
GraphPIM: Enabling Instruction-Level PIM
Offloading in Graph Computing Frameworks

Lifeng Nai†, Ramyad Hadidi†, Jaewoong Sim∗, Hyojong Kim†, Pranith Kumar†, Hyesoon Kim†

†Georgia Institute of Technology, Atlanta GA
∗Intel Labs, Portland OR

†{lnai3, rhadidi, hyojong.kim, hyesoon.kim}@gatech.edu
∗jaewoong.sim@intel.com

Abstract—With the emergence of data science, graph comput-
ing has become increasingly important these days. Unfortunately,
graph computing typically suffers from poor performance when
mapped to modern computing systems because of the overhead
of executing atomic operations and inefficient utilization of the
memory subsystem. Meanwhile, emerging technologies, such as
Hybrid Memory Cube (HMC), enable the processing-in-memory
(PIM) functionality with offloading operations at an instruction
level. Instruction offloading to the PIM side has considerable
potentials to overcome the performance bottleneck of graph
computing. Nevertheless, this functionality for graph workloads
has not been fully explored, and its applications and shortcomings
have not been well identified thus far.

In this paper, we present GraphPIM, a full-stack solution
for graph computing that achieves higher performance using
PIM functionality. We perform an analysis on modern graph
workloads to assess the applicability of PIM offloading and
present hardware and software mechanisms to efficiently make
use of the PIM functionality. Following the real-world HMC 2.0
specification, GraphPIM provides performance benefits for graph
applications without any user code modification or ISA changes.
In addition, we propose an extension to PIM operations that can
further bring performance benefits for more graph applications.
The evaluation results show that GraphPIM achieves up to a
2.4× speedup with a 37% reduction in energy consumption.

Keywords-processing-in-memory; PIM; graph computing; hy-
brid memory cube; HMC

I. INTRODUCTION

The massive explosion in data volumes has made graph

computing increasingly popular as a tool for processing large-

scale network data over the past decades. Today, graph com-

puting is being applied to a variety of domains, including

social networks [1], e-commerce recommendations [2], and

bio-informatics [3]. It is expected to become more prevalent

in the future as many large-scale, real-world problems can

be effectively modeled as graphs. Consequently, a significant

amount of research efforts has been invested in graph com-

puting to improve its execution efficiency, from high-level

graph analytics [1] to low-level system implementations [4]–

[7]. Despite all these efforts, however, graph computing still

does not perform well on modern computing systems because

of the irregular memory access to graph data. To improve

the execution efficiency of graph processing, it is critical

to provide a graph computing framework that incorporates

architectural innovations to overcome the inefficient utilization

of memory subsystems.

As a technique for addressing the bottleneck in the memory

subsystem, processing-in-memory (PIM) was proposed a few

decades ago with a variety of proposals [8]–[11]. Unfortu-

nately, the initial attempt for PIM was not entirely successful

because of its design complexity, fabrication difficulty, and less

immediate needs. Recently, PIM architectures have regained

the attention of researchers as a result of the advances in 3D-

stacking technologies and an increasing concern on the mem-

ory bottleneck. Several PIM architectures and programming

models have been recently proposed by academia [12]–[14],

and memory vendors have also started to incorporate compute

units into the memory architecture, such as Hybrid Memory

Cube (HMC) proposed by Micron [15].

In this paper, we explore incorporating real-world PIM

technology into graph computing to improve its execution

efficiency by addressing hardware and software challenges.

In particular, our study follows the HMC 2.0 specification

that will be available in the near future. In HMC, a logic

layer and several DRAM layers are stacked together using

vertical interconnects called through-silicon vias (TSVs). The

logic layer provides hardware for compute functionality as

well as accommodates the memory controller for the DRAM

layers. Starting from HMC 2.0, it supports the execution of

18 atomic operations in its logic layer.1 Atomic operation

support is limited to several basic operations, but it introduces

the possibility of offloading computation at an instruction

granularity. To this end, we propose GraphPIM, a full-stack

solution that enables PIM for modern graph frameworks.

GraphPIM involves addressing two key challenges.

What to Offload to PIM: Exploiting PIM in an effective way

requires the identification of the right candidate for offloading,

which has not been well discussed in prior studies. GraphPIM

is based on the key observation that the atomic access to the

graph property is the main culprit for the inefficient execution

of graph workloads on modern systems. Thus, by offloading

the atomic operations on the graph property to the PIM side,

GraphPIM avoids the overhead of performing the atomic

operations in the host processor and the inefficient utilization

of the memory subsystem caused by irregular data accesses.

1HMC 2.0 differs from HMC Gen2, which follows the HMC 1.0 speci-
fication. HMC 2.0 hardware is not publicly available yet, but HMC atomic
support is a practical, real-world design.

2017 IEEE International Symposium on High Performance Computer Architecture

2378-203X/17 $31.00 © 2017 IEEE

DOI 10.1109/HPCA.2017.54

457

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on April 21,2021 at 15:41:56 UTC from IEEE Xplore. Restrictions apply.

How to Offload to PIM: Another key challenge is designing

an interface between the host processor and PIM architectures,

which is less intrusive to the computing ecosystem. Unlike a

recent PIM study that requires programmers to explicitly in-

voke PIM operations using new host (native) instructions [14],

GraphPIM does not add an extra burden on application

programmers by leveraging existing host instructions. The

key idea is to map host atomic instructions directly into

PIM atomics using uncacheable memory support in modern

architectures. With this approach, we demonstrate that we

can provide performance benefits for a wide range of graph

workloads without any changes in user applications or ISA;

we only need a minor extension to the host processor and the

graph framework. As a result, GraphPIM is more non-intrusive

to the current software and hardware environment than other

solutions, which we discuss in Section III-B.
In summary, this paper makes the following contributions.

• We study a wide range of graph workloads and identify

the potential target for PIM offloading. We demonstrate

that the key performance benefit of PIM for graph com-

puting comes from reducing atomic overhead.

• We propose GraphPIM, which efficiently utilizes the

real-world PIM functionality for graph computing. With

minor architectural extensions to support PIM instruction

offloading, our GraphPIM solution significantly improves

graph processing performance (up to 2.4x) without any

changes in user applications and ISA.

• We study the applicability of the atomic operations in

HMC 2.0 for modern graph workloads. Based on the

analysis, we propose a potential extension to the current

set of HMC atomics and enable the PIM functionality for

more graph applications.

II. BACKGROUND AND MOTIVATION

Processing-in-memory (PIM) is a decades-old concept of in-

corporating computation functionality directly in the memory.

The integrated compute units can be fully programmable cores,

such as CPU and GPU, or simple ones that execute fixed-

function PIM operations. As one of the first few industrial

practices of PIM, Hybrid Memory Cube (HMC) provides com-

pute capability, starting from HMC 2.0 [16]. In this section,

we first provide background on the PIM implemented in HMC

and then discuss how to exploit it for graph workloads.

A. HMC-Atomic Operation
In addition to a dramatic improvement in memory band-

width, HMC introduces the possibility of supporting a vari-

ety of processing-in-memory (PIM) functionalities within the

memory cube. PIM operations in HMC basically perform three

steps: reading data from DRAM, performing computation on

the data in the logic die, and then writing back the result to

the same DRAM location. According to HMC 2.0, the PIM

units perform read-modify-write (RMW) operations atomi-
cally within an HMC package. The corresponding DRAM

bank is locked during the RMW operation, so any other mem-

ory requests to the same bank cannot be serviced. In addition,

all PIM operations include only one memory operand; the

operations are performed on an immediate value and a memory

operand.

TABLE I: Atomic operations in HMC 2.0

Type Data Size Operation Return

Arithmetic 8/16 byte single/dual signed add w/ or w/o
Bitwise 8/16 byte swap, bit write w/ or w/o

Boolean 16 byte AND/NAND/OR/NOR/XOR w/o
Comparison 8/16 byte CAS-if equal/zero/greater/less, w/

compare if equal w/

Table I lists several types of PIM operations supported

by HMC 2.0: arithmetic, bitwise, boolean, and comparison.

