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Executive Summary
Summary: This paper conducts the first comprehensive analysis of Google’s consumer 
workloads to identify the major sources of energy consumption in end-consumer devices 
such as cell phones and laptops.

Problem: Energy consumption is a first-class concern for consumer devices. However, 
there is no systematic study to understand the sources of energy consumption in such 
devices. No prior work tries to understand how to (re)design systems to tackle this problem 
fundamentally.

Goal: 1) Understand the data movement related bottlenecks in modern consumer workloads, 
2) Analyze the benefits that Processing-in-Memory (PIM) can enable, 
3) Identify feasible PIM logic that can benefit these workloads.

Key Observation:
1) Data movement is the major contributor to the total system energy, 
2) Simple functions are responsible for a significant fraction of the total data movement. 

Mechanism: Analyze and identify the functions to be offloaded to PIM logic (general-
purpose core / accelerator) in co-located High-Bandwidth Memory (HBM) devices.

Results: Offloading the primitives to PIM logic significantly reduces the total system energy 
(avg. 55.4%) and execution time (avg. 54.2%) across the workloads.

Outline
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Power envelope-driven design

Most devices are constrained by power envelopes!

Battery life (and power consumption) is
a first-class concern in consumer devices

5Source: google.com, apple.com, razer.com

Looking to the Future
Imagine a future where you don’t have to 

recharge your devices.

6

We need to break the abstraction layers to 
understand the sources of energy consumption!

Source: https://safari.ethz.ch/architecture/fall2021/lib/exe/fetch.php?media=onur-comparch-fall2021-lecture1-intro-afterlecture.pdf

How can we make it come true? Must answer:
• What is responsible for energy consumption? 
• How do we improve efficiency across the stack?
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Breaking the abstraction

Energy consumption is a function of:
1) Software = Algorithm + system stack

2) Hardware: Microarchitecture + Logic

7Source: https://safari.ethz.ch/architecture/fall2021/lib/exe/fetch.php?media=onur-comparch-fall2021-lecture1-intro-afterlecture.pdf

To minimize energy consumption:
1) Optimize software stack by identifying major 

sources of energy consumption

Software stack: Google workloads

Chrome
Google’s web browser

TensorFlow Mobile
Google’s machine learning 

framework

Video Playback
Google’s video codec

Video Capture
Google’s video codec
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Breaking the abstraction

Energy consumption is a function of:
1) Software = Algorithm + system stack

2) Hardware: Microarchitecture + Logic

9Source: https://safari.ethz.ch/architecture/fall2021/lib/exe/fetch.php?media=onur-comparch-fall2021-lecture1-intro-afterlecture.pdf

To minimize energy consumption:
1) Optimize software stack by identifying major 

sources of energy consumption
2) Minimize data movement by executing appropriate 

functions on the minimal EDP platform

Hardware

Data Movement
SoC

DRAML2L1
CPU

CPUCPUCPU

10Source: https://safari.ethz.ch/architecture/fall2021/lib/exe/fetch.php?media=onur-comparch-fall2021-lecture1-intro-afterlecture.pdf
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Hardware

Data Movement
SoC

DRAML2L1
CPU

CPUCPUCPU
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Changes to improve hardware’s 
energy efficiency

Data Movement

Processing-in-memory: move computation close to data

Challenge: limited area and energy budget

Processing-in-Memory (PIM)

SoC

DRAML2L1
CPU

CPUCPUCPU
Compute 

Unit 
Compute 

Unit 
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Hardware: High Bandwidth Memory

Source 13Source: https://www.anandtech.com/show/9266/amd-hbm-deep-dive/3
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Goals

1

2

Understand the data movement related 
bottlenecks in modern consumer workloads

Analyze opportunities to mitigate data movement 
by using processing-in-memory (PIM)

Design PIM logic that can maximize energy 
efficiency given the limited area and energy 

budget in consumer devices

3

15
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Energy Cost of Data Movement

Data Movement

1st key observation:  62.7% of the 
total system energy is spent on data movement

Processing-in-Memory (PIM)

SoC

DRAML2L1
CPU

CPUCPUCPU
Compute 

Unit 
Compute 

Unit 

17

Using PIM to Reduce Data Movement

2nd key observation: a significant fraction of 
data movement often comes from simple functions

