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Executive Summary

• Problem:
• Increasing complexity of modern CPUs makes Design Bugs

in commercial products more common
• They are hard to fix/avoid in software and usually unfixable in

hardware

• Goal:
• develop hardware solutions that enables detecting when a

Design Bug triggered
• has to be flexible to detect new bugs as they are discovered
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Executive Summary

• Contributions:
• in-depth study of design bugs of a quasi-commercial CPU at

a low level
• novel mechanism to monitor internal CPU signals and

deciding whether a Design Bug can be triggered
• Makes hardware ”updatable” with bug patches like software

• Evaluation:
• To cover 80% of all bugs found in the study:
• low power overhead (3.5%)
• moderate area overhead (10%)
• when combined with Hardware Fault Detection, some hardware

can be shared and total overhead reduces
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Problem

• Modern CPUs are highly complex, especially CISC
architectures

• A lot of effort goes into verifying designs before production,
can take more than 50% of the release cycle

• Design bugs still appear in widespread commercial CPUs

• Bugs in CPUs make it less usable: Correct software on buggy
hardware can produce wrong result

• In commercial CPUs, bugs also lead to bad press and
expensive recalls

• Many bugs in the past, were usually handled by trying to
avoid in software or disabling CPU components
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Examples

• Intel FDIV bug: Intel Pentium can return wrong floating-point
division results
• Resulted in 500M $ recall

• Intel F00F bug - certain instruction with the right arguments
locks up entire system

• AMDs have bugs too - a lot of consecutive pops and rets can
cause some AMD Opterons to incorrectly update stack
pointer
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Goal

• First step to avoiding Design Bugs is to detect when a bug is
triggered

• In Online operation

• Optimally, we want to detect all Design Bugs

• Not all bugs will be discovered at the manufacture date of the
CPU

→ We want to be able to add information about design bugs
subsequently
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How do design bugs look like?

Paper analyzes OpenSPARC T1 RTL-level implementation and
comes up with three categories:

• Algorithmic design bugs
• major deviation of implemented algorithm from specification
• Involves a lot of buggy logic, detecting and fixing is usually

hard

• Logic design bugs
• buggy logic block(s) used somewhere (e.g. wrong type of

gate, wrong combination of inputs)
• Fixing and detection is easier, since erroneous hardware

localized to a few gates

• Timing design bugs
• Signal latched at the wrong time
• Often fixed by adding/removing a buffer flip-flop
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What about manufacturing defects?

This paper is concerned with Logic design bugs.
What does this paper not try to detect?

• Algorithmic or Timing Design bugs

• Hardware faults caused by manufacturing process or
deterioration of hardware

• Bugs and interference vulnerabilities of physical nature
(things like Rowhammer) which are hard to detect

• Needs to be detectable by monitoring internal CPU signals
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Logic design bugs

• Most common type of design bug in OpenSPARC T1
• 99% of all design bugs in two CPU sections: LSU (left) and

TLU (right)

Algorithmic 35 %

Logic 59 %

Timing 6 %

Algorithmic 47 %

Logic 49 %

Timing 4 %

• Hard to discover in verification phase, if bug only occurs in
very specific states
• Once discovered, easy to detect by monitoring source signals
• Algorithmic and Timing bugs could be easier to find in design

verification
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Example logic design bug

Buggy code:

1 assign buggy signal = foo & ~(rst | hw int | sr int);

Correct code:

1 assign buggy signal = foo & ~(rst | sr int);

...

...

Combinational
Logic

Module
Inputs

Flip-flops

Buggy logic

Source-Level
signals

First-Level
signals
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What do we learn from this example?

• Semantically, bug occurs on specific combinations of
First-Level Signals

• These might not exist in finished CPU

• But because we are at RTL-level it suffices to monitor the
Source-Level signals corresponding to the First-Level Signals

...

...

Combinational
Logic

Module
Inputs

Flip-flops

Buggy logic

Source-Level
signals

First-Level
signals
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Scale of monitored signals

• On OpenSPARC T1 there are usually less than 64
Source-Level Signals per bug

• On average 9 of those are not shared with any other bug

• In total, 1118 signals to be monitored for detection of all 162
(documented) logic design bugs

• This is bad news!

