flips in

the same ECC word at the same time is viable. This property

is necessary to ensure composability of bit flips and is only

realistic with no cross-bit-flip interference. To confirm the

absence of such interference, we select all the victim ECC

words that revealed multiple stripe-induced bit flips in our

previous experiment, and exhaustively test all the relevant

combinations of aggressor bit values. For example, given a

victim ECC word with only two bit flips at offset i and j with

the 0/1-stripe pattern, we test the 4 possible combinations of

column-wide 0/1-stripe (or 1/0-stripe) at offset i and column-

wide 0/1-stripe (or 1/0-stripe) at offset j. We say that there is

no cross-bit-flip interference in a given victim ECC word iff

the bit flip i (j) is solely dependent on the aggressor bit values

at offset i (j). Across our setups, we observe no interference

in any vulnerable ECC word, empirically confirming we can

control multiple bit flips at the same time in a given word.

Impact of neighboring data. Our last experiment showed

we can control individual bit flips with no interference from

neighboring bit flips nor neighboring aggressor bit values. This

was the case even for adjacent bit flips, showing that value

changes in the aggressor bits at offset i+1 (or i− 1) have no

impact on a bit flip at offset i. To achieve fully unconstrained

bit flip composability, however, we also need to study the

impact of neighboring data values in the victim row.

For this purpose, we set up a new experiment, in which we

select all the aggressor-victim-aggressor row tuples that trigger

a single bit flip and randomly assign them one of the following

data patterns: D (column-wide 1/0-stripe pattern in the bit flip

location, random values elsewhere in the aggressor rows, and

0s elsewhere in the victim row) and N (same as D, but 1s are

used elsewhere in the victim row). The patterns are designed

to stress the extreme cases of data values following (or not

following) the direction of the bit flip (respectively). For this

reason, we present results with data scrambling disabled, but

we observed a similar trend with data scrambling enabled.

Figure 5 presents our results, depicting the probability

distribution of the difference between the number of bit flips

induced by D and N patterns as a function of the probability

of the occurrence of the D pattern (which we vary in every

experiment). As the difference is generally less than 2.5%

across setups, this shows that even neighboring data values in

the victim row have little or no influence on a given bit flip.

This confirms an attacker can surgically manipulate aggressor

data bits to obtain fully composable, data-controlled bit flips

and target arbitrary victim data in a given ECC word.

Interestingly, in some setups (e.g., AMD-1), there seems

to be less interference, showing that, while the properties we

described well-approximate DRAM behavior across setups,

they cannot perfectly model all the physical constraints in

general. However, our approximations are sufficient to reliably

mount practical attacks, as shown by our end-to-end exploit.

VII. CHALLENGE C3: A PRACTICAL ECCploit

In this section, we present ECCploit and show how an

attacker—armed with knowledge of the ECC function, a side

channel to observe bit flips, and the ability to control/compose

bit flips via data patterns in aggressor rows—can mount

practical end-to-end Rowhammer exploits on ECC-equipped

systems. ECCploit consists of three phases. First, we template
memory to find correctable bit flips. Second, we try to combine
multiple of these bit flips to create error patterns that the
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Fig. 5: Probability distribution of the difference between the number of D
and N pattern-induced bit flips vs. probability of occurrence of the D pattern.

ECC function is unable to detect. Finally, we use these

patterns to launch exploits on three different victims: page

table entries [6], RSA public keys [10], and binary code [13].

A. Templating correctable errors

In the templating phase, we probe the memory to see if we

can safely trigger bit flips using Rowhammer. In particular,

we only want to cause errors that the ECC function can

correct automatically. Although the error correction ensures

that we cannot observe these bit flips directly, the side channel

presented in Section VI still lets us detect them.

Target address selection. Templating starts with a list of

potential aggressor locations (a1 and a2 in the case of double-

sided Rowhammer) and victim (v) addresses which should

both map to the same bank but different (neighboring) rows.

