
Abstract

Current techniques for prefetching linked data structures
(LDS) exploit the work available in one loop iteration or
recursive call to overlap pointer chasing latency. Jump-
pointers, which provide direct access to non-adjacent
nodes, can be used for prefetching when loop and recur-
sive procedure bodies are small and do not have sufficient
work to overlap a long latency. This paper describes a
framework for jump-pointer prefetching (JPP) that sup-
ports four prefetching idioms: queue, full, chain, and root
jumping and three implementations: software-only, hard-
ware-only, and a cooperative software/hardware tech-
nique. On a suite of pointer intensive programs, jump-
pointer prefetching reduces memory stall time by 72% for
software, 83% for cooperative and 55% for hardware, pro-
ducing speedups of 15%, 20% and 22% respectively.

1   Introduction

Linked data structures (LDS) are common in many appli-
cations, and their importance is growing with the spread of
object-oriented programming. The popularity of LDS
stems from their flexibility, not their performance. LDS
access, often referred to aspointer-chasing, entails chains
of data dependent loads that serialize address generation
and memory access. In traversing an LDS, these loads
often form the program’s critical path. Consequently,
when they miss in the cache, they can severely limit paral-
lelism and degrade performance.

Prefetching is one way to hide LDS load latency and
recover performance. Address prediction basedtech-
niques can generate addresses in non-serial fashion,
prefetch nodes arbitrarily far ahead of their anticipated use
and tolerate long latencies. However, LDS access streams
rarely display the high levels of arithmetic regularity
required to support accurate address prediction.

Recently proposedscheduling basedtechniques [11, 16]
prefetch nodes serially but attack issue delays that aggra-
vate serialized latencies by issuing LDS loads as soon as
their inputs are ready. Scheduling methods can pre-calcu-
late LDS addresses accurately, but their pace is dictated by
the critical path through the pointer chain. Scheduling
methods are inadequate when the amount of work avail-
able for overlapping with the critical chain is limited, due
to either a tight loop or a slow memory. Handling these
situations, which will worsen as the processor/memory
speed gap grows, requires a mechanism that can address
and prefetch arbitrary LDS nodes.

To illustrate our point, Figure 1(a) shows a list traversal
loop (e.g.,for (l = list; l; l = l->next ) ...) with the long latency

of the induction loads (instances ofl = l->next ) exposed.
Scheduling methods hide this latency by issuing the induc-
tion load early in the iteration (Figure 1(b)). For short iter-
ations or long latencies (Figure 1(c)), an induction load
will stall the next iteration no matter how early within its
own iteration it issues. For full efficiency, it must be over-
lapped with work frommultiple iterations.

We present a method for overlapping LDS load latency
with the work of multiple iterations via the structured use
of jump-pointers. Jump-pointers are used strictly for
prefetching. Residing at some or all LDS nodes, they
point to nodes that are likely to be accessed in the near
future, not ones that are functionally adjacent. As shown
in figure 1(d),jump-pointer prefetching(JPP) overcomes
the serial nature of LDS address generation and obtains
the address of an otherwise non-adjacent LDS node via a
single low-latency lookup. This in turn allows us to over-
lap the access latencies of multiple nodes, or equivalently,
to overlap the latency of one node with multiple iterations.

Our general framework combines jump-pointer prefetch-
ing with chained prefetching, which uses the pointers
available in the original unmodified program. We show
that jump-pointer prefetching and chained prefetching can
be combined in different ways to createfour prefetching
idiomswhich we callqueue jumping, full jumping, chain
jumping and root jumping. Since both jump-pointer
prefetching and chained prefetching can be implemented
in either hardware or software, each idiom can be instanti-
ated in one ofthree implementations: software, hardware,

Figure 1. Hiding LDS load latency. (a) Exposed
induction load latency can be hidden by (b) scheduling
it early in an iteration. (c) This approach is ineffective
if a single iteration has insufficient work. (d) Jump-
pointers can leverage the work of multiple iterations.
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andcooperative. The cooperative scheme handles jump-
pointer prefetching in software and chained prefetching in
hardware.

Each idiom/implementation combination has advantages
and drawbacks that make it suitable for certain kinds of
LDS traversals. We study a set of pointer intensive bench-
marks and attempt to isolate the program features that best
guide idiom and implementation selection. Our experi-
ments show that software, cooperative and hardware
prefetching eliminate an average of 72%, 83% and 55% of
the total memory stall time in these programs, translating
into speedups of 15%, 20%, and 22% respectively. This is
a significant improvement over other known schemes.

This rest of the paper is organized as follows. The next
section presents our JPP framework and a benchmark
characterization. The three implementations are described
in Section 3 and evaluated in Section 4. The last sections
discuss related and future work and our conclusions.

2   Jump-pointer Prefetching Framework

Our prefetching framework can be described in terms of
two building blocks:jump-pointer prefetchesandchained
prefetches. Jump-pointersare pointers added to the pro-
gram’s data structures for prefetching purposes only. We
say that a jump-pointer resides in ahomenode and points
to a target node. Jump-pointer prefetchesprefetch target
nodes using the jump-pointer at the home node. For
prefetching to succeed, the target of a jump-pointer must
point to a node that is likely to be referenced some time
after the corresponding home node. Chained prefetches,
on the other hand, do not require jump-pointers, they
prefetch using the original pointers in the structure. Each
of these types of prefetch provides different benefits and
has different associated performance costs. Jump-pointer
prefetches can prefetch arbitrary LDS nodes, hide arbi-
trary amounts of latency and allow otherwise serial
prefetches to execute in parallel. However, jump-pointers
require storage and maintenance, imposing overheads on
the program. Chained prefetches incur no explicit over-
heads and require no additional maintenance, but provide a
more limited amount of latency tolerance.