Although some operations also support 8-byte size, the default

data size of PIM operations is 16 bytes. Depending on the

definition of specific commands, a response may or may not

be returned. If the response is returned, it will include an

atomic flag that indicates whether the atomic operation was

successful. Depending on the commands, the original memory

data may also be returned along with the response.

B. Modern Graph Computing

Graph computing has been applied to a variety of domains

as an important tool for processing large-scale network data.

In real-world practices, because of the unique characteristics

of graph data, graph computing shows distinct and diverse

behaviors that are different from other computing types.

Framework-Based Computing: Unlike general applica-

tions that are often written from scratch, graph computing

applications are typically implemented on top of underly-

ing graph frameworks [5]–[7]. Graph frameworks provide

user primitives for elementary graph operations, such as

finding vertices and updating graph properties, while hiding

the complexity of graph data management from application

programmers. In other words, graph frameworks decouple

user application code from low-level data management and

OS/hardware-related code. This allows us to integrate opti-

mization techniques into the graph frameworks without adding

an extra burden on programmers.

Diversity of Graph Applications: The complexity and

diversity of graph data result in a wide range of graph work-

loads with various computation behaviors [1], [17]. Modern

graph applications are generally classified into three categories

depending on the computation type.

(1) Graph Traversal (GT): In this category of applications,

most computation occurs while traversing the graph through

edges and jumping from a vertex to other connected vertices

that are scattered through the graph. Traversing incurs a large

number of irregular memory accesses for applications such as

breadth-first search, shortest path, and page rank [18].

(2) Rich Property (RP): In this category, vertices are asso-

ciated with rich graph properties, which can be as complex as

large stochastic tables, such as those in Gibbs inference [19]

and Bayesian network computation [20]. Computation in this

category, unlike graph traversal (GT), occurs within the graph

458

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on April 21,2021 at 15:41:56 UTC from IEEE Xplore. Restrictions apply.

properties. As this category of graph applications performs

heavy numeric operations, it shows behaviors similar to con-

ventional applications.

(3) Dynamic Graph (DG): Applications in this category

perform computations on the dynamic graphs where the struc-

ture changes over time. Examples include graph triangulation

(TMorph) and streaming graph (GCons). The applications in

this category show memory-intensive behavior and irregular

memory accesses similar to the static graphs. However, the

dynamic graph structure leads to more diverse computation

behavior than GT because of dynamic memory footprint and

heavy write accesses.

���
���
���
���
���
���

��
��
��
��
	

��
��
�
��
��
�

�� �� ������

Fig. 1: Instructions per cycle (IPC) of graph workloads on an

Intel Xeon E5 machine

Inefficient Execution on Modern Systems: To understand

the performance behaviors of diverse graph applications on

modern architectures, we measure the instructions per cycle

(IPC) of typical graph workloads in each category on an 8-core

Intel Xeon E5 machine. As shown in Figure 1, most workloads

experience extremely poor performance. For example, many

applications in the GT category show an IPC of less than 0.1,

and while the workloads in DG show a bit higher performance

than GT, they are still well below an IPC of 1. In general,

graph computing applications (especially for the applications

in the GT and DG categories) suffer from significantly poor

performance on conventional architectures.

C. Bottlenecks in Graph Computing
The bottlenecks in graph computing arise from two ma-

jor sources. First, graph computing typically entails a large

number of irregular memory accesses because of the scattered

graph connectivity. This makes on-chip caches mostly ineffec-

tive and thus leads to poor utilization of compute resources due

to the access to the long-latency main memory. Second, graph

data is typically processed in parallel due to its massive scale.

Such parallel graph data processing heavily performs atomic
operations to avoid contention of shared data. In general,

atomic execution involves multiple operations and incurs non-

negligible performance overhead [21]. Below, we provide an

analysis to understand the bottlenecks of graph computing.
Irregular Memory Access: To understand the impact of ir-

regular memory accesses on graph computing, we break down

the execution time in the processor pipeline and measure the

misses per kilo instructions (MPKI) of on-chip caches across

a variety of graph workloads. The experiment is performed

on an Intel Xeon E5 machine using hardware performance

counters [22].

0%

25%

50%

75%

100%

Ex
ec

ut
io

n
Cy

cl
e

Br
ea

kd
ow

n

Backend Frontend BadSpeculation Retiring

0
50

100
150
200

M
is

se
s P

er
 K

ilo

In
st

ru
ct

io
ns

L1D L2 L3

GT RP DG

Fig. 2: Architectural behaviors of graph workloads on an Intel

Xeon E5 machine

First, the top graph in Figure 2 shows the execution time

breakdown following a top-down methodology described in

the Intel manual [22], [23]. Frontend and Backend repre-

sent the execution time spent by frontend and backend-caused

stalls.2 Also, BadSpeculation shows the cycles resulting

from miss speculation, while Retiring represents the cycles

of successfully retired instructions. Note that the pipeline stalls

caused by the memory subsystem are included in Backend.

As shown in the figure, graph computing spends most of

its execution time on Backend, which is higher than 90% in

some workloads, indicating that the memory subsystem is the

key bottleneck for graph workloads. Such an observation is

further supported by the MPKI results in the bottom graph,

where L3 MPKI can be as high as 145 for the Degree

Centrality (DCentr) workload. Also, the L2 and L3 caches

do not provide sufficient benefit for most graph workloads as

presented in the L2/L3 MPKI values.

Data Components: Figure 3 illustrates a code snippet

of breadth-first search (BFS) using a vertex-frontier based

algorithm [18]. The code goes through a loop that iterates

over the traversal steps in a synchronized way. The algorithm

in each step processes the vertices in the frontier that contains

the vertices with the same depth. For each vertex, the algorithm

checks the depth of its neighbors to see if it has been visited,

and if not the depth information is updated using a compare
and swap (CAS) atomic operation. Then, the newly visited

vertices form the frontier for the next iteration. Here, the data

access can be classified into three different components: meta

data, graph structure, and graph property.

(1) Meta Data: Meta data include any local variables (e.g.,

d) and task queues (e.g., F and F’). These are frequently

accessed and are also small, so they are cache-friendly. Thus,

the access to meta data mostly hits in the L1/L2 caches.

(2)Graph Structure: To check the status of neighbors, the

graph structure is accessed for retrieving the neighbor vertices.

Since each vertex’s neighbor list is usually organized in an

array-like data structure, access to the graph structure has good

spatial locality. Thus, the memory requests to this component

2Frontend includes instruction fetch, decode and allocate. Backend
includes instruction scheduling, executing, and retiring.

459

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on April 21,2021 at 15:41:56 UTC from IEEE Xplore. Restrictions apply.

�� 	
�����
����� � �
����������

��� 	��
��� �������� � ����������

��� �����������
��� �������� ����������

�������������� ���! ���
�����""
����

��� �� � �
�	
��

�	
���
�	
���
������
�� ��

�	
�����

�
#
$
&
'
(
)
*
+

�,
��
�#
�$
�&
�'

�-��!����������.�
����!�������
���
��-�!����������.�
����!���.��
���
�������-���������������������!�����.��
����������-���������������
��!��
����������� ���! ���-���������������
����
/�����������

�����	
��
����-������

���������
���

������-������

������������������

������-������

�����������������

Fig. 3: Code snippet for breadth-first search (BFS)

also do not incur a large number of main memory accesses.

(3) Graph Property: During the traversal, BFS updates the

property of the neighbor vertices. Due to the irregular nature

of graph connectivity, working on the property list incurs

accesses that are spread throughout the entire graph. However,

only a small portion of the graph property is captured in the

cache because of the large size of graph data. As a result, the

access to the graph property usually leads to a high number

of last-level cache (LLC) misses.