Obtaining this list is trivial if we know the mapping between

virtual and physical addresses. In our exploits, we rely on

existing reverse engineering techniques to reconstruct such

mapping [42]. However, even if this information is absent, the

attack can start with an exhaustive list of addresses—slowing

down, but not stopping, the attack.

Pattern selection. Our attack uses double-sided Rowham-

mer to detect usable tuples of aggressor-victim-aggressor

(a1, v, a2). To ensure a crash-free templating strategy (i.e.,

only triggering correctable ECC errors in vulnerable loca-

tions), we arrange values in aggressor and victim rows such

that the Hamming distance is less than or equal to the number

of errors E that the ECC algorithm is capable of correcting.

In other words, we make sure that for each ECC word in the

victim row, the corresponding ECC words in the aggressor

rows are only E bit flips apart. Assuming x is the value stored

in an ECC word, and x′ is the value with E bits flipped, we can

either store x in the victim ECC word and x′ in the aggressor

ECC words or x′ in the victim ECC row and x in the aggressor

ECC words to check for correctable bit flips in either 1 → 0
or 0 → 1 directions due to the resulting striping patterns.

Search strategy. Rather than targeting a single ECC word

and single word offset for each Rowhammer trial, we target

all the words in the victim row at the same time during each

hammering attempt. For each word, we consider a different

set of E bits in subsequent attempts. For instance, if the ECC

corrects single bit errors, we hammer first with bit patterns

in the aggressor and victim rows such that aggressors and

Fig. 6: Templating with ECC memory.

victim differ only in the most significant bit of each of the

ECC words in the row, then with patterns that differ only in

the next bit, and so on. At each trial, we read from the entire

victim row all at once and use our side channel to detect bit

flips anywhere in the row—we found this is reliable even at

the row granularity. This strategy exploits composability of

bit flips and allows us to batch many independent tests and

increase the templating efficiency. For instance, if the ECC

corrects single bit errors, this strategy requires only as many

trials per tuple as the number of bits in a single ECC word.

ECC algorithms that use multiple-bit symbols (e.g., ChipKill)

require even fewer trials as a row contains fewer symbols.

If we detect bit flip(s) anywhere in the victim row, we need

to hammer the tuple a few more times to identify the flipping

ECC word(s). For this purpose, we perform a (pseudo-)binary

search—omitting stripe patterns in words we are not testing—

until we reproduce the bit flip(s) on one or more words. The

entire process is repeated twice for each tuple using the two

possible stripe patterns. This is to identify vulnerable bits in

both directions (1 → 0 or 0 → 1). After scanning all the tuples

in memory, we note down all the vulnerable 1-bit templates
with the corresponding (a1, v, a2) tuple, the ECC word, the

word offset, and the direction of the bit flip in the victim row.

B. Combining bit flips

Given our knowledge of the ECC algorithm and the 1-bit

templates inducing correctable bit flips from the previous step,

the goal of this phase is to combine multiple bit flips in a single

ECC word and produce new words that escape ECC detection.

As a first step, we group together all the 1-bit templates that

have the same aggressor rows, victim row, direction, and ECC

word in a template group.

Next, we generate possible flipped words that, when induced

via Rowhammer, bypass the target ECC algorithm. Specifi-

cally, for every template group, we want to find a combination

of k 1-bit templates that would induce k bit flips that result in

a corruption that ECC does not correct ([P4]) or even detect

([P1], [P2] and [P3]). For simplicity, the current version of

ECCploit only targets flips in the data bits and not in the

control bits. While this is enough for our setup, one can

optimize ECCploit further to take control bits into account.

65

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 02,2021 at 15:57:19 UTC from IEEE Xplore.  Restrictions apply. 



Figure 6 shows the results of our templating step on the

Intel-1 machine. On this machine, we can directly observe

(detectable) corruptions without crashing the system. When

we cannot directly observe uncorrectable errors (e.g., AMD-

1), we can instead use the side channels discussed in Sec-

tion VI-A. Overall, we only have 265 templates available.