Jump-pointer prefetches and chained prefetches can, to
some degree, be traded off for one another and combined
to create efficient prefetching solutions. Our framework
comprises fouridioms that represent points along this
trade-off/combination spectrum. On one end,full jumping
uses jump-pointer prefetches exclusively. At the other,
root jumpinguses few jump-pointer prefetches, and relies
heavily on chained prefetching.Chain jumpingis some-
where in the middle. Finally,queue jumpingis a special
case that handles simple structures using jump-pointer
prefetches only. The rest of the section describes these idi-
oms and provides a benchmark characterization in which
high level program features are used to guide idiom selec-
tion. However, we first provide a short overview of the
creation and use of jump-pointers.

2.1  Creating Jump-pointers Using a Queue

When prefetching, the distance (in dynamic nodes tra-
versed) between the home and target nodes of a jump-
pointer should be proportional to the target node access

latency. For instance, if each node visit contains 10 cycles
of work and node access takes 40 cycles, a jump-pointer’s
home node should be four nodes ahead of its target node.
A shorter distance would allow only part of the target
access latency to be hidden. On the other hand, using a
distance that is too long may cause the prefetched block to
be evicted before it can be used.

Although ideal distances may vary from node to node,
such information is difficult to gather, express or use.
Instead, we choose a fixedinterval I, usually the maximum
(or average) required distance per node, and set all jump-
pointers I nodes ahead of their targets. This is easily
accomplished using a queue of lengthI. On LDS creation,
or first traversal, a queue maintains the last I node
addresses. As each new node is added (traversed) a jump-
pointer is created with the node at the head of the queue as
its home and the current node as its target. The current
node is then enqueued at the tail of the queue, while the
home node at the head is removed.

The running example in this section uses the routine
check_patients_waitingfrom the Olden benchmark [15]
health,a hierarchical health-care system simulator. Every
iteration, health visits a tree of hospitals bottom up.
Check_patients_waitingscans the waiting patient list, pos-
sibly removing or adding some patients. The main loop is
shown in Figure 2(a); the loads in bold are responsible for
a large fraction of the cache misses in the program. Figure
2(b) shows jump-pointer creation using the queue method.

2.2  Four Prefetching Idioms

Jump-pointer prefetching and chained prefetching can be
combined in various ways to form different prefetching
idioms. The first idiom we present,queue jumping, is not
really a conscious combination of these blocks but rather a
degenerate case. Queue jumping is applied to simple
“backbone” structures which contain nodes of only one
type connected in any regular way, such as a list, tree, or
graph. In queue jumping, jump-pointers are added to
every structure node using the queue method, and these are
used to prefetch the entire structure. The trade-offs we
spoke of come into play when we deal with “backbone-
and-ribs” structures which contain a primary pointer struc-
ture with secondary structures at every primary node. The
list used bycheck_patients_waitingis such a structure,
with the list nodes forming the “backbone”, and the patient
records the “ribs”. Even in these cases, queue jumping can
be used to prefetch only the “backbone”.

Full jumping, originally introduced by Luk and Mowry
[11] in a programmer-controlled context, prefetches
“backbone-and-ribs” structures using only jump-pointer
prefetches. Full jumping is shown in Figure 2(b). Each
node is augmented withtwo jump-pointers:j_list points to
the nodeI iterations (hops) ahead, andj_patient points to
that node’s patient record. With an appropriate choice of
interval,prefetch list->j_list hides thep = list->patient load
latency andprefetch list->j_patient hides the latency of
p->time . Our convention for prefetch statements follows
Luk and Mowry’s. That is,prefetch x means “prefetch the
address that is the value ofx”. In software, this is a load
followed by a dependent non-binding prefetch.

Chain jumping applies jump-pointer prefetches to the
“backbone” and chained prefetches to the “ribs”, reducing
jump-pointer overheads. At the same time, chain jumping
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can tolerate as much latency as a full queue jumping solu-
tion by exploiting the fact that a jump-pointer can tolerate
anyamount of latency if set with a suitable choice of inter-
val. In our full jumping example, we maintained jump-
pointers for both list nodeandpatient record, allowing the
prefetches to proceed in parallel. In chain jumping shown
in Figure 2(c), we keep just the list node jump-pointer and
prefetching the patient recordthroughit, halving the num-
ber of jump-pointers (not to mention jump-pointer
updates). The price for this overhead efficiency is that the
two prefetches must now execute in series (prefetch list-
>j_list->patient blocks until prefetch list->j_list com-
pletes). Again, to fully hide the latency of both loads
chain jumping must use a longer interval than full jump-
ing. For instance, suppose each iteration in our example
contains 10 cycles of computation, whilelist->forward and
p->time each take 20 cycles to complete. Full jumping has
only 20 cycles of latency to cover and can install jump-

pointers at two node intervals. Chain jumping incurs the
latencies in series and must use a four-node interval.

Root jumpingis most suitable for collections of small,
highly dynamic pointer structures. It relies almost exclu-
sively on chained prefetching. All jump-pointers installed
in highly dynamic structures, such as the lists processed by
check_patients_waiting,eventually become invalid. Keep-
ing jump-pointers updated is one way to deal with this
problem. However, continuous updates are expensive and
updates on insertions/deletions only are complex to imple-
ment. Root jumping avoids the update problem by
prefetching in a way that is transparent to LDS mutation.
In root jumping, an entire LDS is prefetched in chained
jumping fashion using a single pointer to the root. In Fig-
ure 2(d),&vlg->j_vlg.hosp.waiting computes the address of
the root of the list for the next hospital. As the current list
is accessed, the next list is prefetched using the original
program pointers. On the negative side, root jumping

Figure 2. Jump-pointer prefetching idioms. (a) Unoptimized check_patients_waiting procedure from the health
benchmark: the loads in bold traverse a list of patient records and incur many cache misses that combine to serialize
the routine. (b) Jump-pointer creation: pointers are installed using the queue method. (c) In full jumping, each list
node is fitted with jump-pointers to a future node and its patient record. (d) Chain jumping achieves the same effect
without maintaining the second jump-pointer.  (e) Root jumping can prefetch an entire list with a single jump-pointer.

