
Mirage Cores

I n P r o c e ed i ngs o f T h e 5 0 t h A n n u a l I E E E / A C M I n t e r na t i ona l S y m p o s i um o n M i c r o a rc h i t ec t u r e ,
C a m b r i dge , MA , U S A , O c t o be r 1 4 - 1 8 , 2 0 1 7 (MI C R O -50) .

1

The Illusion of many Out-of-Order Cores Using In-order Hardware

Shruti Padmanabha
University of Michigan, Ann Arbor

Reetuparna Das
University of Michigan, Ann Arbor

Andrew Lukefahr
Indiana University

Scott Mahlke
University of Michigan, Ann Arbor

Presented by: Bernard Pranjic, 20.05.2021

Mentors: Behzad Salami, Kosta Stojiljkovic, Damla Senol Cali

Seminar in Computer Architecture, ETH Zürich

Executive Summary
▪ Problem:
▪ Practical power and thermal constraints limit the deployment of homogeneous multicore systems with

many big OoO cores

▪ Low performance of InO cores limits their widespread usage

▪ Goal:
▪ The goal is to design a Het-CMP with near OoO performance and InO energy consumption

▪ Idea:
▪ The idea is to use clusters of InO cores around one OoO core

▪ The OoO core is used as a «scheduler» and the InO cores as «workers»

▪ Evaluation:
▪ The Mirage Core can achieve on average 84% performance of a Homo-CMP, while conserving 55% of

energy and 25% of area costs

2

Overview
• Background, Problem and Goal

• Novelty, Key Approach and Ideas

• Mechanisms (in some detail)

• Key results, Methodology and Evaluation

• Summary

• Strengths and Weaknesses

• Thoughts and Ideas

• Key Takeaways

• Open Discussion

3

Out-of-Order cores
▪ Improve latency of programs

▪ Contain additional HW to reorder instructions to minimize stalls (ROB, RS, LSQ, etc.)

▪ This increased performance comes at the cost of increased power consumption

4

0%

20%

40%

60%

80%

100%

overall HPD category LPD category

R
el

at
iv

e
to

O
o

O

InO Core

Performance Power Energy Area

Heterogeneous Computing
▪ Systems contain mixed processor types (e.g.
CPUs and GPUs on the same chip)

▪ Built in logic for interfacing with additional HW

▪ Hardware accelerators

5

Goal
Design a processor that...
▪ has high throughput and single-threaded performance…

▪ and is very energy-efficient

6

Overview
• Background, Problem and Goal

• Novelty, Key Approach and Ideas

• Mechanisms (in some detail)

• Key results, Methodology and Evaluation

• Summary

• Strengths and Weaknesses

• Thoughts and Ideas

• Key Takeaways

• Open Discussion

7

ARM big.LITTLE Architecture
▪ Released in 2011

8

▪ Many Android Smartphones
▪ Apple A series

(A14 used in
iPhone 12s)

▪ Nintendo
Switch using
Nvidia Tegra XI

Mirage Core Architecture

9

Mirage Core Architecture

10

Overview
• Background, Problem and Goal

• Novelty, Key Approach and Ideas

• Mechanisms (in some detail)

• Key results, Methodology and Evaluation

• Summary

• Strengths and Weaknesses

• Thoughts and Ideas

• Key Takeaways

• Open Discussion

11

Memoization

12

fib(5)

fib(4)

fib(0) = 0

fib(3)

fib(2)

fib(1) = 1 fib(0) = 0

fib(1) = 1

fib(2)

fib(1) = 1

fib(3)

fib(2) fib(1)

fib(1) = 1 fib(0) = 0

▪ Calculating the
5th Fibonacci
Number using
recursion

Memoization

13

fib(5)

fib(4)

fib(0) = 0

fib(3)

fib(2)

fib(1) = 1 fib(0) = 0

fib(1) = 1

fib(2)

fib(1) = 1

fib(3)

fib(2) fib(1)

fib(1) = 1 fib(0) = 0

fib(n) 0 1 1 2 3 5

n 0 1 2 3 4 5

Stored values for Fibonacci

1

2

1
1

2

3
▪ Calculating the

5th Fibonacci
Number with
Memoization,
by storing
intermediate
values in an
array

Memoization
▪ Reordering of long latency
events only accounts for
19% of the performance
advantage of OoO’s.

