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Executive Summary
▪ Problem:
▪ Practical power and thermal constraints limit the deployment of homogeneous multicore systems with

many big OoO cores

▪ Low performance of InO cores limits their widespread usage

▪ Goal:
▪ The goal is to design a Het-CMP with near OoO performance and InO energy consumption

▪ Idea: 
▪ The idea is to use clusters of InO cores around one OoO core

▪ The OoO core is used as a «scheduler» and the InO cores as «workers»

▪ Evaluation:
▪ The Mirage Core can achieve on average 84% performance of a Homo-CMP, while conserving 55% of

energy and 25% of area costs
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Out-of-Order cores
▪ Improve latency of programs

▪ Contain additional HW to reorder instructions to minimize stalls (ROB, RS, LSQ, etc.)

▪ This increased performance comes at the cost of increased power consumption
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Heterogeneous Computing
▪ Systems contain mixed processor types (e.g. 
CPUs and GPUs on the same chip)

▪ Built in logic for interfacing with additional HW

▪ Hardware accelerators 
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Goal
Design a processor that...
▪ has high throughput and single-threaded performance…

▪ and is very energy-efficient
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ARM big.LITTLE Architecture
▪ Released in 2011
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▪ Many Android Smartphones
▪ Apple A series

(A14 used in 
iPhone 12s)

▪ Nintendo 
Switch using
Nvidia Tegra XI



Mirage Core Architecture
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Mirage Core Architecture
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Memoization
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Memoization
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Memoization
▪ Reordering of long latency
events only accounts for
19% of the performance
advantage of OoO’s.

▪ Most applications spend
most of their time in loops

▪ This means that
scheduling usually holds
the same pattern in similar
contexts
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Designing the Arbitrator
▪ Energy-Efficiency Oriented Arbitration

▪ System Throughput Oriented Arbitration

▪ Fairness Oriented Arbitration
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Energy-Efficiency Oriented Arbitration
▪ Schedule Cache Misses per Kilo Instructions (SC-MPKI) quantify the
usefulness of memoization

▪ Picks the application with the highest SC-MPKI above a certain
threshold

▪ If none are above the threshold, OoO is turned off to conserve
energy
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Energy-Efficiency Oriented Arbitration
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▪ Application 1
▪ Has high SC-MPKIInO

▪ Has low SC-MPKIOoO

▪ InO-OoO is high 
▪ -> good candidate for 

memoization, as it 
performs well on 
OoO, but bad on InO

▪ Application 2
▪ Has low SC-MPKIInO

▪ Has low SC-MPKIOoO

▪ InO-OoO is near 0 
▪ -> bad candidate for 

memoization, as it 
already performs 
near OoO

▪ Application 3
▪ Has high SC-MPKIInO

▪ Has high SC-MPKIOoO

▪ InO-OoO is near 0 
▪ -> bad candidate for 

memoization, because 
the code probably has 
unpredictable control 
flow



System Throughput Oriented Arbitration
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▪ Overall system throughput (STP) as metric for the scheduler
▪ Migrates the slowest application to the OoO

▪ Traditional design on 
heterogeneous chips



Fairness Oriented Arbitration
▪ Arbitrator migrates application in round robin order

▪ Util(i) metric to determine each application’s timeshare

▪ Application will be migrated only if either Util(i) is less than
1/(#apps) or if ∆SC-MPKI falls below the threshold
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Designing the Core Architecture
▪ Designing the OoO core

▪ Designing the InO core

▪ Migration between the cores
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Designing the OoO Core
▪ In order to memoize schedules, the OoO must be able to recognize
▪ (a) when a trace is repetitive

▪ (b) if its instructions are scheduled in the same order

▪ Traces that are deemed memoizable are stored in the schedule cache
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▪ Metrics used to compare two
traces are execution time, IPC, 
memory characteristics, branch
misses and reordered instructions



DynaMOS: dynamic schedule migration 
for heterogeneous cores

Shruti Padmanabha, Andrew Lukefahr, Reetuparna Das, and Scott Mahlke

Advanced Computer Architecture Laboratory

University of Michigan, Ann Arbor, MI

Micro-48: Proceedings of the 48th International Symposium on Microarchitecture, December
2015

https://dl.acm.org/doi/pdf/10.1145/2830772.2830791
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Designing the InO Core
Introduces the OinO mode with following modifications

▪ Atomic Execution

▪ Physical Register File

▪ Load/Store Queue

▪ Schedule Cache
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Atomic Execution
▪ InO cores cannot detect unexpected events like 
branch mispredictions or memory aliases

▪ Forces the OinO to execute schedules atomically

▪ On misprediction, resets the whole execution and 
executes in original, non-memoized program order
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Physical Register File
▪ OinO is supplemented with expanded
register file that maps every
architectural register to at most 4 
physical registers (PR), resulting in a 
128 entry PRF