while (list != NULL) {
p = list->patient;
if (...) {

removeList(&vlg->hosp.waiting, p);
addList(&vlg->hosp.assess, p);    }

list = list->forward;    }
else p->time ++;

while (list != NULL) {
prefetch list->j_list;

if (...) { ... } else p->time++;
list = list->forward;    }

p = list->patient;
prefetch list->j_patient;

while (list != NULL) {
prefetch list->j_list;

if (...) { ... } else p->time++;

list = list->forward;    }

p = list->patient;

prefetch list->j_list->patient;

while (list != NULL) {
prefetch j_list->patient;

if (...) { ... } else p->time++;
list = list->forward;

p = list->patient;

j_list = j_list->forward; }

j_list = &vlg->j_vlg->hosp.waiting;

prefetch j_list->forward;
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while (list != NULL) {
p = list->patient;
if (...) { ... } else p->time++;

list = list->forward;    }

(b)

queue[queue_tail]->j_list = list;      //jpc

queue_tail = (queue_tail + 1) % INTERVAL;

Jump-pointer create
Chained prefetch

jpc

Jump-pointer prefetch

queue[queue_tail] = list;
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magnifies chained prefetch serialization effects. Conse-
quently, it is well suited for collections of LDS that are
both dynamicand short, like hash table buckets.

2.3  Selecting the Appropriate Idiom

With this idiomatic framework in place, we are faced with
the task of choosing (explicitly for software implementa-
tions, implicitly for hardware) the appropriate idiom for a
given program. Some programs may not need a jump-
pointer prefetching solution, they may not incur many
LDS cache misses or alternatively have sufficient parallel
work to overlap with those misses. Others, by virtue of
their algorithmic structure, cannot support a JPP imple-
mentation. The specific set of programs we will study is
the Olden pointer-intensive benchmark suite [15] which
has previously been used to study both hardware and soft-
ware prefetching mechanisms [11, 16]. A summary of the
benchmarks is shown in Table 1.

In considering theneedfor jump-pointer prefetching, we
measure the fraction of loads that are both LDS related
and incur full or partial cache misses. Equivalently, this is
the product of the overall miss rate and the fraction of
misses accounted for by LDS loads. Other kinds of loads
(arrays, stack, global) and loads that hit in the cache will
not be affected by JPP. To obtain a measure of parallelism,
we count the average number of in-flight first level cache
misses sampled at cache misses themselves. A low value
indicates that few cache misses are being overlapped.
Combined with a sizable miss ratio, this implies that LDS
misses are serializing the program and points out a signifi-
cant need for the parallelism enabled by JPP.

Table 1 gives LDS miss fraction and miss overlap numbers
for a 64KB, 32B line, 2-way associative data cache and a
super-scalar out-of-order processor core as described in
Table 2. This preliminary analysis indicates thatpower
and voronoi may not require a JPP solution as JPP can
attack fewer than 1% of the loads in these programs. In
addition, em3dappears to have sufficient parallelism to
overlap a significant number of LDS misses. A serial
LDS prefetching mechanism, like dependence based
prefetching [16], will probably suffice to handle them.

Regardless of the need for it, JPP is not applicable in every
situation. For instance, large structures that areextremely
dynamic and data dependent traversals (tree searches) are
difficult to prefetch even using jump-pointers. The last
part of Table 1 details the kinds of data structures used in
each benchmark, their runtime behavior, and the jump-
pointer idiom(s) we judged to be appropriate for each case.

Bh, bisort, perimeter, power, treeadd, tsp andvoronoi all
use “backbone-only” structures, making queue jumping
the only choice. Actually, we may not want to explicitly
implement any idiom onbisort andtsp, as these programs
use structures that are both large and extremely volatile.
For these, jump-pointer techniques may be both complex
to implement and insufficiently effective to offset the over-
heads of any software components. Becauseem3dand
health have “backbone-and ribs” structures, we can use
chain and full jumping for these. Finally,healthandmst
use dynamic lists that suggest the use of root jumping.
With this characterization in mind, we proceed to the dis-
cussion and evaluation of our three implementations.

3   Implementations

Both of our JPP building blocks: jump-pointer prefetching
and chained prefetching, can be implemented in either
hardware or software yielding four possible combinations.
We present three:software-only, hardware-only,and a
cooperativescheme in which jump-pointer prefetching is
done in software and chained prefetching is handled in
hardware. Although it is possible for software and hard-
ware to cooperate in reversed roles, this final combination
makes little sense in terms of both complexity and perfor-
mance. So that we can introduce hardware techniques
gradually, we describe the three plausible implementations
in the following order: software, cooperative, and finally
hardware.

3.1  Software

SoftwareJPP implementations require no special hardware
support and, if implemented by hand, benefit directly from
the programmer’s high-level knowledge of the code. He/

Bench Parameters
Inst

Count
LDS
Miss

Miss
Overlap Data Structures/Runtime Behavior

Prefetching
Idiom

bh 2K bodies 1788M 1.6% 0.12 static octree rebuilt at each iteration queue

bisort 250,000 numbers 565M 4.8% 0.26 binary tree nodes flipped queue

em3d 2000 nodes 60M 21.7% 1.62 static list, pointer array at each node queue, chain

health 5 levels, 500 iters 162M 23.3% 0.22 static quadtree, dynamic lists at each node full, chain, root

mst 1024 nodes 199M 13.7% 0.32 dynamic list, static hash table at each node queue, root

perimeter 4K x 4K image 1570M 8.6% 0.53 static quadtree queue

power 10,000 nodes 791M 0.4% 0.12 static multiway tree, lists at each node queue

treeadd 1M nodes 72M 3.4% 0.00 static binary tree, queue

tsp 100,000 cities 328M 3.9% 0.76 binary tree converted to list queue

voronoi 60,000 points 317M 0.6% 0.05 static binary tree queue

Table 1. Olden benchmarks.The statistical characterization shows the fraction of loads that are both LDS related and
miss in a 64KB L1 data cache (LDS miss) and the average degree of L1 miss overlapping. The structural
characterization shows types and runtime behaviors of data structures used. We combine information from both
analyses to select the appropriate prefetching idiom(s) for each benchmark.
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she can choose the appropriate idiom or even construct a
special purpose algorithm that exploits high-level program
invariants. On the downside, software is restricted to use
only architected resources, a constraint that manifests in
three major ways. First, jump-pointer storage consumes
user memory and increases the program’s data footprint.
Second, jump-pointer maintenance and prefetching code
increases both static program size and dynamic instruction
count. Finally, software chained prefetches introduceseri-
alization artifacts into the program.