▪ Most applications spend
most of their time in loops

▪ This means that
scheduling usually holds
the same pattern in similar
contexts

14

0%

20%

40%

60%

80%

100%

Overall HPD Category LPD Category

Performance relative to OoO

Performance with memoization % Total instructions memoized

0%

20%

40%

60%

80%

100%

1K 10K 100K 1M 10M 100M

Switching after n cycles

Performance relative to no switching % Ttotal instructions memoized

Memoizability

15

Designing the Arbitrator
▪ Energy-Efficiency Oriented Arbitration

▪ System Throughput Oriented Arbitration

▪ Fairness Oriented Arbitration

16

Energy-Efficiency Oriented Arbitration
▪ Schedule Cache Misses per Kilo Instructions (SC-MPKI) quantify the
usefulness of memoization

▪ Picks the application with the highest SC-MPKI above a certain
threshold

▪ If none are above the threshold, OoO is turned off to conserve
energy

17

Energy-Efficiency Oriented Arbitration

18

▪ Application 1
▪ Has high SC-MPKIInO

▪ Has low SC-MPKIOoO

▪ InO-OoO is high
▪ -> good candidate for

memoization, as it
performs well on
OoO, but bad on InO

▪ Application 2
▪ Has low SC-MPKIInO

▪ Has low SC-MPKIOoO

▪ InO-OoO is near 0
▪ -> bad candidate for

memoization, as it
already performs
near OoO

▪ Application 3
▪ Has high SC-MPKIInO

▪ Has high SC-MPKIOoO

▪ InO-OoO is near 0
▪ -> bad candidate for

memoization, because
the code probably has
unpredictable control
flow

System Throughput Oriented Arbitration

19

▪ Overall system throughput (STP) as metric for the scheduler
▪ Migrates the slowest application to the OoO

▪ Traditional design on
heterogeneous chips

Fairness Oriented Arbitration
▪ Arbitrator migrates application in round robin order

▪ Util(i) metric to determine each application’s timeshare

▪ Application will be migrated only if either Util(i) is less than
1/(#apps) or if ∆SC-MPKI falls below the threshold

20

Designing the Core Architecture
▪ Designing the OoO core

▪ Designing the InO core

▪ Migration between the cores

21

Designing the OoO Core
▪ In order to memoize schedules, the OoO must be able to recognize
▪ (a) when a trace is repetitive

▪ (b) if its instructions are scheduled in the same order

▪ Traces that are deemed memoizable are stored in the schedule cache

22

▪ Metrics used to compare two
traces are execution time, IPC,
memory characteristics, branch
misses and reordered instructions

DynaMOS: dynamic schedule migration
for heterogeneous cores

Shruti Padmanabha, Andrew Lukefahr, Reetuparna Das, and Scott Mahlke

Advanced Computer Architecture Laboratory

University of Michigan, Ann Arbor, MI

Micro-48: Proceedings of the 48th International Symposium on Microarchitecture, December
2015

https://dl.acm.org/doi/pdf/10.1145/2830772.2830791

23

https://dl.acm.org/doi/pdf/10.1145/2830772.2830791

Designing the InO Core
Introduces the OinO mode with following modifications

▪ Atomic Execution

▪ Physical Register File

▪ Load/Store Queue

▪ Schedule Cache

24

Atomic Execution
▪ InO cores cannot detect unexpected events like
branch mispredictions or memory aliases

▪ Forces the OinO to execute schedules atomically

▪ On misprediction, resets the whole execution and
executes in original, non-memoized program order

25

Physical Register File
▪ OinO is supplemented with expanded
register file that maps every
architectural register to at most 4
physical registers (PR), resulting in a
128 entry PRF

▪ Bookkeeping adds an additional 28
bytes of storage

▪ A bigger PRF and tables adds 14%
dynamic energy to the InO

26

AR

PRF

Load-Store Queue
▪ Implemented to circumvent
memory alias errors for load and
store operations

▪ Is added to every recorded
schedule as a fixed-size meta-
data block and adds 20B

▪ 32 entry LSQ contributes 5.5%
overhead to the dynamic energy
of OinO

27

Load/Store Queue

Load/Store Addr Value

L 0x1234 1790

S 0x2468 -532

S 0x3579 1234

L 0x6729 82394

L 0x8923 -3659

S 0x1234 58329

L 0x3333 -2342

L 0x4444 93094

Schedule Cache
▪ 8KB cache that stores schedules memoized and transferred
from the OoO

▪ Trace mis-speculations and SC writes are very expensive

▪ Employ an algorithm that is heavily biased against traces
that mis-speculate

▪ Eviction policy: unmemoizable traces -> least recently used

▪ Contributes 10% towards leakage energy but reduces L1
iCache access energy

28

Migration between cores
▪ Must store all of the active core’s state, including the RF, PC, control
bits, store buffer entries, etc. into memory on migration and its
pipeline must be flushed

29

Overview
• Background, Problem and Goal

• Novelty, Key Approach and Ideas

• Mechanisms (in some detail)

• Key results, Methodology and Evaluation

• Summary

• Strengths and Weaknesses

• Thoughts and Ideas

• Key Takeaways

• Open Discussion

30

Methodology

31

▪ OoO:

− 3 wide superscalar @ 2 GHz

− 12 stage pipeline

− 128 entry ROB

− 128 entry integer register file

− 256 entry floating-point register file

− 8KB Schedule Cache

▪ InO:
− 3 wide superscalar @ 2 GHz

− 8 stage pipeline

− 128 entry integer register file

− 128 entry floating-point register file

− 8KB Schedule Cache

▪ Memory System:
− 32 KB L1 iCache @ 2 cycles

− 32 KB L1 dCache @ 2 cycles

− 2 MB shared L2 Cache with stride
prefetcher @ 15 cycles

− 8192 MB Main Memory @ 120 cycles

− 32 B L1-L2 bus @ 2 GHz

Methodology
▪ 27 applicatitons from SPEC
2006 benchmark suite

▪ Gem5 simulator to model
Mirage Cores

▪ McPAT modeling framework
to estimate area, static and
dynamic energy consumption
for the core and L1 caches

32

Evaluation

33

8:0 Homo-InO 0:8 Homo-OoO 8:1 Het-Traditional 8:1 Mirage

Architecture Configuration

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

4 8 12 16

A
re

a
re

la
ti

ve
 t

o
H

o
m

o
-O

o
O

Number of InO cores per OoO

n:0 Homo-InO n:1 MirageCores n:1 Traditional Cores

34

Architecture Configuration

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

4 8 12 16

A
re

a
re

la
ti

ve
 t

o
H

o
m

o
-O

o
O

Number of InO cores per OoO

n:0 Homo-InO n:1 MirageCores n:1 Traditional Cores

35

+55%

Architecture Configuration

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

4 8 12 16

A
re

a
re

la
ti

ve
 t

o
H

o
m

o
-O

o
O

Number of InO cores per OoO

n:0 Homo-InO n:1 MirageCores n:1 Traditional Cores

36

+23%

Performance

0%

20%

40%

60%

80%

100%

4 8 12 16

ST
P

 r
el

at
iv

e
to

H
o

m
o

-O
o

O

Number of InO cores per OoO

Homo-InO SC-MPKI SC-MPKI+maxSTP maxSTP

37

Performance

0%

20%

40%

60%

80%

100%

4 8 12 16

ST
P

 r
el

at
iv

e
to

H
o

m
o

-O
o

O

Number of InO cores per OoO

Homo-InO SC-MPKI SC-MPKI+maxSTP maxSTP

38

Performance

0%

20%

40%

60%

80%

100%

4 8 12 16

ST
P

 r
el

at
iv

e
to

H
o

m
o

-O
o

O

Number of InO cores per OoO

Homo-InO SC-MPKI SC-MPKI+maxSTP maxSTP

39

Performance

0%

20%

40%

60%

80%

100%

4 8 12 16

ST
P

 r
el

at
iv

e
to

H
o

m
o

-O
o

O

Number of InO cores per OoO

Homo-InO SC-MPKI SC-MPKI+maxSTP maxSTP

40

Energy Consumption

0%

10%

20%

30%

40%

50%

60%

4 8 12 16

En
er

gy
 r

el
at

iv
el

y
to

H
o

m
o

-O
o

O

Number of InO Cores per OoO

Homo-InO SC-MPKI SC-MPKI+maxSTP maxSTP

41

Difference due to bigger PRF and LSQ in OinO

Case Study

42

maxSTP

SC-MPKI

Analyses of Benchmark Categories

0%

20%

40%

60%

80%

100%

HPD LPD Random

ST
P

 r
el

at
iv

e
to

H
o

m
o

-
O

o
O

Homo-InO SC-MPKI

SC-MPKI+maxSTP maxSTP

43

0%

20%

40%

60%

80%

100%

HPD LPD Random

%
 c

yc
le

s
th

at
O

o
O

w
as

ac

ti
ve

Homo-InO SC-MPKI

SC-MPKI+maxSTP maxSTP

0%

20%

40%

60%

HPD LPD Random

En
er

gy
 r

el
at

iv
e

to
H

o
m

o
-O

o
O

Homo-InO SC-MPKI

SC-MPKI+maxSTP maxSTP

▪ 8:1 configuration

Arbitrator for Equal Resource Sharing

0% 20% 40% 60% 80% 100%

maxSTP

SC-MPKI

Fair

SC-MPKI-fair

Utilization of OoO per benchmark in a workload mix for the
8:1 configuration

app0 app1 app2 app3 app4 app5 app6 app7

44

0%

20%

40%

60%

80%

100%

4 8 12 16 4 8 12 16 4 8 12 16

Performance Utillization Energy

R
el

at
iv

e
to

 H
o

m
o

-O
o

O

Number of InO cores per OoO core

Homo-InO SC-MPKI-fair fair

▪ 8:1 configuration

Area Neutral Study

0%

20%

40%

60%

80%

100%

Performance Utilization Energy Area

R
el

at
iv

e
to

H
o

m
o

-O
o

O

8:1,SC-MPKI 5:3, maxSTP

45

Cost of Core Migration

46

0%

10%

20%

30%

0.00%

0.10%

0.20%

0.30%

m
ix

1

m
ix

2

m
ix

3

m
ix

4

m
ix

5

m
ix

6

m
ix

7

m
ix

8

m
ix

9

m
ix

1
0

m
ix

1
1

m
ix

1
2

m
ix

1
3

m
ix

1
4

m
ix

1
5

m
ix

1
6

m
ix

1
7