PIM Core PIM AcceleratorPIM AcceleratorPIM Accelerator

We can design lightweight logic to 
implement these simple functions in memory

Small embedded
low-power core

Small fixed-function 
accelerators

Offloading to PIM logic reduces energy by 55.4%
and improves performance by 54.2% on average
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Workload Analysis Methodology

• Workload Characterization
– Chromebook with an

Intel Celeron SoC and 2GB of DRAM
– Extensively use performance counters within SoC

• Energy Model
– Sum of the energy consumption within the CPU, 

all caches, off-chip interconnects, and DRAM

DRAML2L1CPU
CPU
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Methodology: Implementing PIM Targets

SoC

DRAM

PIM 
Logic

PIM 
Logic

PIM 
Logic

...
Vault 

Mem Ctrl

Vault 
Mem Ctrl

Vault 
Mem Ctrl

...

3.5–4.4 mm2 area budget for the 
PIM logic

Cache

PIM Core OR
Accelerator  1

PIM-
Accelerator  1

Accelerator  N
PIM-

Accelerator  N

...

Vault

21

Methodology: Identifying PIM 
targets

• Pick a function as PIM target candidate if:
– Consumes the most energy out of all functions 
– Significant data movement cost (MPKI > 10)
– Bounded by data movement, not computation

• Drop any candidate if: 
Incurs any performance loss when runs on PIM logic
Requires more area than is available in the logic layer of 3D-

stacked  memory
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Workloads

Video Playback
Google’s video codec

Chrome
Google’s web browser

TensorFlow
Google’s machine learning 

framework

Video Capture
Google’s video Codec

23

Workloads

TensorFlow Mobile
Google’s machine learning 

framework for consumer devices
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TensorFlow Mobile

57.3% of the inference energy is spent on
data movement

54.4% of the data movement comes from 
packing/unpacking and quantization

Quantization: A simple data 
conversion operation that converts 

32-bit floating point to 8-bit 
integers

Packing: A simple 
data re-organization process

that reorders elements of matrices

Inference Prediction

25

Inference Energy Analysis

39.3% of inference energy is spent on
packing and quantization

26

Based on analysis, the authors conclude that:
• Both functions are good candidates for PIM 

execution 
• It is feasible to implement them in PIM logic

25

26



23-Dec-21

14

Workloads

Video Playback
Google’s video codec

Video Capture
Google’s video Codec
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Video Playback and Capture

Compressed 
video VP9 

Decoder

Display
Captured 

video VP9 
Encoder

Compressed
video

Majority of energy is spent on data movement

Majority of data movement comes from 
simple functions in decoding and encoding pipelines
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Video Playback

63.5% of the system energy is spent on
data movement

Compressed 
video

VP9 Decoder
Display

80.4% of the data movement energy comes from 
sub-pixel interpolation and deblocking filter

Deblocking filter: a simple low-
pass filter that attempts to 

remove discontinuity in pixels

Sub-pixel interpolation:
interpolates the value of 

pixels at non-integer 
location

Decoder Energy Analysis

37.5% and 29.7% of inference energy is spent on
Sub-Pixel Interpolation and Deblocking Filter

30

Based on analysis, the authors conclude that:
• Both functions can benefit from PIM execution 
• They can be implemented in PIM logic
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Video Capture

59.1% of the system energy is spent on
data movement

Captured 
video

VP9 Encoder

Compressed

Majority of the data movement energy comes from 
motion estimation which accounts for 21.3%

of total system energy

Motion estimation: compresses the frames 
using temporal redundancy between them

31

Decoder Energy Analysis

43.1% and 15% of inference energy is spent on
Motion Estimation and Deblocking Filter
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Workloads

Chrome
Google’s web browser

Scrolling
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Scrolling Energy Analysis
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41.9% of page scrolling energy is spent on
texture tiling and color blitting
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Tab Switching
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Data Movement Study
• To study data movement during tab switching, 

we emulate a user switching through 50 tabs

Compression and decompression
contribute to18.1% of the total system energy

19.6 GB of data moves between
CPU and ZRAM2

1
We make two key observations:

37

Both functions can benefit from PIM execution 
and can be implemented as PIM logic
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Normalized Energy 
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PIM core and PIM accelerator reduces
energy consumption on average by 49.1% and 55.4%

77.7% and 82.6% of energy reduction for texture tiling 
and packing comes from eliminating data movement

Normalized Runtime
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Offloading these kernels to PIM core and PIM accelerator
improves performance on average by 44.6% and 54.2%
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Executive Summary
Summary: This paper conducts the first comprehensive analysis of Google’s consumer 
workloads to identify the major sources of energy consumption in end-consumer devices 
such as cell phones and laptops.