The code examples in Figure 2 are representative of soft-
ware prefetching implementations for each idiom. In soft-
ware, jump-pointer creation is simple to implement and is
inexpensive in terms of execution time and cache footprint
overheads. Jump-pointer creation handles recently refer-
enced nodes and, although it consumes cache bandwidth,
rarely causes cache misses. Storage overhead (measured
in terms of additional distinct first level cache blocks
accessed) is even less of a problem. Although every jump-
pointer adds four bytes to the program data set, only the
em3dfull jumping implementation showedany memory
overhead, and then only a 13% increase in distinct cache
blocks accessed. We attribute this phenomenon to the
implementation of memory allocators which, for effi-
ciency reasons, allocate small heap objects in only a few
fixed sizes. LDS nodes that are not of some preferred size
are padded. Jump-pointers can be stored in this would-be
padding with no cache footprint increase. Although mem-
ory overhead will appear if non-padding allocators are
used, it is difficult to estimate the performance impact
without an empirical study.

Software implementations of jump-pointer prefetches are
also inexpensive: of the two dependent loads required to
implement a prefetch, the first is likely to hit in the cache
and the second is non-binding, completing on issue. In
stark contrast, however, chained prefetches have bad exe-
cution characteristics and must be implemented carefully
to avoid performance penalties. Since they traverse the
pointers of the original program, chained prefetches have
the same dependences and dependence chains as the loads
for which they are trying to prefetch. Furthermore, these
are typically long latency dependence chains since
prefetches typically access data that is not in the cache. In
software, these long latency chains will clog the out-of-
order engine unless chained prefetches are spaced suffi-
ciently far apart. This sort of scheduling is difficult in situ-
ations where iterations have little work, an unfortunate
problem considering that these are precisely the situations
that force us to use jump-pointers in the first place.

We implemented the selected idiom(s) for each benchmark
by hand. We first profiled the benchmarks to determine
which LDS loads contributed the majority of the cache
misses, and traced these back to their source level state-
ments. We chose the appropriate prefetch idiom by study-
ing the program source, then inserted the corresponding
code. The human component of the entire process typi-
cally took about one hour per benchmark. Only in one
case,mst, did we exploit knowledge of a program invariant
to streamline the jump-pointer creation process. Given the
uniformity of jump-pointer creation and prefetching, it
seems likely that jump-pointer prefetching can be auto-
mated in a compiler. However, the structure resizing and
realignment needed to create jump-pointer storage
requires guarantees about pointer arithmetic that may be

difficult to obtain in a language like C. A more likely
place for these implementations is a data structure reposi-
tory such as the C++ Standard Template Library.

3.2  Cooperative

Cooperative JPP introduces modest hardware support to
allow chained prefetching to be implemented in hardware,
reducing both the direct (instruction count) and indirect
(serialization artifact) costs of software implementations.

The hardware component of cooperative JPP is nothing
more than the previously proposed dependence-based
prefetching mechanism (DBP) [16]. DBP observes an
executing program and dynamically identifies LDS loads
and their data dependence relationships, effectively isolat-
ing the “kernel” responsible for LDS traversal. To
prefetch, we speculatively and aggressively unroll the
“kernel” in dataflow fashion, alongside the original pro-
gram. Data is prefetched when it is accessed by the “ker-
nel”. In effect, DBP allows the speculative issue of LDS
loads that have yet to be scheduled or even seen by the
sequential processing core. The central DBP component
is a dependence predictor that represents the data depen-
dences among LDS loads. Completed LDS loads access
this predictor to determine which, if any, LDS loads can be
speculatively issued as prefetches using the just-loaded
value as an input address. Completed (arrived) prefetches
are sent back to the predictor to potentially launch other
prefetches. In this manner, an entire LDS can be
prefetched given only its root address and a description of
its traversal kernel. We propose a DBP implementation
that contains two optimizations. To minimize resource
contention, prefetch requests are queued (PRQ) until data
cache ports are idle. To avoid cache pollution, prefetched
blocks are installed into a prefetch buffer (PB).

With chained prefetching in hardware, software chained
prefetches can be removed from the code, streamlining
chain and root jumping implementations. For instance,
consider the software root jumping implementation for
healthfrom Figure 2(e). A cooperative version eliminates
the statementsprefetch j_list->patient , prefetch j_list->for-
ward , j_list = j_list->forward . Not only does the software
version execute more instructions, it potentially serializes
the program along thej_list = j_list->forward dependence.
The cooperative counterpart of this dependence executes
in hardware and does not serialize the program.

To make a cooperative implementation work, software
prefetches must be made to trigger chained prefetches in
the hardware. These chained prefetches correspond to
speculative instances of original program LDS loads. One
simple way to achieve this communication is to have the
dependence predictor learn the relationships between
jump-pointer prefetch instructions and other LDS loads.
Once these connections are in place, the hardware auto-
matically issues chained prefetch instances of any loads
that depend on a jump-pointer prefetch. In addition to
eliminating software chained prefetches, this communica-
tion mechanism allows the remaining software jump-
pointer prefetches to be streamlined. Recall, a software
prefetch is implemented using two dependent loads, the
second of which is non-binding. By performing the sec-
ond load in hardware, the corresponding software
sequence is reduced to the first load which now can be
made non-binding.
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3.3  Hardware

Hardware JPP has the advantage that it imposesnoexplicit
execution overhead on the program. However, hardware
JPP faces challenges in finding jump-pointer storage and
may perform poorly when high level program understand-
ing is needed to construct a prefetching solution.