When directly observing bit flips, it takes 4 hours to find

these templates. Using the word-level side channel, it takes

6 days, and using the row-level side channel, it takes us

8 weeks to find these templates. To compare, assuming no

ECC support, it would take us at most 1 minute to find 265

templates. This shows that ECC does significantly reduce the

attack surface of Rowhammer attacks, by forcing the attacker

to go through a much lengthier templating step. However, this

is typically unimportant in practical attack settings, where the

attacker can run code on demand on the victim machine and

complete a templating step of hours or even days in complete

isolation without interfering with the rest of the system. After

templating is over, ECC has essentially no impact on the

exploitation step, which completes in seconds or minutes

similar to existing non-ECC exploits. Next we discuss how we

use our templates to build practical exploits on ECC memory.

C. Exploitation

Armed with vulnerable ECC-aware templates, an attacker

can now mount practical exploits by (i) massaging the target

data onto the vulnerable location, (ii) setting the corresponding

aggressor bit values as dictated by the templates, and (iii)

by hammering to reliably reproduce the (composed) bit flips

on the victim data. This exploitation strategy is similar, in

spirit, to the one employed by existing reliable Rowhammer

attacks [10]. The key difference—and challenge for ECC-

aware exploitation—is that the number of useful templates

is now much lower, given that we need a carefully-selected

combination of bit flips to bypass ECC. Furthermore, unlike

existing Rowhammer exploits, ECC templates corrupt multiple

bits and this can complicate existing Rowhammer attacks.

To study the effectiveness of our ECCploit attack in

real-world exploitation settings, we reproduce three existing

Rowhammer attacks on Intel-1. (i) The original Rowhammer

attack by Seaborn [6], which flips bits in page table entries

(PTE) to map an unauthorized page (ideally a page table page)

for privilege escalation, (ii) the attack introduced by Razavi

et al. [10] which flips bits in a RSA key to compromise its

cryptographic strength for authentication bypass, and (iii) the

attack introduced by Gruss et al. [13] that flips bits in opcodes,

leading to user authentication bypass in the sudo command.

Page Table Entry (PTE) ECCploit. Like the original attack

by Seaborn et al. [6], we spray physical memory with page

tables and then try to gain access to an inaccessible page by

flipping a bit in a PTE. To implement this attack, we need

to consider the format of the PTE. The format of the PTE

can vary across different architectures. In modern Intel and

AMD machines, PTEs are 64 bits wide and store the physical

address of a page in bits 12 to L, where L is the number

of bits required to address the machine’s physical memory.

Importantly, Intel requires that bits L to 51 are zero, lest any

access triggers a general protection fault which would crash

the machine. AMD even prescribes a zero value for all bits

between L and 63. Given this, useful templates contain at least

one bit flip between bit 12 and L in 64 bits chunks and do not

trigger a 0 → 1 bit flip in the L:51 range on Intel machines

and L:63 range on AMD machines. Note that bit flips on the

first 12 bits are often harmless (e.g., cacheable flag).

Results. From our discovered 265 templates, 6.15% are ex-

ploitable. The rest are templates that would crash the system

because bits would flip in the reserved field of the PTE. As

shown in Figure 6, we find the first suitable template after 19

minutes if we can directly observe the bit flips, and 12 hours

or 4 days using the side channels respectively. Without ECC,

it would take less than 2 seconds to find a suitable template.

Summarizing, even with an imperfect page table spraying

strategy of the Seaborn attack, we were able to map unautho-

rized memory pages with a success rate of 39.9% and a page

table page with a 2.5% success rate. In the remaining cases,

the attack fails to modify any PTE of the attack process, but no

crashes occur. By tracking the correctable error counters, we

confirmed that when there is no change in the PTE, as either

no bit flip occurs or ECC corrects the error. This happens

because the victim PTE does not always have the target bits

set in the direction of the chosen template.