Problem: Energy consumption is a first-class concern for consumer devices. However, 
there is no systematic study to understand the sources of energy consumption in such 
devices. No prior work tries to understand how to (re)design systems to tackle this problem 
fundamentally.

Goal: 1) Understand the data movement related bottlenecks in modern consumer workloads, 
2) Analyze the benefits that PIM can provide for such workloads, 
3) Identify feasible PIM logic that can benefit these workloads.

Key Observation:
1) Data movement is the major contributor to the total system energy, 
2) Simple functions are responsible for a significant fraction of the total data movement. 

Mechanism: Analyze and identify the functions to be offloaded to PIM logic (general-
purpose core / accelerator) in co-located HBM devices.

Results: Offloading the primitives to PIM logic significantly reduces the total system energy 
(avg. 55.4%) and execution time (avg. 54.2%) across the workloads.
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Strengths

• The paper tackles an important 
problem, presents a feasible solution, 
and justifies the need for deploying 
PIM solutions in consumer devices (a 
very high stakes market)

43

Strengths

• Analyzes Google’s consumer workloads
which are not in public domain
– Offers an in-depth view of the underlying 

functions which is not available in public 
domain
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Strengths

• Results based on actual hardware 
performance counters from the SoC (and 
not just energy models as is the case for 
prior works)

• Well-written and easy to understand paper

45

Weaknesses

• HBM devices are very expensive, and it 
is hard to make the case for PIM 
solutions in price-sensitive markets 
such as consumer devices.
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Weaknesses

• Determining suitable offloading candidates 
requires significant analysis and custom 
programming (similar to GPU programming)
– For instance, implications to Android Runtime 

(Dalvik) design?
– How much existing applications need to be 

reprogrammed? 

47

Weaknesses

• [Weak] Restricted to Google-based workloads 
which are not in public domain  Cannot 
generalize proposals without significant analysis 
for the new workloads 
– Android is a HW/SW fragmented market
– Results are not reproducible
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Literature Review: BBench
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Literature Review: MobileBench
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Related Work: Cost of data movement
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Related Work
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Related Work

53

Discussion

• Can we use Ambit/SIMDRAM to support these 
operations in-memory instead of HBM?

54

53

54



23-Dec-21

28

Discussion

• Can we use Ambit/SIMDRAM to support these 
operations in-memory instead of HBM?
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Discussion
• Impact on other emerging workloads: 

– AR/VR workloads are currently considered very expensive to 
execute on consumer devices:  Is PIM a potential solution?

Source: https://www.roadtovr.com/exclusive-how-nvidia-research-is-reinventing-the-display-pipeline-for-the-future-of-vr-part-1/
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Discussion
• Where to integrate logic in memory? 
• Memory banks / Subarrays / Vault?

– What are the implications of picking one choice or other?

Discussion

• Battery density growth trend over years
– Guess how much growth in capacity over past 20 years?

Source 58
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Discussion

• Battery growth trend over years
– Guess how much growth in capacity over past 20 years?
– 20x

Source: https://www.gsmarena.com/counterclockwise_phone_batteries-news-28202.php 59

Discussion

• Battery growth trend over years
– Battery capacity growth is a slow and hard process
– Design computing systems which can change performance 

characteristics based on amount of energy available to compute 
the result?

– Power available: compute full-precision results with high 
throughput

– Power not available: compute approximate results 
opportunistically

Source 60
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Discussion
• As a future SoC designer, how would you design next-generation chips 

in light of today’s paper? 
– Example: Are you willing to increase the price of your device by 2x 

for close to 2x increase in battery life and performance?

Source
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