For a hardware-only implementation, we extend the DBP
mechanism with structures that direct jump-pointer cre-
ation (storage) and prefetching (retrieval). Our particular
mechanism implementschain jumping: restricting jump-
pointer prefetching to recurrent “backbone” loads and
using DBP to automatically chain prefetch “rib” loads.
This solution automatically provides queue jumping where
appropriate. These two idioms are simple to implement in
hardware and handle most programs. Full and root jump-
ing are not implemented, due to difficulties with finding
jump-pointer storage and a reliance on high level program
understanding, respectively. In this section we explain the
processes of jump-pointer creation and retrieval.

For jump-pointer creation, we implement the queue
method in hardware. Eachstatic load identified as being
recurrent (“backbone”) is associated with a queue that
tracks its most recent input addresses. Address queues for
the set of active recurrent loads are stored in the Jump
Queue Table (JQT). When an instance of a recurrent load
commits, it accesses the JQT and creates a jump-pointer
from the node sitting at the head of the queue to the node
corresponding to its own input address. This process is
illustrated in Figure 3(b). list = list->forward creates a
jump-pointer from the node visited four hops ago,A, to the
current node,E. A request for storing this jump-pointer is
generated while the queue is updated to reflect the access
of the current node.

Jump-pointer retrieval and prefetch initiation is a more
delicate process which we first explain at a high level
using the example in Figure 3(c). Whenever an LDS
“backbone” load issues, the jump-pointer residing at the
corresponding home node is placed (magically for now)
into a special non-architected location called the Jump-
pointer Register (JPR). A jump-pointer prefetch is created
using a speculative instance of the load with the JPRvalue
as its input. A completed jump-pointer prefetch may
access the predictor and spawn chained prefetches.

The main issue in implementing hardware jump-pointers
is not which pointers to create, but rather where they
should be stored. Two storage options are available: a
non-architected on-chip table and user memory. Non-
architected on-chip storage is attractive because of its
implementation simplicity. However, its non-scalability is

a major problem. Prefetching a 16K-node LDS requires
64KB of jump-pointer storage, with potentially more stor-
age for tags. It may be difficult to justify the construction
of a special purpose on-chip predictor of this size.
Another serious problem is the volatility of table contents,
both when traversing structures with more nodes than
table entries and across context switches. Our experi-
ments show that, with the exception ofem3dwhich has
only 4000 nodes in its “backbone” data structure, most
benchmarks experience negligible speedups (less than 2%)
from a 16K entry on-chipjump-pointer cache.

Although more complicated, storing jump-pointers inuser
memoryis more promising. Earlier we observed that soft-
ware jump-pointers are often stored in what otherwise
would be allocator padding. We believe that hardware can
and should use this same padding. Padding storage is
available in quantities proportional to the number of
nodes. It provides a natural, tagless way of attaching
jump-pointers to their home nodes and guarantees fast
jump-pointer access since the jump-pointer is brought into
the cache when its home node is referenced. One concern
with this approach is that it creates a different memory
image than the one dictated by the program. However, this
point is mitigated since the storage in question would not
have otherwise been read. Previously, Martin et. al. [12]
used this argument to justify cancelling would-be stores of
dead memory values. We use a similar argument to justify
storing non-program values in would-be unused locations.

Convinced of the advantages of allocator padding storage,
we now need a safe and automatic way for detecting and
using the padding. The method we present adds instruc-
tion set and memory allocator interface extensions to our
otherwisepurehardware scheme. However, these play no
activepart in either jump-pointer creation or prefetching.
We leave other possibilities for future exploration.

Most allocators (e.g., GNU C library) allocate small mem-
ory chunks in sizes that are strictly powers of two; we sug-
gest solidifying this convention so that it can be assumed
by the compiler. Next, we add four or five load variants to
the instruction set (call theselw8, lw16, etc.) and use them
to implement recurrent load accesses with the particular
variant chosen based on the size of the referenced object.
Specifically, if the size is exactly a power of two such that
no padding is available, then the unvaried load is used.
Otherwise, storage for at least one jump-pointer is avail-
able at the end of the allocated block. To annotate its loca-
tion, we use the load variant corresponding to the object
size rounded up to the next power of two. In this way, an
annotated recurrent load can be used to compute a jump-
pointer address in addition to the standard effective

Figure 3. Hardware JPP.(a) Block diagram with DBP specific parts in light gray and JPP components in dark gray.
(b) Installing jump-pointers: the Jump Queue Table (JQT) entry contains the previous four input addresses of the load
list = list->forward. When a new instance commits, it creates a jump-pointer from the node at the queue tail, A, to the
current node, E. It then updates the JQT, advancing the queue. (c) Jump-pointer prefetching: As a “backbone” load
issues, the jump-pointer in the corresponding home node is placed in the JPR and used to launch a prefetch.
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address. This second address can be used to both store a
jump-pointer and to fill the JPR with the appropriate word
without performing any explicit additional loads.

4   Evaluation

Our performance evaluation proceeds in four steps. We
begin with a per benchmark comparison of the JPP idioms.
For each benchmark, the best idiom is chosen as the repre-
sentative software/cooperative solution. With software
and cooperative schemes fixed, we quantitatively evaluate
all three JPP implementations for each benchmark and
compare them to other prefetching schemes. Using a few
selected benchmarks and some extrapolated current
trends, we project the performance impact of JPP on future
architectures. Finally, we attempt to quantify both the
direct and implicit costs of JPP implementations.

To perform our experiments, we modified the Olden
benchmarks by hand to execute on a single processor, and
compiled them for the MIPS-I architecture using the GNU
GCC 2.7.2 compiler with flags-O2 -finline-func-
tions . Many of the benchmarks contain long allocation-
dominated initialization phases that are not accelerated by
prefetching; we did not discount these in any way. Our
evaluation tool was the SimpleScalar timing simulator [1],
with micro-architectural parameters as shown in Table 2.
We always report execution time as a decomposition of
memory access timeandcompute time. We define com-
pute time as execution time assuming uniform single cycle
data memory access but with realistic cache bandwidth.
Compute time encapsulates stalls resulting from branch
mispredictions, instruction cache misses, structural haz-
ards and insufficient memory bandwidth. For each bar, the
compute portion was obtained using a second simulation.