Brasser et al. [36] report a 5% success rate in a similar non-

ECC setting for mapping page table pages, which shows that

our ECC-based exploitation strategy has relatively little impact

on the success of the attack compared to traditional Rowham-

mer exploits. On our testbed, a more sophisticated massaging

strategy such as the one employed by Drammer [11] can obtain

a significantly higher success rate in mapping a page table page

in the address space (39.9% in the ideal case).

RSA ECCploit. RSA [43] is a public-key crypto system which

relies on the infeasibility of factorizing the product (n) of two

large prime numbers with a similar number of bits. The attack

uses the fact that a single-bit-faulted n (n1) is easy to factorize

as the chance of the factors of n1 being of similar size is very

low—the probability to efficiently factorize n1 is 12-22% [10].

We claim that in the presence of t bit faults (t ≥ 2), nt is

efficiently factorizable with at least the same probability as

n1. This is because flipping a single bit versus flipping t bits

in n only changes the quantity that is added or subtracted to

n. The result in both cases is a natural number with the same

probability of being easily factorizable. Formally, using the

Erdös-Kac [44] theorem, the number of distinct prime factors

of n1 and of nt follows the standard normal distribution with

the mean and variance log log n∗. Because nt and n1 are of

similar sizes, the probability to efficiently factorize the faulty

n is the same in both cases—12-22%.

Results. To experimentally confirm this claim, we use 1337

randomly generated RSA keys from each size class of 1024 bit,

2048 bit and 4096 bit. We then replicate Flip Feng Shui [10]

using our ECC templates. On average, our 265 templates could

only mutate a given 1024 bit key 2.8 times, a given 2048 bit
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key 5.5 times, and a given 4096 bit key 9.4 times. Given a

1 hour cutoff time to ECM [45], we can factorize 45.1% of

the 1024 bit keys, 37% of the 2048 bit keys and 28.7% of

the 4096 bit keys. Without considering the factorization and

memory deduplication delay, if we can directly observe the

errors it takes us on average 2 hours, and 3 days or 4 weeks if

we use the side channels as shown in Figure 6. Without ECC,

it takes us less than a minute to achieve similar success rates.

Opcode modification ECCploit. This attack corrupts instruc-

tions in memory to bypass certain security checks [13]. As

already mentioned, on ECC protected memory, more than one

bit flip within the same ECC word is necessary to bypass the

ECC protection. On synthetic x86_64 binaries that mimic

authentications, we find that the probability of the code being

successfully attacked slowly grows from 5% to 10% when

the number of bit flips in 8 bytes increases from 1 to 4

respectively. On the other hand, the probability of the program

to crash is 55% when 4 bits are changed as opposed to 20%

when a single bit is flipped. To investigate whether corrupting

opcodes is feasible with ECC templates in a real application,

we target sudoers.so which is responsible for privilege

elevation functionality provided by the sudo command.

Results. In the same version of the binary, Gruss et al. [13]

find 29 candidate instructions in which a single bit flip

yields unauthorized access. Template #36 flips bit 0 and 5

of a single byte, changing a conditional branch instruction

(jne $8fa0 at offset 0xbdc0) to a mov instruction (mov
0x1da(%rbp),%eax), leading to an authentication bypass.

When observing ECC errors directly, we find this template in

32 minutes, and it takes 12 hours or 4 days when using the

side channels as shown in Figure 6. Without ECC, we can

target any of the 29 candidate instructions without worrying

about crashes. We can find such a flip in 6 minutes.

VIII. RELATED WORK

Rowhammer. After the initial disclosure of Rowhammer [5],

security researchers showed advanced Rowhammer-based ex-

ploitation of browsers [6]–[8], [46], clouds [10], [29] and

mobile phones [11], [12], and even managed to flip bits

across the network [46]. Although it was always clear that

it is possible that more bits flip than an ECC function can

handle, properly implemented ECC memory is still perceived

as a practical mitigation for Rowhammer exploits [6], [13].