• None of the logic design bugs in T1 had source signals from
data or bus registers, only control signal registers
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Basic idea - Signatures

• Triggering conditions for a bug represented by Bug
Signature

• Bug Signatures express what values Source-Level signals
need to have for the bug to occur (0,1, X - don’t care)

• Bug Signatures for all bugs combined into single System Bug
Signature
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Basic idea - Segments
• Bug Detection Segments monitor signals (flip-flops) they are

responsible for

• each of those outputs whether all its signals match System
Bug Signature
• Bug Detection Segment match results are combined using
Segment Match Detection Tables into a Segment Checking
Tree to generate Global Bug Detection Signal

• Only System Bug Signature and Segment Match Detection
Tables need to be field-programmable
• Firmware updates can then initialize these
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Why do we need a Segment Checking Tree?

• We can’t just ”OR” the bug signatures together, that would
lead to too many false positives

• summarize (”OR”) all bug signatures of a single design bug
to form an Intermediate Bug Signature

• Merge Intermediate Signatures to System Bug Signature in a
special way (see example)
• Bug Detection Segments that do need to report a signature

match for a certain design bug to occur are selected in
Segment Match Detection Tables

• This is essentially demultiplexing the System Bug Signature

• Tree structure is needed to reduce number of false
positives, while reducing space used on storing Bug
Signatures
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Signature merging example

X 1 0 0

X 1 0 1
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X X X X

X X X X

this segment will be ignored in a node of the checking tree

X 1 0 X
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Hardware implementation

• Idea: integrate Bug Detection Segments into flip-flops

• keeps routes short, output compared directly at flip-flops

• System Bug Signature translates into two signals per
flip-flop: 0/1 and care/don’t care(X)

• Bug Detection logic in Flip-flops outputs 0 for a signature
match, and 1 for a mismatch

• All flip-flops in one Bug Detection Segment have their local
bug detection signals chained together with OR-gates

→ Only if all flip-flop’s values match signature, Bug Detection
Segment sends match signal up the Segment Checking Tree
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Reuse of Scan chain logic

• Modern CPUs use scan flip-flops, an augmented flip-flop type
that can be used for hardware testing

• Allows all flip-flops of the processor to be connected in a Scan
chain (like a large shift register) and to be tested using ATPG

• Used once after fabrication, after that scan logic is inactive

• Use scan logic to load one bit of System Bug Signature to
flip-flops, use additional logic to store the other bit
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Extensions and additional aspects

• For actually fixing/avoiding bug after detection, existing
checkpointing-based recovery solutions such as ReVive or
SafetyNet can be used

• Can be neatly combined with similar online hardware fault
detection (”Access/Control Extension”) to share even more
hardware

• Paper proposes mechanism to tweak false positive rate
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Thoughts

• Can we modify the system to detect Timing Bugs?

• We could make Segment Match Detection nodes (of the tree)
only propagate their results on each clock cycle

• Then chain nodes together in a way that we match a temporal
pattern

• But this would mean getting rid of the ’levels’ of the Segment
Checking tree

• Also detection of non-Timing Bugs would be delayed by a
number of cycles (bad considering a bug could lock up the
CPU in the meantime)
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Evaluation method

• Using RTL design of OpenSPARC T1 for evaluation of area
and power overhead

• Augment design with implementation of bug detection
flip-flops, segment checking tree with field programmable
match detection tables

• Covers all control-signal FFs except for memories/caches

• Caches and most other parts of CPU evaluated using
simulation tools

• Power consumption of some parts was taken from
UltraSPARC T1 specs
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Fixing design parameters

• To precisely estimate overhead of design, design parameters
have to be fixed first

• Paper chooses 8-bit Bug Detection Segments, 4-level tree
structure
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Fixing design parameters

• How many Segment Match Detection Table entries?

• Paper chooses 16 entries (80% bug coverage), arguing that
not all design bugs are critical

• In a quoted comparison of other CPUs, only about 64% of
all bugs were critical

• Non-critical = errors in performance measurement, error
reporting, debugging etc.
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Evaluation results - Area

→ With 16 entries, we get silicon area overhead of 10%

• 17% area overhead for full bug coverage
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Evaluation results - Power

• Baseline Power consumption estimated at 56.3 W (about 12%
less than commercial UltraSPARC T1)

• Design with Online Bug detection - 58.3 W, 3.5% increase
• Amortized overhead when we add online hardware defect

detection (ACE):
• 15.15% area and 6.8% power
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Evaluation results - Power

0.6%1.5%

1.3%
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Executive Summary

• Problem:
• Increasing complexity of modern CPUs makes Design Bugs

in commercial products more common
• They are hard to fix/avoid in software and usually unfixable in

hardware

• Goal:
• develop hardware solutions that enables detecting when a

Design Bug triggered
• has to be flexible to detect new bugs as they are discovered
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Executive Summary
• Contributions:

• in-depth study of design bugs of a quasi-commercial CPU at
a low level

• novel mechanism to monitor internal CPU signals and
deciding whether a Design Bug can be triggered

• integrated into Flip-Flops, reusing hardware used in CPUs
today, field programmable

• Variable amount of detectable bugs (trade-off w/ area
overhead), covering all signals of importance

• Extensible to also do Hardware Fault Detection
• Makes hardware ”updatable” with bug patches like software

• Less pressure on verification, can make development of new
CPUs faster

• Evaluation:
• To cover 80% of all bugs found in the study:
• low power overhead (3.5%)
• moderate area overhead (10%)
• when combined with Hardware Fault Detection, some hardware

can be shared and total overhead reduces
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Strengths

• Based on thorough low-level analysis of design bugs, not
based on processor errata sheets
• Previous work often makes assumptions based on (high-level)

processor errata sheets

• Flexible and comprehensive solution
• Almost all signals can be covered
• Bug Signatures are ”updatable”

• Low power overhead and moderate area overhead due to
clever reuse of existing scan-chain logic

• Overhead can amortize in combination with Hardware Fault
Detection

• Paper goes into a lot of detail, but is still intelligible
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Weaknesses

• Bug analysis tailored to one particular CPU design -
conclusions might not hold for other CPU

• OpenSPARC/UltraSPARC T1 is in-order superscalar CPU,
most competitor CPUs at that time already used out-of-order
execution

• Large category of Algorithmic Design Bugs is ignored on the
basis that they might be discovered in verification

• In TLU+LSU 45% of the bugs were not Logic Design Bugs!
• Algorithmic Design Bugs can have greater impact than

Logic Design Bugs
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Weaknesses

• Power and area overhead evaluation are estimations based on
partial simulation with different tools

• Exact overhead can only be measured after place-and-route
• Detailed RTL model is missing implementation of recovery

mechanism/bug avoidance
• Full solution will have higher overhead

• Estimated overhead based on assumption that 80% bug
coverage is enough
• Criticality of bugs in OpenSPARC T1 was not analyzed
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Discussion

• Are design bugs still an issue?

• Think about the current trend and the future - will the number
of bugs in new CPUs increase?

• Or will the CPU designers learn from their mistakes and
produce less design bugs?

• Can’t fix everything with microcode patches?

• Complex ISA instructions are sometimes implemented using
architectural microcode instructions

• These can nowadays be patched to avoid some bugs
• Think about the bugs you have seen: Are logic bugs directly

tied to specific instructions?
• What about modern CPU security vulnerabilities (e.g.

Spectre)?
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Discussion

• Is it okay to concentrate on Logic Design Bugs and ignoring
Algorithmic/Timing ones?

• Are the bugs in other categories really more likely to be found
before the processor is sold?

• How could one detect Algorithmic Bugs without too many
False Positives?

• Can you apply tactics from algorithm verification? Invariants
for algorithms in hardware?

• Actually papers investigating this exist

41 / 40



Discussion

• Is it okay to concentrate on Logic Design Bugs and ignoring
Algorithmic/Timing ones?
• Are the bugs in other categories really more likely to be found

before the processor is sold?

• How could one detect Algorithmic Bugs without too many
False Positives?

• Can you apply tactics from algorithm verification? Invariants
for algorithms in hardware?

• Actually papers investigating this exist

41 / 40



Discussion

• Is it okay to concentrate on Logic Design Bugs and ignoring
Algorithmic/Timing ones?
• Are the bugs in other categories really more likely to be found

before the processor is sold?

• How could one detect Algorithmic Bugs without too many
False Positives?

• Can you apply tactics from algorithm verification? Invariants
for algorithms in hardware?

• Actually papers investigating this exist

41 / 40



Discussion

• Is it okay to concentrate on Logic Design Bugs and ignoring
Algorithmic/Timing ones?
• Are the bugs in other categories really more likely to be found

before the processor is sold?

• How could one detect Algorithmic Bugs without too many
False Positives?
• Can you apply tactics from algorithm verification? Invariants

for algorithms in hardware?

• Actually papers investigating this exist

41 / 40



Discussion

• Is it okay to concentrate on Logic Design Bugs and ignoring
Algorithmic/Timing ones?
• Are the bugs in other categories really more likely to be found

before the processor is sold?

• How could one detect Algorithmic Bugs without too many
False Positives?
• Can you apply tactics from algorithm verification? Invariants

for algorithms in hardware?
• Actually papers investigating this exist

41 / 40



End of presentation
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