4.1  Comparing Idioms

We evaluate the relative merits of the JPP idioms in the
context of the software and cooperative implementations.
We ignore hardware prefetching for now because it imple-
ments only one idiom. Results are shown in Figure 4.
With chain and root jumping each implemented in only
two benchmarks, we discuss the results on a case basis.

In em3d, the loads that would most benefit from prefetch-
ing access pointer arrays stored at every node. It is costly
to implement jump queues and explicit jump-pointers for
arrays only in software and, consequently, full jumping
cannot be used. In a cooperative environment, however,
implementing these array prefetches is simpler. Conse-
quently, an algorithm that performs only explicit queue
jumping in software and the array prefetches to be imple-
mented in the hardware is the most effective method here.
Mst’s short hash table bucket chains are ideal for a root
jumping implementation. Althoughhealth’s dynamic lists
suggest root jumping, the lists are too long for this idiom
to be effective, chain jumping is the choice here.

We believe that in general chain jumping, a combination
of jump-pointer prefetching for recurrent “backbone”
loads and chained prefetching for “rib” loads is the most

Figure 4. Comparing idiom performance.Normalized
execution times of software and cooperative
implementations of the three prefetching idioms.

Legend: B: Base S: Software JPP C: Cooperative JPP

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

BSC
health

full

BSC
health
chain

BSC
health
root

BSC
em3d
queue

BSC
em3d
chain

BSC
mst

queue

BSC
mst
root

N
or

m
al

iz
ed

 E
xe

cu
tio

n 
Ti

m
e

Memory latency

Compute time

Out-of-Order Core 5 stage, 4 way superscalar, out-of-order pipeline with 64 instructions in-flight.  Wrong path execution
modeled.  Loads and stores issue via a 32 entry queue with a 1 cycle load bypass.  Loads wait for all
previous store addresses before issuing.

Branch Prediction 8K entry combined 10-bit history gshare and 2-bit predictors.  2K entry, 4-way associative BTB.

Memory System 32KB, 32B lines, 2-way associative, 1 cycle access first level instruction cache.  64KB, 32B lines, 2-
way associative, 1 cycle access, first level and data cache.  A maximum of 8 outstanding data misses.
16-entry ITLB, 32-entry DTLB with 30-cycle hardware miss handling.  Shared 512KB, 64B line, 4-
way, 12 cycle access second level cache.  70-cycle memory latency.  8B busses to L2 cache and main
memory clocked at 1/2 and 1/4 processor frequency, respectively, with cycle level utilization modeled.

Functional Units (latency) 4 int ALU (1), 1 int mult (3), 1 int div (20), 2 FP add (2), 1 FP mult (4), 1 FP div (24), 2 load/store (1)

Software Prefetches
(where applicable)

Non-binding, complete on issue, and can initiate TLB miss handling.

Dependence Based
Prefetch Mechanism
(where applicable)

256 entry, 4-way associative dependence predictor that allows two queries per cycle.  Prefetched
blocks are stored in a 2KB, 32B line, 8-way associative, 1 cycle access prefetch buffer and subse-
quently installed into the cache if used.  Prefetch requests wait on an 8 entry request queue.

Jump-pointer Mechanism
(where applicable)

32 entry, fully associative jump queue table (JQT) with fixed 8-address queues.  One Jump-pointer
Register (JPR) allowing a single jump-pointer access per cycle.

Table 2. Simulated Machine Configuration. Base simulator configuration for all of our experiments.
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effective idiom. In pure software, it can achieve the same
effect as full jumping given an appropriate choice of inter-
val and careful scheduling. In a cooperative implementa-
tion, it can take advantage of the automatic chained
prefetching performed by the dependence hardware. Root
jumping can be the most effective idiom in certain special-
ized cases, inmstfor instance, but is not a general purpose
technique. Chain jumping is also the idiom implemented
by the hardware mechanism.

4.2  Comparing Implementations

With the most efficient idioms selected for our software
and cooperative implementations, we can now evaluate the
hardware scheme alongside them. For added insight, we
compare our JPP implementations to DBP, a hardware
mechanism that does not use jump-pointers. The results
are shown in Figure 5. Again, we discuss specific cases
before making general observations.

As our benchmark characterization predicted, bothpower
and voronoi have very small memory latency execution
components. Even the smallest computation overheads
introduced by software prefetching overwhelm the poten-
tial benefit and produce an overall slowdown. Invoronoi,
software and cooperative prefetching actuallyincreasethe
total memory latency, as useless prefetches contend for
memory resources with array based cache misses. Along
similar lines, we noted thatbisort and tsp are both highly
dynamic structures for which any jump-pointer scheme
will not remain valid for long enough to be useful. In fact,
explicit jump-pointer prefetching has an adverse effect on
bisort, as traversal order changes rapidly and any jump-
pointer prefetches become purely overhead. Software or
cooperative prefetching should not be implemented for
these benchmarks. In contrast, while hardware JPP is use-
less, at the very least it does not degrade performance.

The remaining programs have sizable memory latency
components and benefit from software and cooperative
JPP implementations. For these programs, in fact, JPP in

any form provides superior performance over prefetch
mechanisms that do not possess the ability to break
address generation serialization constraints. If we disre-
gardbh, bisort, power, tspandvoronoi, software, coopera-
tive and hardware JPP improved performance by averages
of 15%, 20% and 22%, respectively while cutting the
memory latency execution components by 72%, 83% and
55%. As we observed earlier, the performance returns on
software and cooperative schemes would be even larger if
not for their associated computation overhead.