However, some researchers already questioned whether ECC

is enough, and consistent with our findings, discovered that

some systems do not always report ECC events [47]. We are

the first to show that reliable Rowhammer attacks are possible,

even if the system reports these events correctly.

Hardware reverse engineering. There are many undocu-

mented features modern hardware systems. The complex hash-

ing function that decides how physical addresses map to CPU

cache sets is an example which is important for a variety of

cache attacks [48]–[51]. Maurice et al. [52] reverse engineers

this mapping. DRAMA [42] reverse engineers the mapping

function from physical addresses to DRAM addresses. Inside

memory chips, each DRAM address is further decoded in

banks, rows and columns. Jung et al. [53] reverse engineer

this physical decoding scheme by applying a temperature

gradient to memory chips. GPU architectures are sometimes

undocumented, Frigo et al. [12] reverse engineer a common

integrated GPU in mobile phones. In this paper, we reverse

engineered the ECC functions in common processors and used

this to mount successful and reliable Rowhammer attacks.

ECC error handling and error injection. While others have

studied the overhead of SMI handling [31], [54], the overhead

of handling ECC exceptions is only briefly noted in the context

of memory reliability [9], [55], [56]. Recently, Gottscho et

al. [31] injected faults in memory with the help of a custom

proprietary device and focused on the overhead of these errors.

Instead, we proposed several new and cheaper ways to induce

memory errors (e.g., a simple syringe needle probe).

IX. MITIGATIONS

We have shown that ECC alone is not an adequate Rowham-

mer mitigation. One way to strengthen ECC is to combine

it with Target Row Refresh (TRR) [19]—another hardware

mechanism, designed specifically to protect against Rowham-

mer. While there are reports of bit flips on memory with

TRR [11], [13], we expect that a combination of ECC with

TRR will make Rowhammer exploitation much harder.

State-of-the-art ECC algorithms in use today all target error

patterns of off-the-shelf DRAM under normal conditions [1],

[9] rather than adversarial cases. Another avenue for mitiga-

tions is to devise new Rowhammer-aware ECC algorithms that

can be deployed either in hardware or software [57]. Moreover,

to improve the guarantees of new ECC algorithms [58]–

[61], we may explicitly augment them with defenses against

Rowhammer, either in software [36], [46], [57], [62]–[64]

or in hardware—e.g., in the memory controllers or inside

the memory chips themselves. As an example, in-DRAM

ECC [65]–[68], where the ECC engine resides inside each

chip can co-exist with rank-level ECC implemented in the

memory controller [68]. The in-DRAM ECC helps to miti-

gate Rowhammer, while potentially masking the side channel

presented in this paper (since the errors are corrected on die).

Another common solution against Rowhammer is to in-

crease the DRAM refresh rate, but doing so wastes power.

Also, the current trend in practice is exactly the opposite:

manufacturers have started lowering the DRAM refresh rate

to save power and relying on ECC for memory integrity [16],

[66], [69], [70]. Since lowering the refresh rate dramatically

increases the number of Rowhammer bit flips [5], [7], [8],

doing so makes it easier to bypass ECC—we believe that it is

time to reconsider such strategies in the Rowhammer era.

X. CONCLUSION

Rowhammer has evolved into a serious threat to computer

systems from the smallest mobile devices to very large clouds,

but so far machinery with high-end memory with error cor-

recting code (ECC) has been free from such attacks. This has
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been due to the complex challenge of reverse engineering com-

modity ECC functions and, more importantly, to the narrow

margins within which attackers must operate: multiple bits

must flip in order to bypass the error correcting functionality,

but flipping the wrong number of bits may crash the system.