As explained above, the inefficient utilization of the memory

subsystem is caused by the access to the graph property rather

than to other data components. Also, due to the uncertain

nature of graph connectivity, it is challenging to improve cache

performance via conventional prefetching or data remapping

techniques. In summary, we have two key observations: 1) the

irregular access pattern occurs mostly in the graph property

access (not spreading over all data components) and 2) the

computation on the property data is a simple read-modify-

write (RMW) atomic operation.

D. PIM Potential for Atomic Instructions

Any vertex in the graph can be shared among multiple

threads. Thus, it is inevitable for most graph workloads to

perform a large number of atomic operations to avoid con-

tentions on the updates of the shared vertex property. For

example, Figure 3 shows that all neighbor vertices’ properties

are accessed via CAS atomic operations. The heavy reliance on

atomic operations incurs non-negligible performance overhead

in modern general-purpose architectures [21].

	

	
�

�

�
�

��� ����� 	�
���� ��� �� �� ���
 �����

��
��

��
�	

���

��
���

��
��
�

������
����������

����4

Fig. 4: Atomic instruction overhead of graph workloads on an

Intel Xeon E5 machine

To measure the overhead of atomic operations for graph

workloads, we conducted an experiment on an Intel Xeon

E5 machine. We created micro-benchmarks performing one

iteration of each graph workload and then ran the benchmarks

while including/excluding the atomic operations on the graph

property. As shown in Figure 4, compared with using regular

read and write instructions, the atomic instruction incurs a

29.8% performance degradation on average (up to 64% for

DCentr). The overhead of CPU atomic instructions comes not

only from the extra cache invalidation and coherence traffic

caused by the read-modify-write operation, but also from the

pipeline freezing and write-buffer draining because of the

consistency requirement. Such atomic overhead can potentially

be avoided by utilizing PIM-Atomic in graph workloads.

Because the read and atomic operations on the graph property

occur at different execution phases and barriers guarantee

that all previous atomic instructions are complete, the graph

workloads naturally avoid consistency issues [24] and thus can

benefit from using PIM-Atomic instructions.

III. GRAPHPIM FRAMEWORK

A. Overview

Figure 5 shows an overview of our GraphPIM framework.

GraphPIM enables instruction-level PIM offloading for generic

graph computing frameworks with negligible changes in both

software and hardware. Because of the separation of the user

application layer from others, the changes are transparent to

user applications.

���� �
�!!��������

�������	
�������

���	
���

����������

��

���������������������

�����������	���������

����������������	���
�������������

���	
�
��	����

	��6��������
���	
�

���������

��������

��
�������
 �

��

 �
�

�!

�
"

#�

��
��

���
"�

��

#�!������!!�� #�

"!���
�		��������

"!���
�		��������

Fig. 5: Overview of GraphPIM framework

Graph-Data Management: As explained in Section II-C,

both irregular memory accesses and atomic operation overhead

in graph computing are caused by the access to the graph prop-

erty. Therefore, in GraphPIM, we choose the atomic operations

on the graph property as PIM offloading targets. To achieve

this, GraphPIM requires the framework to allocate the graph

property in the PIM memory region (PMR), which is a con-

tinuous block of an uncacheable region in the virtual memory

space. This is achieved by calling a customized pmr malloc
function (similar to jemalloc [25] and tcmalloc [26]). All host

atomic instructions accessing the PMR are offloaded as PIM-

Atomic requests.

Hardware Architecture: In GraphPIM, the host processor

architecture implements a PIM Offloading Unit (POU) to

460

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on April 21,2021 at 15:41:56 UTC from IEEE Xplore. Restrictions apply.

determine the data path of the current memory instruction.

Atomic instructions accessing the PMR will bypass the cache

hierarchy and be offloaded to HMC directly. The PIM region

is uncacheable, so other non-atomic memory requests to the

PIM region will also bypass the cache hierarchy.

Programming Model: An application programmer can

use the same graph APIs and follow the same program-

ming model provided by the underlying graph frameworks,

so no application-level code change is required to benefit

from GraphPIM from the programmer’s perspective. The only

change occurs within the framework. GraphPIM requires the

graph framework to use a specialized pmr malloc function to

allocate memory space for the graph property. This modifica-

tion to the framework is negligible and does not incur extra

overhead for application programmers.

B. Architectural Extensions

Figure 6 shows the architectural extensions to the host

processor in GraphPIM. We keep the architectural changes

non-intrusive to current hardware architectures.

�����

��
�
	�

�

��

�������������� �����
��
����������������

�������������� �����
��
����������������

�������������� �����
��
����������������

����
���
!

"�
	�
	�
��

�
���

��
��
#��
$�
��	
��
!�

"�	"��%

�&��

��
�
	�

�

��

���

�'������
������(

�������
'���(

"�	��������
��)����

����� ���"�	
**

+ +

����
,�'����

���

�� �&

Fig. 6: Architectural extensions for GraphPIM (added parts

are shown in dark gray)

PIM Memory Region: In GraphPIM, we define a PIM

memory region (PMR) for the data of offloading targets. The

PMR is specified in the virtual memory space by utilizing

existing uncacheable (UC) memory support in x86 archi-

tectures [27]. The corresponding physical pages are marked

as uncacheable by setting system registers (such as MTRRs

in x86) from the operating systems. The underlying graph

framework places the data of offloading targets into the PMR

via a customized pmr malloc function at the initial memory

allocation phase.

PIM Offloading Unit: In each host core, GraphPIM inte-

grates a PIM Offloading Unit (POU), which determines the

data path of memory instructions. GraphPIM does not rely

on special PIM instructions in the host processor, so the host

processor ISA does not need to be changed. As shown in

Figure 6, all atomic instructions, such as instructions with a

“lock” prefix in x86, are regarded as HMC operations if they

are accessing the PMR. Instead of being executed in the host

processor, the atomic instructions are offloaded to the HMC

by sending memory requests with atomic operation commands.

Note that all other non-atomic instructions bypass the cache

hierarchy just as with the original UC memory support.

Cache Policy: PIM-Atomic directly modifies the data within

HMC. To maintain data coherency between HMC and cache,

we follow a cache bypassing policy for offloading targets. By

marking a page as uncacheable, all memory requests, including

both offloading and non-offloading cases, will bypass the

cache hierarchy if they are accessing the PMR. In this way,

GraphPIM ensures that there is no data copy in the cache so

that the coherence issue is avoided. Dealing with the cache

bypassing policy is better than maintaining full coherence in

terms of both performance and design complexity. Offloading

targets in GraphPIM are graph property accesses, which are

irregular. Thus, bypassing the caches for PIM-Atomic provides

multiple benefits, such as avoiding unnecessary cache check-

ing time, preventing cache pollution, and reducing memory

bandwidth.

TABLE II: Summary of PIM offloading targets

Workload Offloading Target PIM-Atomic Type

Breadth-first search lock cmpxchg CAS if equal
Degree centrality lock addw Signed add

Shortest path lock cmpxchg CAS if equal
K-core decomposition lock subw Signed add
Connected component lock cmpxchg CAS if equal

Triangle count lock add Signed add

Offloading Target: GraphPIM regards the host atomic

instructions that access the PMR as offloading targets. Table II

summarizes the offloading targets for each workload as well

as the corresponding PIM-Atomic operations (the workload

applicability will be further discussed in Section III-C). As

shown in the table, the corresponding x86 instructions with a

“lock” prefix access the graph property and thus are offloaded

to HMC. In the table, the graph workloads utilize two types

of PIM-Atomic operations, CAS if equal and Signed
add, which can be directly mapped from the host atomic

instructions. Note that there are a few PIM-Atomic operations

that do not match the host atomic instructions, such as CAS
if greater and CAS if less. In the host processor,

the functionality of these operations is achieved via a small

instruction block that consists of other existing host atomic

instructions. Such an instruction block is usually generated

by the compiler. To fully utilize all PIM-Atomic operations,

the host architecture may incorporate a mechanism to identify

such small instruction blocks that can translate into the PIM-

Atomic operations. Similar to other host atomic instructions,

the identified instruction block will be regarded as a PIM

offloading target if it is accessing the PMR.