In contrast with JPP, dependence based prefetching pro-
vided only an 11% average performance boost while cut-
ting only 29% of the total memory latency component.
This is not surprising since our earlier characterization
indicated that most benchmarks are serialized by their
LDS load chains. Indeed, the one benchmark which has
some natural parallelism,em3d, benefits almost as much
from the non-parallelizing dependence based prefetching
as it does from the use of jump-pointers.

The relationships among the different JPP implementa-
tions are also interesting. One expected trend is that the
cooperative implementation consistently outperforms the
pure software one, by as much as 10% on benchmarks that
use chain or root jumping likebh, mst, andhealth. These
improvements are due to the elimination of software
chained prefetches and their serialization artifacts. More
modest improvements, 1 to 2%, are observed for full and
queue jumping implementations ofbisort, tsp, treeadd,
and perimeter. These are due to the streamlined imple-
mentations of prefetches themselves.

Both software and cooperative implementations are funda-
mentally more effective than their observed speedups
would indicate. Jump-pointer creation imposes non-trivial
overhead that degrades from the observed impact. In the
healthchain jumping implementations, for instance, jump-
pointer creation creates ana priori 12% slowdown that
must be overcome by prefetching before any performance
gains are obtained. If we correct for this initial degrada-

Figure 5. Comparing prefetching implementations.Execution times (normalized to an unoptimized execution) for
three JPP implementations: software, cooperative and hardware, and for dependence based prefetching.
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tion, we find that software JPP improves performance by
90%, not 68%, for this program and cooperative JPP
achieves 130% rather than 103% speedups. These are the
gains we would expect to see in a hardware only imple-
mentation, where jump-pointer creation is “free”.

In reality, however, the relationship between the effective-
ness of hardware JPP and its software and cooperative
counterparts is variable. While hardware is more effective
on em3dandhealth, the opposite holds formst, perimeter,
and to a lesser degreetreeadd. The feature that distin-
guishes the first set of programs from the second is the
number of traversals performed on the data set.Em3dand
healthperform 100 and 500 traversals, respectively, while
treeaddmakes four passes, andmst and perimetermake
one each. Hardware JPP takes one full traversal to install
jump-pointers, and so optimizes only second and subse-
quent passes over the data. The choice between coopera-
tive and hardware implementations, between incurring
explicit jump-pointer creation overhead and leaving the
first pass unoptimized clearly depends on the total number
of traversals in the program. Inhealth and em3d, one
unoptimized pass is negligible, ontreeaddit forfeits one
quarter of the total savings, while for single pass programs
like perimeterandmst, it makes hardware JPP useless. To
prefetch one-pass programs, jump-pointers must be
installed as the LDS itself is built. For reasons including
difficulties with dependence detection and potential mis-
matches between creation and traversal orders, this is a
task seemingly more suited for software.

4.3  Comparing Bandwidth Requirements

Bandwidth consumption is another metric used to evaluate
prefetching solutions. Ideally, prefetching should not
change the overall number of bytes moved between the
first and second level caches and memory. A mechanism
that achieves this goal is perfectly efficient since it simply
converts fetches to prefetches. However, most mecha-
nisms prefetch some amount of useless data while unnec-
essarily evicting useful blocks. Figure 6 shows, for each
program and each prefetching implementation, the number
of bytes moved between the first and second level data
caches per dynamic instruction in the original program.
We do not count the instructions added to software and
cooperative implementations as these would bias our
results in their favor.

Some trends are evident from these results. First, jump-
pointer prefetching solutions have only a slight impact on
bandwidth consumption, increasing the number of bytes
moved by 3%, 6% and 35% for software, cooperative, and
hardware implementations respectively. This compares
favorably with the 25% overheads incurred by dependence
based prefetching. Among the three JPP implementations,
it is clear that increasing software control over what is
prefetched reduces prefetch waste. The additional band-
width consumed by hardware and cooperative schemes is
due largely to the dependence based prefetching mecha-
nism, which prefetches “rib” structures in greedy fashion.

4.4  Tolerating Longer Latencies

Jump-pointer prefetching provides good performance
gains on configurations typical of today’s systems. How-
ever, architectures of the near future will have different
characteristics. In this section, we extrapolate current
trends to predict the performance of our benchmarks and
to explore the importance of JPP in future designs.

We considered projections of several current trends includ-
ing: wider issue pipelines, deeper pipelines, greater mem-
ory bandwidth at all levels, and relatively longer main
memory latencies. We chose to disregard trends that
project larger on-chip second level caches with the argu-
ment that the data sets for these benchmarks will increase
as well. Our experiments show that pipeline enhance-
ments and increased bandwidth do not have a significant
impact on these benchmarks which, as a group, are highly
serial. A relative increase in memory latency, however,
translates directly into performance loss. Inhealth, for
instance, a 4-fold increase in memory latency produces a
2.5-fold increase in execution time. The bars in Figure 7
show normalized execution times forhealth, with different
memory latencies (70 and 280 processor cycles) and vary-
ing jump-pointer prefetch intervals (8 and 16 nodes).

For benchmarks that lack parallelism, longer memory
latencies reduce the effectiveness of serial prefetching
schemes like dependence based prefetching, which com-
press but cannot flatten the memory dependence graph.
For health, the impact of DBP drops from 17% in the low
latency case to 9%. On the other hand, JPP remains effec-
tive as relative memory latencies grow. The relative
impact of cooperative JPP grows from 50% to 65%, with
similar trends observed for hardware and software JPP.

Figure 6. Comparing bandwidth requirements.Bytes of data moved between the first and second level data caches
divided by the number of instructions in the original programs.
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Not only does JPP retain its effectiveness, the amount of
latency it hides can actually betuned using the jump-
pointer interval parameter. Increasing the interval requires
more than changing a few lines of software, or increasing
the size of the queues in the JQT. The prefetch buffer must
be expanded to accommodate the potentially longer resi-
dence of prefetched blocks, and the number of possible
outstanding prefetch requests must be increased. How-
ever, with these modifications, JPP can be used to tolerate
even long latencies.