Thus, many believed that Rowhammer on ECC memory, even

if plausible in theory, is simply impractical. This paper shows

this to be false: while harder, Rowhammer attacks are still a

realistic threat even to modern ECC-equipped systems. This

is particularly worrying, because all other existing defenses

have already been proven insecure. Given the proliferation of

Rowhammer vulnerabilities across a broad range of systems,

we urgently need better defenses against these attacks.
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APPENDIX

(a) AMD-1 (b) Intel-2 and Intel-3 (c) Intel-1 (d) SEC-DED-S4ED [71]

Fig. 7: Hamming Distance (HD) of ECC function results.

To quickly visualize the ECC properties, In Figure 7 we show the HD of the various ECC algorithms that we recovered. A

pixel of coordinate x, y has a brightness level of the HD between the ECC result of datax and datay . Where datai means that

bit on position i is asserted and all the others are de-asserted. A black pixel (lowest brightness and HD) means that the ECC

are the same. On AMD-1 (Figure 7a we observe a distinct pattern at 8 bits intervals. This is expected, as the ECC algorithm

treats 8 bits as a single symbol. Repetitions are also observed in Figure 7d at 4 bits. This implementation corresponds to an

Intel patent [71] which can detect up to 4 bits (SEC-DED-S4ED). These patterns are not always obvious, for example Intel-1

(Figure 7c) uses the same ECC algorithm (and values) but the bits are considered in a different order.

ECCIntelHaswell ECCAmdFam10h

000 11110001 032 00100011 000 1000000000010100 032 1000000000100111 064 0001010010000000 096 0010011110000000
001 01000011 033 01100010 001 0100000000001010 033 0100000010101011 065 0000101001000000 097 1010101101000000
002 01101000 034 10010001 002 0010000000000101 034 0010000011101101 066 0000010100100000 098 1110110100100000
003 10010100 035 00001011 003 0001000010111010 035 0001000011001110 067 1011101000010000 099 1100111000010000
004 00001110 036 11111000 004 0000100001011101 036 0000100001100111 068 0101110100001000 100 0110011100001000
005 01010001 037 01010100 005 0000010010010110 037 0000010010001011 069 1001011000000100 101 1000101100000100
006 10100010 038 10101000 006 0000001001001011 038 0000001011111101 070 0100101100000010 102 1111110100000010
007 00011100 039 01001100 007 0000000110011101 039 0000000111000110 071 1001110100000001 103 1100011000000001
008 00011111 040 00110010 008 1000000011101101 040 1000000000010000 072 1110110110000000 104 0001000010000000
009 00110100 041 00100110 009 0100000011001110 041 0100000000001000 073 1100111001000000 105 0000100001000000
010 10000110 042 00011001 010 0010000001100111 042 0010000000000100 074 0110011100100000 106 0000010000100000
011 01001001 043 10110000 011 0001000010001011 043 0001000000000010 075 1000101100010000 107 0000001000010000
012 11100000 044 10001111 012 0000100011111101 044 0000100000000001 076 1111110100001000 108 0000000100001000
013 00010101 045 01000101 013 0000010011000110 045 0000010010111000 077 1100011000000100 109 1011100000000100
014 00101010 046 10001010 014 0000001001100011 046 0000001001011100 078 0110001100000010 110 0101110000000010
015 11000001 047 11000100 015 0000000110001001 047 0000000100101110 079 1000100100000001 111 0010111000000001
016 00101111 048 00010011 016 1000000001001110 048 1000000000100000 080 0100111010000000 112 0010000010000000
017 10000011 049 01100100 017 0100000000100111 049 0100000000010000 081 0010011101000000 113 0001000001000000
018 01100001 050 10010010 018 0010000010101011 050 0010000000001000 082 1010101100100000 114 0000100000100000
019 10011000 051 01110000 019 0001000011101101 051 0001000000000100 083 1110110100010000 115 0000010000010000
020 11010000 052 01001111 020 0000100011001110 052 0000100000000010 084 1100111000001000 116 0000001000001000
021 01010010 053 01011000 021 0000010001100111 053 0000010000000001 085 0110011100000100 117 0000000100000100
022 10100100 054 10100001 022 0000001010001011 054 0000001010111000 086 1000101100000010 118 1011100000000010
023 00101100 055 10001100 023 0000000111111101 055 0000000101011100 087 1111110100000001 119 0101110000000001
024 11110010 056 00110001 024 1000000010101011 056 1000000001000000 088 1010101110000000 120 0100000010000000
025 00111000 057 01000110 025 0100000011101101 057 0100000000100000 089 1110110101000000 121 0010000001000000
026 00010110 058 00101001 026 0010000011001110 058 0010000000010000 090 1100111000100000 122 0001000000100000
027 10001001 059 00000111 027 0001000001100111 059 0001000000001000 091 0110011100010000 123 0000100000010000
028 00001101 060 11110100 028 0000100010001011 060 0000100000000100 092 1000101100001000 124 0000010000001000
029 00100101 061 10000101 029 0000010011111101 061 0000010000000010 093 1111110100000100 125 0000001000000100
030 01001010 062 00011010 030 0000001011000110 062 0000001000000001 094 1100011000000010 126 0000000100000010
031 11000010 063 11001000 031 0000000101100011 063 0000000110111000 095 0110001100000001 127 1011100000000001