Discussion: In GraphPIM, instead of adding special PIM

instructions to the host processor, we choose to mark the

special memory region for three major reasons: 1) Cache co-

herence. When using PIM instructions, because non-offloading

instructions may also access the same data, we have to

maintain costly coherence between data copies in the caches

and memory. Such an issue is naturally avoided in our method

because of the memory address-based PIM offloading. 2)

461

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on April 21,2021 at 15:41:56 UTC from IEEE Xplore. Restrictions apply.

Programmer overhead. If new PIM instructions are introduced,

application programmers typically must modify higher level

software. With our proposed method, however, there is no

extra burden for application programmers using PIM. Only

a simple malloc function replacement is needed in the graph

framework. 3) Cache checking overhead. In our method, all

data accesses to PMR bypass the cache hierarchy, which brings

extra performance benefits.

GraphPIM utilizes the atomic operations in the HMC 2.0

specification. Nevertheless, the proposed technique can be

applied to other instruction-level PIM offloading environments.

Likewise, GraphPIM can also be beneficial for non-graph

workloads that perform atomic operations on irregular data.

Furthermore, GraphPIM can be applied on systems equipped

with both HMCs and DRAMs. In this case, the graph property

data allocated in DRAMs will be processed in the conventional

way, while the graph data in HMCs can still receive the same

benefit from PIM-Atomic. In addition, it should be noted that

without PIM-Atomic, bypassing the cache for atomic instruc-

tions would incur a huge performance degradation because the

cache-line lock will be downgraded to bus locking in this case.

C. Applicability of PIM-Atomics

As discussed in Section II-B, modern graph computing

covers a wide range of applications that exhibit different com-

putation characteristics. Although we showed the feasibility

of offloading the accesses to the graph property using BFS

as an example, a further question may arise as to whether

the same technique can be applied on other graph computing

applications. In this section, we discuss the applicability of

PIM-Atomic operations on various graph workloads.

The current PIM-Atomic support has two major limitations.

First, only simple arithmetic operations are currently imple-

mented; complex operations (e.g., floating point operations)

are not supported in HMC 2.0. Second, only one memory

operand is allowed in the operations. The operations that need

to specify multiple memory locations have to be split into

separate requests. Thus, to benefit from GraphPIM, the target

applications should fulfill two key requirements: 1) the target

workloads should contain a large number of irregular memory

accesses triggered by atomic operations on the graph property

and 2) the atomic operations on the target memory regions

should be simple enough to be mapped to the existing PIM-

Atomic operations. Most graph traversal applications, such

as our BFS example in Figure 3, fulfill the requirements.

To further study the applicability of PIM-Atomic on graph

workloads, we analyze all workloads from the GraphBIG

benchmark suite [17].

Inapplicable Graph Workloads: As shown in Table III,

most of the traversal-oriented workloads, noted as Graph

Traversal, can make use of PIM-Atomic operations. The two

exceptions are Betweenness Centrality and Page Rank, which

require floating point operations. On the other hand, the graph

workloads in the Dynamic Graph (DG) category frequently

perform graph structure/property updates and involve complex

code structure and access patterns. Therefore, they require

TABLE III: Summary of PIM-Atomic applicability with

GraphBIG workloads

Category Workload Applicable?
(Missing operation)

Graph Traversal Breadth-first search
√

Depth-first search
√

Degree centrality
√

Betweenness centrality × (Floating point add)
Shortest path

√
K-core decomposition

√
Connected component

√
Page rank × (Floating point add)

Dynamic Graph Graph construction × (Complex operation)
Graph update × (Complex operation)
Topology morphing × (Complex operation)

Rich Property Triangle count
√

Gibbs inference × (Computation intensive)

more complex memory operations, such as indirect accesses

and multiple memory operands. For the workloads in the

Rich Property (RP) category, Triangle Count can use PIM

functionality. However, the workloads in this category per-

form computation within the vertices’ properties, so they are

more computation intensive than Graph Traversal. Thus, PIM-

Atomic may not provide huge performance benefits for them.

Potential Extension to PIM Atomics: The logic die in

HMC enables the possibility of implementing a wide range

of computation logic within the memory package. Although

HMC 2.0 currently defines 18 simple operations, HMC tech-

nology has the full potential of implementing new operations if

needed. As previously discussed, some applications deal with

floating point (FP) operations; for example, both Betweenness

Centrality and Page Rank perform FP add operations when

updating the graph property. As FP add/sub operations are

relatively simple compared to other complex ones, FP add/sub

support might be a reasonable extension to the future PIM-

Atomic to provide PIM benefits for more graph workloads. In

Section IV, we further evaluate the performance benefits of

supporting FP add/sub operations.

IV. EVALUATION

A. Methodology

We evaluate our method using the Structural Simulation

Toolkit (SST) [28] with MacSim [29], a cycle-level archi-

tecture simulator. HMC is simulated by VaultSim, a 3D-

stacked memory simulator. We extend VaultSim with extra

timing models based on DRAMSim2 [30]. Table IV shows the

configuration of our evaluated system. We model a processor

with 16 out-of-order cores and a single 8GB HMC that follows

the HMC 2.0 specification [16]. We use the benchmarks from

GraphBIG [17], a graph benchmark suite covering a wide

scope of graph computing workloads, as the workloads, and

the LDBC graph as the input dataset. In addition, two other

large-scale graphs, bitcoin and twitter, are further used to

evaluate our method with real-world applications.

462

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on April 21,2021 at 15:41:56 UTC from IEEE Xplore. Restrictions apply.

TABLE IV: Simulation configuration

Component Configuration

Core 16 out-of-order cores, 2GHz, 4-issue

Cache 32KB private L1 data/instruction caches
256KB private L2 inclusive cache
16MB shared L3 inclusive cache
64-byte cache line, MESI coherence protocol

HMC 8GB cube, 32 vaults, 512 DRAM banks [16]
tCL = tRCD = tRP = 13.75 ns, tRAS = 27.5 ns [31]
4 links per package, 120GB/s per link [16]

Benchmark GraphBIG benchmark suite
Dataset LDBC graph (1M vertex) [32], ∼900 MB footprint

Bitcoin graph, ∼10 GB footprint
Twitter graph, ∼5 GB footprint

B. Evaluation Results

In this section, we evaluate our proposed GraphPIM with

three system configurations, as explained below. All results

are normalized to the baseline unless otherwise stated.

• Baseline: This is a conventional architecture using HMC

as main memory and does not utilize instruction offload-

ing functionality.

• U-PEI: This configuration enables instruction offloading

by following a mechanism similar to PEI [14] except

that we assume perfect locality-aware offloading and

ideal coherence management. In particular, all offloading

requests that can hit in the cache are processed within

the host processor, and the coherence between caches and

HMC is assumed to incur no extra overhead; hence, this

configuration shows the performance upper-bound of PEI.

• GraphPIM: This is our proposed instruction offloading

technique, in which the atomic instructions accessing the

PIM memory region bypass the cache hierarchy and are

offloaded to HMC.

����

����

����

����

����

����

����

�

���

�

���

�

���

�

�
��
�
��
��
�
	��
	

��
���

�

��
�
��
	�

�

��
��
��

��
��
�
��
��
��
	

�

	

����� ���� �
����� ����������

Fig. 7: Speedups over the baseline system

1) Performance Evaluation: Figure 7 shows the perfor-

mance results. Compared to the baseline, GraphPIM achieves

as high as a 2.4× speedup (PRank) and more than a 2×
speedup for Breadth-first Search (BFS), Connected Compo-

nent (CComp), and Degree Centrality (DC). On average,

GraphPIM improves performance by 60% over the baseline.

However, we also observe a negligible speedup for kCore

Decomposition (kCore) and Triangle Count (TC). This is

because they have a low percentage of offloaded PIM-Atomic

operations. Thus, the performance potential is quite low to

begin with. For instance, kCore spends a significant amount of

time checking inactive vertices, not on accessing properties of

neighbor vertices. Also, TC performs most operations within

graph properties and thus is more compute intensive than other

workloads.

