MorphCore

AN ENERGY-EFFICIENT MICROARCHITECTURE FOR HIGH PERFORMANCE
ILP AND HIGH THROUGHPUT TLP

The Paper

Authors
o Khubaib
o M. Aater Suleman
° Milad Hashemi
o Chris Wilkerson
° Yale M. Patt

Published for MICRO 2012

Presented by Georgijs Vilums

Agenda

Background and Motivation
o Workloads

o Current Designs

Design of MorphCore

Design Evaluation
o Performance

o Power Usage
Paper Evaluation

Discussion

Background ana
Motivation

WORKLOADS AND CURRENT DESIGNS

Most common Workloads

SINGLE THREAD MULTIPLE THREADS
Instructions are fetched from a single stream Instructions can be fetched from multiple
o Parallelism arises between instructions streams
_ o > Parallelism between threads can also be
Desired Characteristics exploited

> High Performance
Desired Characteristics

° Low Latency
o High Throughput

> Energy Efficiency : e
> Energy Efficiency

Overview: Out-of-Order-Execution

Want to execute instructions in any order, as long as semantics stay the same
o Can skip waiting for independent instructions

o Less cycles wasted stalling

Core components
o RAT: Prevents register name conflicts
o RS: Instructions wait for their operands to become ready
o Scheduler: Chooses any instruction with ready operands for execution

Independent instructions can execute in any order, exploiting ILP

Overview: InOrder SMT

Want to execute multiple threads concurrently
° When one instruction has to wait, just execute instructions from another thread

Instruction Queues
> An SMT-Core has multiple Queues, each filled with instructions from different threads

Wakeup
o Head instruction of any of the queues is selected, provided that it does not wait on operands
° Instructions from each thread execute in order

Thread execution is interleaved, exploiting TLP

What are the problems?

OUT-OF-ORDER-EXECUTION SIMULTANEOUS MULTITHREADING

Consumes a lot of energy Low performance when working with small
number of threads / single thread

Reordering unnecessary when TLP could be - Does not exploit ILP at all

exploited

° Non-ldeal throughput when working with
multiple threads as work is wasted optimizing
ILP

o Wasted energy

Summary

Modern workloads are varied

We want the best of both worlds:
o Exploit ILP when working with a single thread
o Exploit TLP when working with multiple threads

Putting two different cores on one chip comes with a large area overhead

Agenda

Background and Motivation
o Workloads

o Current Designs

Design of MorphCore

Design Evaluation
o Performance

o Power Usage
Paper Evaluation

Discussion

The Best of Both Worlds

DYNAMICALLY CHANGING CORE LAYOUT

Basic Idea

Core can work both in OoO-mode and InOrder-Mode

Many Components of an Oo0O core can also be used when operating as InOrder core
o InOrder is simpler, requires less logic

o Smaller overhead than implementing an entire second core optimized for InOrder

Switch core from 000 to InOrder when many threads available

Back to 00O when threads block / are terminated

General Architecture

Store Buffer
Active §T/Q |7ookup

i Frfacd] ;
i ' ‘r-Cache m i
:Gotéi?:: Physical D-Cache ;

FBranch RS Register ROB-commit
Predictor” | ROB-alloc File (PRF) | [ZALUs /

000 - :
Mode . 000 Select
Onl H Speculative-RAT (among any 000 Wakeup Permanent-RAT
Yo i 2-way ready instrs (wakeup any LDQ
i sMT LDQ-alloc RS Free List in RS) dep instr in RS) Lookup E
! InOrder Select :
InOrder | (ah et e nOrder Wakeup
Mode) | RS FIFO head instrs of F'Fct)h?g;zr) i !
Only | Insert the threads) :

.. N i o A A T B
DECODE RENAME Insert into RSI SELECT WAKEUP REG READ EXE l COMMIT

Fetch and Decode

Want to fetch from more instruction streams

Additional Logic:
° Program counters
° Branch history registers
° Instruction Buffers
o Larger Multiplexer

Note: Multiplexer on critical path
o Lower maximum clock rate

Legend

Vi

Shared

I:I Only Oo0O
|:| Only InOrder

e
Select”
e P

|I-cache

—

!

1

PC-1
/

B] 8 Instruction

Buffers

Legend

[//// shared
[] onlyooo
[] onlyInOrder

Rename

. . . Phy Src Id
Need a location for storing register data of arch src1as i Renamed Instrs
’—> F-RAT Dependency v >
each thread : Check Logic Allocate
Decoded Resources
Instrs (ROB, LDQ, STQ) Renamed
Recall: v Instrs
> In 000, the physical register file (PRF) has many ;.. s.clqs L: ;T 7 R:;B/
more entries than the architecture exposes 7| Free List I st ids ! ol 12 1%
y ;
In InOrder-mode part of PRF is dedicated to arehsref[) Allocate Resource
each thread Phy Src Ids (ROB+Store Buffer)
Dest] Srg / Static Mapping — tl?’ 1\ ~ T
o . (S) =
> Thread ID determines region rhreadho | RS Y =" 5] Renamed Instrs HoteiSsiecior
_ J

> No complicated renaming logic required

Dispatch

Legend

[//// shared
[] onlyooo
[] onlyInOrder

Recall:

> In 000, instructions wait in the reservation
station (RS) until operands are ready