Fig. 8: Recovered parity matrices (Intel-1 and AMD-1 respectively).
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ECCIntelSandy64

000 10011101 032 10000000
001 01010000 033 11101101
002 10110010 034 01011101
003 01110001 035 00011100
004 00001101 036 01100100
005 01110000 037 11011000
006 00110101 038 00000101
007 11110111 039 10111011
008 01100010 040 11010000
009 10111001 041 10010100
010 01010000 042 10111001
011 11011010 043 11011111
012 01010001 044 10001010
013 01111000 045 11110001
014 10011000 046 01001011
015 11011110 047 11100000
016 10100011 048 10111101
017 10011011 049 01000000
018 01001101 050 00011011
019 01110000 051 11101001
020 10110101 052 01000010
021 01010101 053 00101010
022 01011111 054 00110001
023 01111010 055 00011010
024 10001010 056 11000111
025 10010010 057 11010110
026 00000101 058 10101111
027 01111110 059 01001011
028 00001010 060 11000101
029 01110011 061 01011010
030 01001101 062 10101110
031 11111000 063 11001100

Fig. 9: Recovered parity matrix with cold boot attack on Intel-2 and Intel-3.

Hardware details. The Intel-1 setup uses the Intel Xeon E3-

1270 v3 CPU built on the Haswell microarchitecture and

a Supermicro X10SLL-F motherboard (BIOS version: 3.0a).

Setup AMD-1 contains the AMD Opteron 6376 CPU that is

part of the Bulldozer Family 15h microarchitecture. This CPU

was mounted on the Supermicro H8SGL-F motherboard with

the BIOS: 5.925, version: 3.5a). Intel-2 is the HP Proliant

DL360p Gen8 Server that uses the Intel Xeon E5-2650 v1

(Sandy Bridge) CPU with default configuration of BIOS

(version P71). Intel-3 is the SuperServer 1026GT that uses the

Intel Xeon E5-2620 v1 CPU (Sandy Bridge) and a Supermicro

X9DRG-HF motherboard with BIOS version 1.0c.

In our experiments we tested several memory modules from

different manufacturers. We confirm a significant amount of

Rowhammer bit flips in a DIMM similar to the one on which

Brasser et al. [36] reported the highest successful exploitation

rate. As Rowhammer is a fundamental architecture issue, many

other combinations of CPU (memory controllers) and memory

modules are susceptible to this class of attacks. We stress that

the configurations that we mention here represents just some

arbitrary setups that we came accross in our research and we

do not blame one manufacturer or another.

Disclosure. We disclosed our findings to the affected parties.

CVE-2018-18904 tracks the timing side-channel of the error

correction. Information about operating systems’ drivers of

several Linux distribution can be found in CVE-2018-18905
and in CVE-2018-18906.
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