As discussed in Section III-C, with additional support for

the floating point add operation, Betweenness Centrality (BC)

and Page Rank (PRank) can also benefit from GraphPIM.

The result shows that PRank experiences a significant per-

formance improvement with instruction offloading while BC

does not. This is because BC has a large number of centrality

computations on thread-local data structures, which makes the

workload more compute intensive and the impact of improving

atomic performance relatively small.

���������	��
���������
��������	���������
�����
������88�������

��� �� � 	
�
���

�
����

�������������
���� �������
�
� ����
��
�������������� �!�����
����"
#

���
�����	

�
� ����
��
�������������� �!�����
����"
#

$������%��� &9'�������($)*+,�������
�

%�-"��������+�
�+
�.��

��� �������"��������
�
��������

$)*+%�-"�$)*�
���������������

Fig. 8: Illustration of atomic instruction overhead

Atomic Overhead: The major performance gain of Graph-

PIM comes from avoiding the host-side atomic instructions,

which incurs non-negligible overhead. In graph workloads, the

long latency of atomic instructions delays not only the atomic

instructions, but also subsequent dependent instructions. As

shown in Figure 8, the CAS operation in the pseudo code will

be compiled as a lock cmpxchg instruction and then offloaded

to the HMC side as a CAS-if equal operation. The following

branch instruction and task queue scheduling code depend on

its return value. The long latency of atomic instructions will

delay the retirement of the depending instructions. The depen-

dent instruction block would greatly reduce the efficiency of

out-of-order execution and therefore cause low processor ILP.

0.0%
0.5%
1.0%
1.5%
2.0%
2.5%

�
���
���
���
���
�

	

��
��
�

��

�
��
��

	

��
��
�

��

�
��
��

	

��
��
�

��

�
��
��

	

��
��
�

��

�
��
��

	

��
��
�

��

�
��
��

	

��
��
�

��

�
��
��

	

��
��
�

��

�
��
��

	

��
��
�

��

�
��
��

	�� ����� �� ����� ���� �� 	� ��
��

�
��
�
��
��
	

��

�
��
�

��
��
��
��

�
��

��
�	

�

��

���
��
��
�
�

��
�

	
�

 !��� "!���#$������ "!���#$���
#�� %���$"!���#

Fig. 9: Breakdown of normalized execution time (Atomic-

inCore: atomic instruction cycles for pipeline freezing and

write-buffer draining; Atomic-inCache: atomic instruction cy-

cles for cache checking and coherence traffic; Other: cycles

of other instructions’ execution and stall)

To estimate the impact of atomic instruction overhead, we

measure the breakdown of atomic and non-atomic instructions

in total execution time, as shown in Figure 9. Note that atomic

463

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on April 21,2021 at 15:41:56 UTC from IEEE Xplore. Restrictions apply.

instructions incur not only in-core atomic overhead but also

cache checking and coherence traffic overhead. As shown, in

the baseline system, most workloads spend a large portion

of their execution time in atomic instructions. For example,

BFS, CComp, DC, and PRank all show above 50% atomic

instruction overhead. However, in kCore and TC, their small

atomic instruction count limits the atomic overhead. Also, in-

core overhead, which includes the time for pipeline freezing

and write-buffer draining, is the major source of overhead. In

most workloads, in-core overhead above 30% is observed. The

result also shows close to a 20% cache overhead for some

workloads, which comes from the cache checking latency

for irregular property data and extra coherence traffic. In

GraphPIM, all workloads show an execution time for the non-

atomic part similar to the baseline system except for BC, in

which non-atomic part requires more execution time. This is

because in BC, non-atomic instructions reuse shared data from

the atomic part. Such data locality cannot be utilized with PIM

offloading.

0%
20%
40%
60%
80%
100%

��� ����� 	�
���� ��� �� �� ���

��
��
��
�
���

��
��
�

Fig. 10: Cache miss rate of offloading candidates

Cache Bypassing: We previously discussed that our of-

floading targets (i.e., graph property access) do not have

data locality and that it is therefore better to bypass the

cache hierarchy. The experiment results also support our

discussion. From the results in Figure 7, we can see that

GraphPIM outperforms U-PEI because it avoids the unnec-

essary cache checking time. Note that U-PEI is already an

idealized configuration, which ignores the extra overhead of

two key factors: (1) maintaining offloaded data coherence and

(2) computing offloaded instructions that hit in the cache.

In a more realistic system, both factors can bring significant

performance overhead. Nevertheless, GraphPIM still shows a

20% higher speedup than U-PEI on average over the baseline.

All workloads achieve better performance except for BC, in

which thread-local data structures are heavily used with data

locality. In addition, a cache analysis is also performed. In

most workloads, more than 80% of offloading candidates

are cache miss, as shown in Figure 10, which justifies the

feasibility of GraphPIM’s cache policy. kCore, TC, and BC

show relatively lower cache miss rates than others. However,

the performance of kCore and TC is not harmed because of

their limited number of accesses, whereas data locality in BC

affects performance and results in a slightly better speedup for

U-PEI.

Functional Units: An 8GB HMC contains 32 vaults, each

of which has 16 memory banks. Thus, 16 functional units

(FUs) are enough for each vault for PIM-Atomic. However,

if we have fewer FUs in each vault, the bottleneck may

�

���

�

���

�

���

��� ����� 	� ���� ��� �� �� ����

��
��
��

��
��
��
�	

�
��
�
�

��
����� ����� ���� ����

Fig. 11: Speedup over baseline system with different functional

units (FU) per HMC vault

shift to the number of FUs. To estimate the impact of the

number of FUs, we perform a sensitivity analysis. As shown

in Figure 11, there is no noticeable performance impact with

a different number of FUs. Even with only one FU in each

vault, the performance is still roughly the same as with the

16-FU configuration. The result shows that the performance is

not bounded by PIM-Atomic throughput in HMC. This results

for two reasons: 1) HMC has 32 vaults, so the chances of

consecutive HMC-Atomic requests mapped to the same vault

are low. 2) The offloading target has depending instructions,

which also introduce a large number of interleaving memory

requests. This makes PIM-Atomic relatively sparse in total

memory requests. For current atomic support in HMC 2.0, the

FUs consume only negligible energy even with 16 FUs per

vault. However, if floating point units are incorporated, the FU

number can have a substantial impact on energy consumption.

We further explain this in Section IV-B4. In our evaluation, we

assume 16 regular FUs and one floating point FU per vault.

2) Bandwidth Analysis: HMC uses a packet-based protocol

for the links between the host processor and HMC, where the

packets consist of 128-bit data units called FLITs [16]. The

packet sizes of regular memory requests and atomic operations

is summarized in Table V. A 64-byte READ/WRITE request

consumes 6 FLITs in total, while the atomic operations need

only 3 or 4 FLITs. Therefore, PIM-Atomic provides the benefit

of bandwidth savings compared to regular memory requests

due to its smaller packet size.

Figure 12 shows the breakdown of bandwidth consumption

normalized to the baseline. We can see that GraphPIM reduces

the bandwidth consumption by around 30% in BFS, CComp,

DC, SSSP, and PRank. Because graph workloads are more

intensive in read requests, most bandwidth savings are from

the response part. Besides, the bandwidth impact of GraphPIM

in kCore and TC is negligible because of their limited number

of offloaded operations. Similarly, the bandwidth benefit of

TABLE V: HMC memory transaction bandwidth requirement

in FLITs (FLIT size: 128-bit)

Type Request Response

64-byte READ 1 FLITs 5 FLITs
64-byte WRITE 5 FLITs 1 FLITs

add without return 2 FLITs 1 FLITs
add with return 2 FLITs 2 FLITs

boolean/bitwise/CAS 2 FLITs 2 FLITs
compare if equal 2 FLITs 1 FLITs

464

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on April 21,2021 at 15:41:56 UTC from IEEE Xplore. Restrictions apply.