In InOrder, similar to Rename, each thread is
allocated part of the RS

As each thread operates in order, a simple
circular FIFO queue determines placement of
new instruction in RS

RS Free List
(insert into
empty slots)

Insert in
circular
FIFO order

RS Renamed Instrs

Y

Reservation
Station

Mode Selector

Wakeup and Select

Need to wake up instructions when operands
are ready, then select for execution

Recall: _|_7‘7
. 000 Wakeup Reservation Station
> In 000, instructions have to monitor broadcasts —— ovosetect | iy e

Src Tags of firing instrs
for relevant operands Req 000 000 Ready from RS
xecution (Tag Match) Bypass
° Once operands are ready the instruction can be / |
H 000 Grant nstructions issue
|SSU€d !‘.o :he éXE units ‘ Physical II Result Bus
IO Grant Station \ Reg File/] -
> f N ALU 4.
InOrder Wakeup also keeps track of ready seme Legend
. o Req InO InOrfler rr:ma q read IDs '
operands for instructions Exccution Ready ™S |offiing ineis V777 Shared
[] only InOrder

. . nOrder Wakeu
Only instructions from head of each C (o aer]
instruction stream can be selected for
execution

Switching Modes

OOO TO INORDER INORDER TO OO0
Core monitors the number of active threads Once number of active threads drops too low,
> Threads count as inactive when blocking (10) switch back to 0OoO-mode

° Drain Pipeline
o Spill registers to memory
o Load active thread registers back into PRF

Once number of threads reaches set
threshold, switch to InOrder-mode

> Drain Pipeline

> Relocate data into correct partitions in PRF * Reenable 000 components

o Disable unnecessary components

Summary

Not much additional Logic required for implementing InOrder SMT

Many structures from OoO core can be reutilized in a slightly reconfigured way

When operating in order, multiple components which require a lot of power can be disabled (no
clock)

Additional logic on critical path decreases maximum possible clock rate

Agenda

Background and Motivation
o Workloads

o Current Designs

Design of MorphCore

Design Evaluation
> Performance
o Power Usage

Paper Evaluation

Discussion

Evaluation

PERFORMANCE AND POWER CHARACTERISTICS

Test Configuration

Machine
° 000 core with fetch width 2 as basis
o Can switch to InOrder-mode with fetch width 8
o 000-mode with 1 or 2 threads, InOrder-mode with more than 2

Data
o Several workloads using only a single thread (ST)

o Other workloads using multiple threads (MT)

Points of Reference

OUT OF ORDER IN ORDER
000-2 SMALL
o Standard OoO core which can execute two o Cluster of three InOrder cores, each executing
threads concurrently two concurrent threads
000-4

o Standard 00O core, with additional hardware to
enable the execution of four concurrent threads

MED

o A cluster of three 00O cores, where each core
can execute one concurrent thread

Performance

= 000-2 m000-4 mMorphCore ®mMED m SMALL “Almost matches 000-2
in single-threaded tasks

1.4
1.2 *Beats OO0-2 and O00O-
1 4 in multi-threaded

tasks, beaten by MED

0.8 - and SMALL

0.6 -
04 -
0.2 -

0 -

*QOverall best
performance

ST Avg MT_Avg All_Avg

Energy-Delay-Squared

= 000-2 m000-4 m MorphCore ®mMED = SMALL *Similar to performance,
14 almost matches O00-2

in ST, beaten by MED
1.2 and SMALL in MT
1

0.8
0.6
0.4
0.2

0

*Again, overall best
(lowest) Energy-Delay-
Squared

ST _Avg MT_Avg ALL_Avg

Agenda

Background and Motivation
o Workloads

o Current Designs

Design of MorphCore

Design Evaluation
o Performance

o Power Usage
Paper Evaluation

Discussion

Paper Critigue

STRENGTHS & WEAKNESSES

Strengths

DESIGN PAPER
Significant gains in MT performance, efficiency Provides well-explained and thorough
> Makes large OoO-cores more flexible motivation for the issue
> Allows use in devices with stricter power Thorough analysis, comparison to other
budgets common and alternative architectures
Changes are transparent to user Performance losses in some areas are
o Eases adoption, software does not have to be acknowledged

redeveloped

Already present hardware is repurposed
° Low area overhead
° Less changes to design

Weaknesses

Flexibility comes at the cost of overhead
o Single-threaded applications suffer a (slight) performance penalty

o ST-workloads are still very common

Might not be flexible enough
> For example, if designed for 1/8+ threads, energy-delay-squared might suffer at 2-7 threads

Takeaways

Dynamically change between executing...
° ... few threads out of order, exploiting ILP

° ... many threads in order, exploiting TLP and saving power
Sizeable performance gain in MT-applications

Changes transparent to user
o Makes adoption easier

Additional overhead when executing ST only
> Might be hindering adoption

Agenda

Background and Motivation
o Workloads

o Current Designs

Design of MorphCore

Design Evaluation
o Performance

o Power Usage
Paper Evaluation

Discussion

Discussion Starters

Do you think such dynamic core architectures will become more common in the future?
o Why?
° Why not?

Should the mechanism for mode switching be controllable by the programmer?
o What benefits could this bring?
o What could be the negative consequences?

Do you see other issues that the design might have?

Thank You for your
Attention