m
ix

1
8

m
ix

1
9

m
ix

2
0

m
ix

2
1

m
ix

2
2

m
ix

2
3

m
ix

2
4

m
ix

2
5

m
ix

2
6

m
ix

2
7

m
ix

2
8

m
ix

2
9

m
ix

3
0

m
ix

3
1

m
ix

3
2

HPD LPD Avg

P
er

ce
n

ta
ge

 o
f

to
ta

l i
n

te
rv

al
s

P
er

ce
n

ag
e

o
f

to
ta

l t
im

e

SC transfer cost L1$ transfer cost Migration frequency

Overview
• Background, Problem and Goal

• Novelty, Key Approach and Ideas

• Mechanisms (in some detail)

• Key results, Methodology and Evaluation

• Summary

• Strengths and Weaknesses

• Thoughts and Ideas

• Key Takeaways

• Open Discussion

47

Summary
▪ Problem:
▪ Practical power and thermal constraints limit the deployment of homogeneous multicore systems with

many big OoO cores

▪ Low performance of InO cores limits their widespread usage

▪ Goal:
▪ The goal is to design a Het-CMP with near OoO performance and InO energy consumption

▪ Idea:
▪ The idea is to use clusters of InO cores around one OoO core

▪ The OoO core is used as a «scheduler» and the InO cores as «workers»

▪ Evaluation:
▪ The Mirage Core can achieve on average 84% performance of a Homo-CMP, while conserving 55% of

energy and 25% of area costs

48

Overview
• Background, Problem and Goal

• Novelty, Key Approach and Ideas

• Mechanisms (in some detail)

• Key results, Methodology and Evaluation

• Summary

• Strengths and Weaknesses

• Thoughts and Ideas

• Key Takeaways

• Open Discussion

49

Strengths
▪ Simple Idea, that can achieve high system throughput and
low energy consumption without having to make a heavy
tradeoff on single thread performance.

▪ Scheduler is flexible to fulfil the users needs, hence
applicable to many systems.

▪ Tackles an important problem in energy consumption

▪ Well-written, easy to understand paper

50

Weaknesses
▪ Does not go too much into detail when it comes to
multithreaded computing

▪ Gives no programming model or example design

▪ Only looks at CPU heterogeneity

▪ Servers cannot profit off this architecture due to more irregular
fetch patterns

▪ Is only efficient when there is a good mix between LPD and
HPD workloads

51

Overview
• Background, Problem and Goal

• Novelty, Key Approach and Ideas

• Mechanisms (in some detail)

• Key results, Methodology and Evaluation

• Summary

• Strengths and Weaknesses

• Thoughts and Ideas

• Key Takeaways

• Open Discussion

52

Intel Core Alder Lake (2021)
▪ 8 «little» Gracemont cores for high efficiency

▪ 8 «big» Golden Cove cores for high performance
with multithreading

▪ 24 threads in total

▪ including a HW scheduler

▪ To be released in 2021

53

Overview
• Background, Problem and Goal

• Novelty, Key Approach and Ideas

• Mechanisms (in some detail)

• Key results, Methodology and Evaluation

• Summary

• Strengths and Weaknesses

• Thoughts and Ideas

• Key Takeaways

• Open Discussion

54

Key Takeaways
▪ A nice approach to get high system throughput, high
single-thread performance and low energy consumption
at the same time.

▪ Does not require a lot of new additional HW

▪ Flexible Arbitrator Design

▪ There is a lot to build on with this idea

▪ Heterogeneous Designs are an important tool for
increased energy efficiency

55

Overview
• Background, Problem and Goal

• Novelty, Key Approach and Ideas

• Mechanisms (in some detail)

• Key results, Methodology and Evaluation

• Summary

• Strengths and Weaknesses

• Thoughts and Ideas

• Key Takeaways

• Open Discussion

56

Open Discussion
▪ Fields where the Mirage Core can be applied

▪ What needs to be changed to make it efficient for servers?

▪ What needs to be changed to make it efficient for
multithreading?

▪ Can the Mirage Cores problems be fixed by adding more
heterogeneity in general?

▪ Hardware accelerators that can be used

57