�

���

���

���

���

�

���
�

��

 !�
�

""
�
�

��
��
�	

�

��
�
���

��
	�
�

��
��
�	

�

��
�
���

��
	�
�

��
��
�	

�

��
�
���

��
	�
�

��
��
�	

�

��
�
���

��
	�
�

��
��
�	

�

��
�
���

��
	�
�

��
��
�	

�

��
�
���

��
	�
�

��
��
�	

�

��
�
���

��
	�
�

��
��
�	

�

��� ����� �� ���� ���	 �� �� 	����

��
��

��
�	

���

�

��
��

��
��

��
��

����� ������

Fig. 12: Normalized bandwidth consumption with request/re-

sponse breakdown

�

�&

!

!&

"

"&

��� ���#	 �� ����� ���� 	�
� ���� ����

��
��
��

��
��
��
��

�
��
�
�

������
������������
�
��������������
�
�������� ��������������
� ����������������
�

Fig. 13: Speedup over baseline system with different HMC

link bandwidth

BC is offset by the existence of data locality. In addition,

compared to U-PEI, the cache bypassing policy of GraphPIM

can help reduce bandwidth consumption for most workloads.

For example in BFS, the bandwidth reduction is further

improved from 7% to 29%. However, outliers also exist. In

BC and TC, because of their data locality, GraphPIM shows

slightly higher bandwidth consumption than U-PEI.

Although the reduction in memory bandwidth consumption

can result in energy benefits, it is not the case in the context

of performance. Figure 13 shows the speedup with different

HMC link bandwidths over the baseline system with origi-

nal link bandwidth. As shown, since Baseline-half-BW and

Baseline-double-BW are almost the same as Baseline, we can

conclude that the baseline system is not sensitive to bandwidth

variations. Likewise, the speedup of GraphPIM remains the

same with different HMC link bandwidth configurations. From

the results, we can observe that with the existing rich band-

width resources of HMC, graph workloads are insensitive to

bandwidth variations and therefore bandwidth savings cannot

be effectively translated into performance gains.

3) Sensitivity on Graph Size: In graph computing, input

data have a significant impact on the applications’ behaviors,

especially for the data access pattern. To study the impact

of input graph data on performance, we perform experiments

using the LDBC synthetic graph [32] with four different graph

sizes, from 1K vertices to 1M vertices. The dataset details

are summarized in Table VI. The four graphs share the same

connectivity feature but with different memory footprints.

Figure 14(a) shows the performance improvement of Graph-

PIM over U-PEI. As explained previously, the offloading target

in our method is graph property access, which does not have

TABLE VI: Experiment datasets

Name Vertex # Edge # Footprint

LDBC-1M 1M 28.8M ∼900 MB
LDBC-100k 100K 2.8M ∼100 MB
LDBC-10k 10K 296K ∼10 MB
LDBC-1k 1K 29K ∼1 MB

-30%

-20%

-10%

0%

10%

	

��
��

�
���
�
�

������� ������		
 ������	
 ������

	

�

�

�

��� ����� ��
���� ���� �� �� ����

��

��

�

�
�

���

Fig. 14: (a) GraphPIM performance improvement over U-PEI

(b) GraphPIM speedup over baseline

data locality. Therefore, it is more desirable to bypass the

cache hierarchy for the offloaded operations. However, such a

conclusion may be changed depending on the input data size.

From the results in Figure 14(a), we can see that the benefit

of cache bypassing decreases with smaller graph size. In some

workloads, U-PEI starts to show better performance with the

LDBC-10k graph. This is because the data size starts to fit

into the L3 cache capacity. The degradation introduced by

cache bypassing becomes much more obvious for the LDBC-

1k graph. In BC, cache bypassing is always worse because

of its data locality, and similarly a smaller graph brings more

performance degradation.

Although the benefit of cache bypassing varies with the data

size, GraphPIM still keeps a desirable overall performance

gain. As shown in Figure 14(b), the speedup of GraphPIM

does not vary as much as in previous improvement results.

This is because our method still can reduce significant atomic

instruction overhead, which is less sensitive to the data size.

Moreover, in most workloads, LDBC-10k shows a better

speedup than much larger graphs. This is because the atomic

instruction density of graph workloads stays at a similar

level with different graph sizes, while other components, such

as task scheduling, are reduced for smaller graphs. Thus,

sometimes smaller graphs show even better speedup.

4) Energy Analysis: GraphPIM can save data transfer en-

ergy by reducing memory traffic. However, the PIM operation

in HMC may also incur extra energy consumption. To es-

timate such a potential tradeoff, we perform an analysis of

uncore energy consumption in this section. Figure 15 shows

the normalized uncore energy breakdown. We model energy

consumption of caches using CACTI 6.5 [33] and compute the

energy of HMC SerDes links, DRAM layers, and functional

units using the energy models from prior works [34]–[36].

HMC uses four high-speed Serializer/Deserializer (SerDes)

465

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on April 21,2021 at 15:41:56 UTC from IEEE Xplore. Restrictions apply.

�

���

���

���

���

 ��
��

��
���

�

	

��

�
��

��
��

���
�

	

��

�
��

��
��

���
�

	

��

�
��

��
��

���
�

	

��

�
��

��
��

���
�

	

��

�
��

��
��

���
�

	

��

�
��

��
��

���
�

	

��

�
��

��
��

���
�

	

��

�
��

��
��

���
�

	

��

�
��

��� ����� �� ���
� ��� �� �� ���� 	����

�

��

��
��	

��
�	

��
�

�	
��

�
�

������ �������� ������ ������ ��������

Fig. 15: Breakdown of uncore energy consumption normalized

to baseline (Caches: Host cache hierarchy; HMC Link: SerDes

and data transfer; HMC FU: Functional units; HMC LL: HMC

logic layer; HMC DRAM: HMC DRAM dies)

links to provide high bandwidth. However, they consume

nearly 43% of HMC’s power [34], [36].

As shown, GraphPIM reduces the uncore energy consump-

tion by 37% on average. The energy savings mainly come

from caches, HMC links, and the HMC logic layer. This is

because of the reduction of cache accesses in the host side

and the reduction of memory bandwidth consumption, which

saves the energy of data transfers via HMC SerDes links.

Moreover, GraphPIM improves performance significantly. The

shorter execution time also helps reduce the uncore energy.

From the results, we can also observe that the energy

consumption of HMC comes mostly from the links and logic

layer. HMC FUs consume negligible energy in most workloads

except for BC and PRank, in which floating point computation

introduces relatively higher FU energy even though GraphPIM

follows a low-power design of floating point units and enables

only one floating point unit per vault. As explained in a

previous section, the performance of graph workloads is not

sensitive to variations in FU number. Thus, it is more desirable

to incorporate only one floating point FU per vault.

In general, GraphPIM achieves a substantial uncore energy

reduction over the baseline. Even in the worst case, Graph-

PIM does not exceed the uncore energy consumption of the

baseline. Note that besides uncore energy, we also evaluate

the overall system energy and observe the same trend as the

performance speedup result because of GraphPIM’s significant

reduction in execution time.

5) Real-World Applications: In real-world graph comput-

ing, large-scale graphs need to be processed with a complex

combination of algorithms. To estimate the benefit of Graph-

PIM in real-world scenarios, we perform experiments with the

following two real-world applications.

(1) Financial Fraud Detection (FD): This application is a

graph-based financial fraud detection system, which detects

first-party bank fraud and money laundering behaviors. It does

graph traversal-based computations to uncover fraud rings in

data relationships [37]. In our experiment, the input data is a

Bitcoin transaction graph [38], in which each vertex represents

a Bitcoin account and each edge represents a Bitcoin transac-

tion. The Bitcoin graph contains 71.7M vertices and 181.8M

TABLE VII: Experiment configuration

Item Description

Platform Intel Xeon E5-2620, 2.3 GHz
2 sockets×6 cores×2 threads, 124GB memory
32KB/256KB private L1/L2, 15MB shared L3

Application Financial fraud detection (FD)
Recommender system (RS)

Dataset Bitcoin graph, ∼10 GB memory footprint
Twitter graph, ∼5 GB memory footprint

TABLE VIII: Real-world application experiment results

Type Event FD RS

Performance IPC 0.1 0.12
Counter LLC MPKI 21.3 20.6

LLC hit rate 2.8% 13.4%
Uncore time 65.8% 52.7%
Backend stall 83.8% 88.8%
%PIM-Atomic 1.3% 2.9%

Analytical Total host overhead 17% 32%
Model Total cache checking 7% 17%

edges with around a 10 GB memory footprint.