4.5  Other Costs

Among the three implementations, it appears that coopera-
tive and hardware JPP are more effective than software
solutions, with the most effective of these two depending
on the particular benchmark and prefetch idiom used.
Cooperative JPP has the advantage for single-traversal
programs, since a hardware-only solution does not accel-
erate the first pass over a data structure. Cooperative JPP
also outperforms hardware in programs suited for root
jumping since this idiom typically requires knowledge of
high-level program invariants. Hardware JPP has the edge
in prefetching multiple-pass programs that lend them-
selves to queue or chain jumping. Cooperative JPP also
has slightly lower effect on bandwidth consumption.

Performance is not the only criterion by which to evaluate
JPP implementations. Other important factors are soft-
ware and hardware component complexities and costs, and
any requirements such as ISA changes that may be met
with resistance. While software JPP loses the perfor-
mance battle, it has the advantage of requiring only a pro-
gramming investment. Hardware-only solutions free the
programmer from implementation details but require spe-
cial processor extensions. Although the implementation
we present requires ISA changes and delivers performance
improvements only for programs that are recompiled, we

believe that these requirements can be avoided at the cost
of additional hardware complexity. Cooperative JPP
seems to have an overall advantage when we consider per-
formance and cost together. It provides performance that
compares favorably with hardware JPP, while requiring
fewer processor resources and less significant interface
changes. While cooperative JPP does require some pro-
grammer effort, it eliminates the most tedious portion of
the software requirement: scheduling chained prefetches.
For now, cooperative JPP seems to be the best choice for
combining high performance with low implementation
cost. That may change as some of the challenges associ-
ated with hardware implementations are overcome.

5   Related Work

While prefetching literature is abundant, prefetching
directed at the special requirements and challenges of LDS
is less extensive. Early work on improving the spatial
locality in LDS reference streams was done in the context
of LISP machines [5, 7]. This work aimed to increase
page reference density and used runtime techniques imple-
mented in either the memory allocator or garbage collec-
tor. Recently, Seidl and Zorn [17] and Calder et. al. [2]
have shifted focus to cache-conscious allocation and
added profile feedback to this process. Chilimbi et. al.
implemented cache specific techniques such as compres-
sion and line coloring for LDS nodes in a memory alloca-
tor [3] and a generational garbage collector [4].

One of the earliest software-controlled LDS prefetching
scheme was SPAID of Lipasti et. al. [10] which heuristi-
cally dereferenced pointers passed into procedures. Luk
and Mowry [11] discussed several software techniques,
including compiler-based greedy prefetching, program-
mer-controlled history pointer prefetching (essentially
software full jumping), and data linearization. On the
hardware side, Mehrotra and Harrison [13, 8] introduced a
detection and prefetch scheme for loads that, in isolation,
exhibited one of a number of preset access patterns, self
recurrence being one. Most recently, Roth et. al. [16]
described a dependence based mechanism that dynami-
cally isolates the LDS access kernel in a program and
prefetches by speculatively pre-executing that kernel.

Pugh introduced skiplists [14], a jump-pointer-based
sorted list implementation with search and manipulation
statistics similar to those of a balanced search tree. Jump-
pointers have been used to represent set data structures
efficiently [6] and to parallelize searches and reductions on
lists [9]. Discussions of maintaining recursion-avoiding
traversalthreadsin non-linear data structures can be found
in data structures literature [18]. As noted earlier, Luk and
Mowry [11] suggested the use of programmer controlled
jump-pointers for prefetching. We are not aware of any
implementations, actual or proposed, of hardware or
cooperative jump-pointer prefetching.

6   Summary and Future Directions

In this paper, we describe the general technique of jump-
pointer prefetching (JPP) for tolerating linked structure
(LDS) access latency. JPP is effective when limited work
is available between successive dependent accesses (e.g., a

Figure 7. Tolerating longer memory latencies.
Execution times for health: the first group of bars uses
the base configuration (70 cycle memory latency), the
second and third simulate long memory latency (280
cycles). In terms of prefetching, the first two
configurations use a jump interval (the distance
between a jump-pointer’s home and target nodes) of 8,
the third uses an interval of 16.
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tight pointer chasing loop) to enable aggressive scheduling
techniques to prefetch effectively. We present, evaluate,
and compare three JPP implementations. Our technical
contributions are summarized as follows:

• We present JPP as a general purpose technique for tol-
erating serialized latencies that result from LDS tra-
versal. By storing explicit jump-pointers to nodes
several hops away, JPP overcomes the pointer-chasing
problem. It is able to generate prefetch addresses
directly, rather than in a serial fashion, and is effective
even in situations where not enough work is available
to hide latencies by scheduling.

• We present two basic prefetching techniques: jump-
pointer prefetching and chained prefetching, which can
be combined to form four prefetching idioms:queue,
full, chainandroot jumping. Drawing from their com-
ponent prefetching blocks, each idiom has certain
advantages and disadvantages. We provide a high-
level program characterization that can be used to
select a suitable idiom for a given program.

• We describe three JPP implementations: software-only,
hardware-only, and cooperative. For those programs
with appreciable memory latency components, these
implementations reduce overall observed memory
latency by 72%, 55%, and 83%, respectively and
achieve speedups of 15%, 22%, and 20%.

Several directions for future work exist, beginning with a
systematic study of the design space of hardware JPP. Our
simulated implementation used a fixed queueing interval
of 8 nodes without regard to the trade-offs in latency toler-
ance and predictive accuracy. A more detailed study of
this spectrum is needed, with a better mechanism adapting
the interval on a case by case basis. We also assumed one
method for detecting and exploiting the unused memory
that pads allocated blocks. Other methods for detecting
and using this padding, or maybe some other unused part
of memory, may be better. Our rationale for using mem-
ory to store jump-pointers was predicated on the sheer
number of pointers that would be needed. Advances in
compression or prediction could make processor storage a
viable option. Finally, jump-pointer prefetching may be
generalized to other classes of data structures with serial-
ized access idioms, like sparse matrices and database trees.
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