▪ Bookkeeping adds an additional 28 
bytes of storage

▪ A bigger PRF and tables adds 14% 
dynamic energy to the InO
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Load-Store Queue
▪ Implemented to circumvent
memory alias errors for load and 
store operations

▪ Is added to every recorded
schedule as a fixed-size meta-
data block and adds 20B

▪ 32 entry LSQ contributes 5.5% 
overhead to the dynamic energy
of OinO
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Load/Store Queue

Load/Store Addr Value

L 0x1234 1790

S 0x2468 -532

S 0x3579 1234

L 0x6729 82394

L 0x8923 -3659

S 0x1234 58329

L 0x3333 -2342

L 0x4444 93094



Schedule Cache
▪ 8KB cache that stores schedules memoized and transferred
from the OoO

▪ Trace mis-speculations and SC writes are very expensive

▪ Employ an algorithm that is heavily biased against traces 
that mis-speculate

▪ Eviction policy: unmemoizable traces -> least recently used

▪ Contributes 10% towards leakage energy but reduces L1 
iCache access energy
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Migration between cores
▪ Must store all of the active core’s state, including the RF, PC, control
bits, store buffer entries, etc. into memory on migration and its
pipeline must be flushed
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Methodology
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▪ OoO:

− 3 wide superscalar @ 2 GHz

− 12 stage pipeline

− 128 entry ROB

− 128 entry integer register file

− 256 entry floating-point register file

− 8KB Schedule Cache

▪ InO:
− 3 wide superscalar @ 2 GHz

− 8 stage pipeline

− 128 entry integer register file

− 128 entry floating-point register file

− 8KB Schedule Cache

▪ Memory System:
− 32 KB L1 iCache @ 2 cycles

− 32 KB L1 dCache @ 2 cycles

− 2 MB shared L2 Cache with stride
prefetcher @ 15 cycles

− 8192 MB Main Memory @ 120 cycles

− 32 B L1-L2 bus @ 2 GHz



Methodology
▪ 27 applicatitons from SPEC 
2006 benchmark suite

▪ Gem5 simulator to model
Mirage Cores

▪ McPAT modeling framework
to estimate area, static and 
dynamic energy consumption
for the core and L1 caches
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Evaluation
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8:0 Homo-InO 0:8 Homo-OoO 8:1 Het-Traditional 8:1 Mirage
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Architecture Configuration
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Architecture Configuration
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Performance
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Energy Consumption
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Difference due to bigger PRF and LSQ in OinO



Case Study
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Analyses of Benchmark Categories
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Arbitrator for Equal Resource Sharing

0% 20% 40% 60% 80% 100%

maxSTP

SC-MPKI

Fair

SC-MPKI-fair

Utilization of OoO per benchmark in a workload mix for the
8:1 configuration

app0 app1 app2 app3 app4 app5 app6 app7

44

0%

20%

40%

60%

80%

100%

4 8 12 16 4 8 12 16 4 8 12 16

Performance Utillization Energy

R
el

at
iv

e 
to

 H
o

m
o

-O
o

O

Number of InO cores per OoO core

Homo-InO SC-MPKI-fair fair

▪ 8:1 configuration



Area Neutral Study
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Cost of Core Migration
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Summary
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Strengths
▪ Simple Idea, that can achieve high system throughput and 
low energy consumption without having to make a heavy 
tradeoff on single thread performance.

▪ Scheduler is flexible to fulfil the users needs, hence
applicable to many systems.

▪ Tackles an important problem in energy consumption

▪ Well-written, easy to understand paper
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Weaknesses
▪ Does not go too much into detail when it comes to
multithreaded computing

▪ Gives no programming model or example design

▪ Only looks at CPU heterogeneity

▪ Servers cannot profit off this architecture due to more irregular
fetch patterns

▪ Is only efficient when there is a good mix between LPD and 
HPD workloads
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Intel Core Alder Lake (2021)
▪ 8 «little» Gracemont cores for high efficiency

▪ 8 «big» Golden Cove cores for high performance 
with multithreading

▪ 24 threads in total

▪ including a HW scheduler

▪ To be released in 2021
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Key Takeaways
▪ A nice approach to get high system throughput, high 
single-thread performance and low energy consumption
at the same time.

▪ Does not require a lot of new additional HW

▪ Flexible Arbitrator Design

▪ There is a lot to build on with this idea

▪ Heterogeneous Designs are an important tool for 
increased energy efficiency
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Open Discussion
▪ Fields where the Mirage Core can be applied

▪ What needs to be changed to make it efficient for servers?

▪ What needs to be changed to make it efficient for
multithreading?

▪ Can the Mirage Cores problems be fixed by adding more 
heterogeneity in general?

▪ Hardware accelerators that can be used
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