(2) Recommender System (RS): This application provides

product/service recommendations for e-commerce customers.

It follows an item-to-item collaborative filtering method [39],

which is also applied in the Amazon recommender system [2].

The experiment uses a Twitter graph as input data [40]. It

represents the friendship/followership between Twitter users.

The graph contains 11M vertices and 85M edges, leading to

around a 5GB memory footprint.

Because the application size exceeds the capability of ar-

chitectural simulations, we perform real machine experiments

by collecting hardware performance counters. The architec-

tural results are then generated via an analytical model. We

summarize the experiment configuration in Table VII and the

experiment results in Table VIII.

In our analytical model, the execution cycles per instruction

(CPI) is split into two components, atomic and other non-

atomic instructions. Although both components may share

overlapping cycles because of the out-of-order execution, the

overlap is expected to be relatively small compared to the

long latency of atomic instructions. Meanwhile, in the baseline

system, atomic instructions always pay the penalty of cache

checking time even though their miss rates are high. Such

cache checking and in-core atomic overhead are avoided in

GraphPIM. The analyical model is summarized as follows.

����	
���� � �������� �� ��������

��	���� !"# � $�%�	��� � &'((���� $�%���
���)�	*�+,- � ��������.��� ��������/ � �	���� $�%+,-

�������� : CPI of other (non-atomic) instructions
��������: percentage of overlapped cycles
�	���� : rate of atomic instructions
!"#: atomic instruction overhead
$�%�	��� /$�%���/$�%+,- : average cache/memory/PIM latency
&'((���� : miss rate of atomic instructions

(1)

(2)

466

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on April 21,2021 at 15:41:56 UTC from IEEE Xplore. Restrictions apply.

�

� !

"

" !

#

!

��� ����� �� 	��
� ���� � �� ����	

��
��

��
��

	�

��

�

�������� ���������� �����

���
�����

�
�������� �!"

Fig. 16: Comparison between the architectural simulation and

analytical model results in speedup over baseline

�

�!#

$

$!#

%

%!#

	�
��
���

�

��
�	

�
�

��
��
���

�

��
�	

�
�

�� ��

	
��
��

��
��
��
�	

�
��
	
�

�
���
���
���
���
�

��
��
���

�

��
�	

�
�

��
��
���

�

��
�	

�
�

�� ��

��
��

�
	��

��
�

��
��
��
��

�
��

�

���
�� ������ ���!"
��

Fig. 17: Performance and energy results of two real-world

applications based on an analytical model (FD: Financial fraud

detection; RS: Recommender system)

Before applying the analytical model on the large-scale

graph applications, we validate the correctness and accuracy of

our model by comparing it with previous simulation results. As

shown in Figure 16, our analytical model achieves a speedup

estimation similar to architectural simulations. The error rate

is within one digit in most workloads and 7.72% on average.

Figure 17 shows both performance and energy results. The

energy consumption is modeled in the same way as described

in the previous section. As shown in the results, GraphPIM

significantly improves performance and energy consumption

for both applications. The recommender system (RS) achieves

as high as a 1.9× performance speedup over the baseline.

Financial fraud detection (FD) also shows a 1.5× speedup.

FD shows a bit lower performance benefit because it contains

multiple non-graph computing components, which offset the

overall benefit of GraphPIM. The energy comparison is also

shown in Figure 17. GraphPIM achieves 32% and 48% energy

reductions in FD and RS, respectively. The energy reduction

comes from multiple factors, including cache hierarchy, data

link, HMC logic, and DRAM. From the experiments of real-

world applications, we can see that GraphPIM can still achieve

satisfactory improvement in both performance and energy for

complex real-world applications with large-scale graph data.

V. RELATED WORK

Recent advances in die-stacking technology have made re-

searchers investigate its use cases in computing systems. There

have been several prior studies exploiting the technology for

die-stacked memory [41]–[45], but beyond that, die-stacking

technology can also facilitate implementing the processing-

in-memory (PIM) concept, which was envisioned decades

ago [8]–[11]. To our knowledge, this is the first work that

explores utilizing processing-in-memory based on an industrial

specification (i.e., HMC 2.0).

Most of the recent near-data processing (NDP) works fo-

cused on fully-programmable cores for in-memory processing.

Gao et al. proposed an NDP architecture for data analytics ap-

plications [12]. Ahn et al. proposed an in-memory accelerator

for graph processing [13]. Hsieh et al. [46] proposed a PIM

architecture that enables programmer-transparent NDP GPU

systems. Fully-programmable PIM offers great flexibility but

introduces non-negligible hardware complexity. In addition to

fully-programmable PIM, PIM taxonomy also includes fixed-

function in-memory processing [47], among which HMC 2.0

is one of the examples of industrial proposals.

To our knowledge, the most relevant work that exploits

fixed-function PIM is PEI [14]. PEI implements a set of

PIM operations in both host processor and memory, and user

applications take advantage of PIM by using special PIM

instructions. The PIM operations will either be processed in

the host processor or be offloaded to memory based on the

locality monitoring result. As PEI does not bypass cache for

PIM data, it needs to write back the data for the offloaded

operations to ensure data coherence. Nai and Kim [48] also

presented a case study of instruction-level PIM offloading for

graph applications. As a preliminary study, it provides analysis

without detailed performance evaluations.

Compared to prior research, we demonstrate that the shared

data between cores with CPU atomic operations should be

the first offloading target (rather than naively offloading the

operations that would experience cache misses). Such an ob-

servation has not been well pointed out in the previous studies.

In particular, compared to PEI, our work does not require

any efforts from application programmers to take advantage

of PIM, and provides higher performance with much less

software and hardware complexity.

As discussed in Section II-C, atomic overhead is one of

the major bottlenecks for graph computing. There have been

multiple research efforts to reduce the overhead of locks

and critical sections by accelerating critical sections [49] or

by using Speculative Lock Elision (SLE) [50] and Transac-

tional Memory [51]. However, our graph workloads use lock-

free programming techniques, which are widely adopted in

modern DB and OS designs. Because there are no locks,

prior techniques on the critical section optimization are not

directly applicable. Although we can replace existing codes

with lock-based designs and enable SLE/TM optimizations,

the performance would still be worse than the lock-free design

because of the overhead of lock/unlock/SLE operations [52],

[53]. Prior research also targets reducing application-specific

performance overhead introduced by atomic operations. For

example, Lee et al. proposed BSSync [54] to alleviate the

long latency and serialization overhead caused by atomic

operations in parallel machine learning (ML) applications. It

demonstrates that offloading atomics to PIM can significantly

improve the performance of parallel ML workloads using the

stale synchronous parallel model, but the proposed technique

is not directly applicable to our graph workloads.

467

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on April 21,2021 at 15:41:56 UTC from IEEE Xplore. Restrictions apply.

VI. CONCLUSION

In this paper, we present GraphPIM, a full-stack solution

that enables PIM instruction offloading for graph computing.

GraphPIM utilizes the atomic operations specified in a real-

world PIM proposal, HMC 2.0 specification, and enables

PIM offloading in a non-intrusive way without requiring

application programmers’ effort or ISA changes. It needs

only minor extensions to the host processor and the graph

framework. GraphPIM is based on the key observation that

the atomic access to the graph property is the main culprit

for the inefficiency of graph workloads. Thus, by offloading

the atomic operations on the graph property, GraphPIM avoids

the overhead of executing atomic instructions in the host pro-

cessor and the inefficiency caused by irregular data accesses.

Our evaluation shows that GraphPIM achieves up to a 2.4×
speedup and a reduction of 37% in energy consumption for a

wide range of graph benchmarks and real-world applications.

By incorporating architectural innovations in a practical way,

GraphPIM presents a promising solution to overcome the

bottlenecks of graph computing on modern systems.

ACKNOWLEDGEMENTS

The authors thank the anonymous reviewers for their valu-

able comments. We also thank Sandia National Labs for

providing the SST/VaultSim framework. We gratefully ac-

knowledge the support of National Science Foundation XPS

1337177 and XPS 1533767.

REFERENCES

[1] C.-Y. Lin et al., “Social network analysis in enterprise,” Proceedings of
the IEEE, vol. 100, no. 9, 2012.

[2] G. Linden et al., “Amazon.com recommendations: item-to-item collab-
orative filtering,” IEEE Internet Computing, vol. 7, no. 1, 2003.

[3] T. Aittokallio and B. Schwikowski, “Graph-based methods for analysing
networks in cell biology,” Briefings in bioinformatics, vol. 7, no. 3, 2006.

[4] G. Malewicz et al., “Pregel: A system for large-scale graph processing,”
in SIGMOD, 2010.

[5] I. Tanase et al., “A highly efficient runtime and graph library for large
scale graph analytics,” in GRADES, 2014.

[6] A. Kyrola et al., “GraphChi: Large-scale graph computation on just a
PC,” in OSDI, 2012.

[7] Y. Low et al., “Distributed GraphLab: A framework for machine learning
and data mining in the cloud,” VLDB, 2012.

[8] M. Gokhale et al., “Processing in memory: The Terasys massively
parallel PIM array,” in IEEE Computer, vol. 28, 1995.

[9] M. Hall et al., “Mapping irregular applications to DIVA, a PIM-based
data-intensive architecture,” in SC, 1999.

[10] Y. Kang et al., “FlexRAM: Toward an advanced intelligent memory
system,” in ICCD, 1999.

[11] D. Patterson et al., “A case for intelligent RAM,” IEEE Micro, vol. 17,
no. 2, 1997.

[12] M. Gao et al., “Practical near-data processing for in-memory analytics
frameworks,” in PACT, 2015.

[13] J. Ahn et al., “A scalable processing-in-memory accelerator for parallel
graph processing,” in ISCA, 2015.

[14] J. Ahn et al., “PIM-enabled instructions: A low-overhead, locality-aware
processing-in-memory architecture,” in ISCA, 2015.

[15] J. T. Pawlowski, “Hybrid memory cube (HMC),” in Hot Chips, 2011.
[16] Hybrid Memory Cube Consortium, “Hybrid memory cube specification

2.0,” 2014.
[17] L. Nai et al., “GraphBIG: Understanding graph computing in the context

of industrial solutions,” in SC, 2015.
[18] S. Hong et al., “Efficient parallel graph exploration on multi-core CPU

and GPU,” in PACT, 2011.
[19] S. Lynch, Introduction to Applied Bayesian Statistics and Estimation

for Social Scientists. Springer New York, 2007.

[20] R. E. Neapolitan, Probabilistic Methods for Bioinformatics: With an
Introduction to Bayesian Networks. Morgan Kaufmann, 2009.

[21] H. Schweizer et al., “Evaluating the cost of atomic operations on modern
architectures,” in PACT, 2015.

[22] Intel 64 and IA-32 Architectures Software Developer’s Manual, Intel
Corporation, 2015.

[23] A. Yasin, “A top-down method for performance analysis and counters
architecture,” in ISPASS, 2014.

[24] P. Kumar et al., “Analyzing consistency issues in hmc atomics,” in
MEMSYS, 2016.

[25] J. Evans, “A scalable concurrent malloc (3) implementation for freebsd,”
in Proc. of the bsdcan conference, ottawa, canada, 2006.

[26] S. Lee et al., “Feedback directed optimization of TCMalloc,” in MSPC,
2014.

[27] Intel 64 and IA-32 Architectures Software Developer’s Manual: Volume
3A:System Programming Guide, Intel Corporation, 2015.

[28] A. F. Rodrigues et al., “The structural simulation toolkit,” SIGMETRICS
Perform. Eval. Rev., vol. 38, no. 4, 2011.

[29] H. kim et al., “MacSim: A CPU-GPU heterogeneous simulation frame-
work user guide,” Georgia Institute of Technology, 2012.

[30] P. Rosenfeld et al., “DRAMSim2: A cycle accurate memory system
simulator,” Computer Architecture Letters, vol. 10, no. 1, 2011.

[31] G. Kim et al., “Memory-centric system interconnect design with hybrid
memory cubes,” in PACT, 2013.

[32] O. Erling et al., “The LDBC social network benchmark: Interactive
workload,” in SIGMOD, 2015.

[33] N. Muralimanohar et al., “CACTI 6.0: A tool to understand large
caches,” 2009.

[34] J. Jeddeloh and B. Keeth, “Hybrid memory cube new DRAM architec-
ture increases density and performance,” in VLSIT, 2012.

[35] S. Li et al., “McPAT: An integrated power, area, and timing modeling
framework for multicore and manycore architectures,” in MICRO,
2009.

[36] S. Pugsley et al., “NDC: Analyzing the impact of 3D-stacked mem-
ory+logic devices on MapReduce workloads,” in ISPASS, 2014.

[37] G. Sadowksi and P. Rathle, “Fraud detection: Discovering connections
with graph databases,” Neo Technology, Inc., Tech. Rep., 2015.

[38] D. Ron and A. Shamir, “Quantitative analysis of the full bitcoin
transaction graph,” in FC. Springer, 2013.

[39] B. Sarwar et al., “Item-based collaborative filtering recommendation
algorithms,” in WWW, 2001.

[40] R. Zafarani and H. Liu, “Social computing data repository at ASU,”
Arizona State University, 2009.

[41] G. H. Loh, “3D-stacked memory architectures for multi-core proces-
sors,” in ISCA, 2008.

[42] J. Sim et al., “A mostly-clean DRAM cache for effective hit speculation
and self-balancing dispatch,” in MICRO, 2012.

[43] M. K. Qureshi and G. H. Loh, “Fundamental latency trade-off in
architecting DRAM caches: Outperforming impractical SRAM-tags with
a simple and practical design,” in MICRO, 2012.

[44] J. Sim et al., “Resilient die-stacked DRAM caches,” in ISCA, 2013.

[45] J. Sim et al., “Transparent hardware management of stacked DRAM as
part of memory,” in MICRO, 2014.

[46] K. Hsieh et al., “Transparent offloading and mapping (TOM): Enabling
programmer-transparent near-data processing in GPU systems,” in ISCA,
2016.

[47] G. H. Loh et al., “A processing-in-memory taxonomy and a case for
studying fixed-function PIM,” in WoNDP, 2013.

[48] L. Nai and H. Kim, “Instruction offloading with HMC 2.0 standard: A
case study for graph traversals,” in MEMSYS, 2015.

[49] M. A. Suleman et al., “Accelerating critical section execution with
asymmetric multi-core architectures,” in ASPLOS, 2009.

[50] R. Rajwar and J. R. Goodman, “Speculative lock elision: Enabling highly
concurrent multithreaded execution,” in MICRO, 2001.

[51] M. Herlihy and J. E. B. Moss, “Transactional memory: Architectural
support for lock-free data structures,” in ISCA, 1993.

[52] M. M. Michael, “High performance dynamic lock-free hash tables and
list-based sets,” in SPAA, 2002.

[53] M. Herlihy, “Wait-free synchronization,” ACM Trans. Program. Lang.
Syst., vol. 13, no. 1, 1991.

[54] J. H. Lee et al., “BSSync: Processing near memory for machine learning
workloads with bounded staleness consistency models,” in PACT, 2015.

468

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on April 21,2021 at 15:41:56 UTC from IEEE Xplore. Restrictions apply.

