Seminar in Computer Architecture Lecture 1b: Introduction and Basics Prof. Onur Mutlu ETH Zürich Fall 2021 23 September 2021 #### Brief Self Introduction #### Onur Mutlu - Full Professor @ ETH Zurich ITET (INFK), since September 2015 - □ Strecker Professor @ Carnegie Mellon University ECE/CS, 2009-2016, 2016-... - PhD from UT-Austin, worked at Google, VMware, Microsoft Research, Intel, AMD - https://people.inf.ethz.ch/omutlu/ - omutlu@gmail.com (Best way to reach me) - https://people.inf.ethz.ch/omutlu/projects.htm #### Research and Teaching in: - Computer architecture, computer systems, hardware security, bioinformatics - Memory and storage systems - Hardware security, safety, predictability - Fault tolerance, robust systems - Hardware/software cooperation - Architectures for bioinformatics, health, medicine, intelligent decision making #### Current Research Mission #### Computer architecture, HW/SW, systems, bioinformatics, security #### **Build fundamentally better architectures** #### Four Key Current Directions Fundamentally Secure/Reliable/Safe Architectures - Fundamentally Energy-Efficient Architectures - Memory-centric (Data-centric) Architectures Fundamentally Low-Latency and Predictable Architectures Architectures for AI/ML, Genomics, Medicine, Health ## The Transformation Hierarchy Computer Architecture (expanded view) Computer Architecture (narrow view) #### Axiom To achieve the highest energy efficiency and performance: #### we must take the expanded view of Computer Architecture Co-design across the hierarchy: Algorithms to devices Specialize as much as possible within the design goals #### Current Research Mission & Major Topics #### **Build fundamentally better architectures** Broad research spanning apps, systems, logic with architecture at the center - Data-centric arch. for low energy & high perf. - Proc. in Mem/DRAM, NVM, unified mem/storage - Low-latency & predictable architectures - Low-latency, low-energy yet low-cost memory - QoS-aware and predictable memory systems - Fundamentally secure/reliable/safe arch. - Tolerating all bit flips; patchable HW; secure mem - Architectures for ML/AI/Genomics/Graph/Med - Algorithm/arch./logic co-design; full heterogeneity - Data-driven and data-aware architectures - ML/AI-driven architectural controllers and design - Expressive memory and expressive systems ## Onur Mutlu's SAFARI Research Group Computer architecture, HW/SW, systems, bioinformatics, security, memory https://safari.ethz.ch/safari-newsletter-january-2021/ Think BIG, Aim HIGH! SAFARI https://safari.ethz.ch #### SAFARI Research Group: Introduction and Research Onur Mutlu, "SAFARI Research Group: Introduction & Research" Talk at ETH Future Computing Laboratory Welcome Workshop (**EFCL**), Virtual, 6 July 2021. [Slides (pptx) (pdf)] ## SAFARI Newsletter January 2021 Edition https://safari.ethz.ch/safari-newsletter-january-2021/ Newsletter January 2021 Think Big, Aim High, and Have a Wonderful 2021! Dear SAFARI friends, #### SAFARI Live Seminars (Past Talks) #### SAFARI Live Seminars (Upcoming Talk) HOME **VIDEOS** **PLAYLISTS** COMMUNITY CHANNELS ABOUT Popular uploads **How Computers Work** (from the ground up) **Digital Design & Computer** Architecture: Lecture 1:... 49K views • 1 year ago Computer Architecture -Lecture 1: Introduction and... 36K views · 3 years ago Computer Architecture -Lecture 1: Introduction and... 31K views • 1 year ago Q Computer Architecture Lecture 1: Introduction and... 30K views • 8 months ago Design of Digital Circuits Lecture 1: Introduction and Basics **Design of Digital Circuits -**Lecture 1: Introduction and... 22K views • 2 years ago Computer Architecture -Lecture 2: Fundamentals,... 17K views • 3 years ago #### First Course in Computer Architecture & Digital Design 2021-2013 Livestream - Digital Design and Digital Design & Computer Onur Mutlu Lectures VIEW FULL PLAYLIST 38 How Compute = (from the gro Computer Architecture - ETH... Architecture - ETH Zürich... Onur Mutlu Lectures VIEW FULL PLAYLIST Design of Digital Circuits - ETH Zürich - Spring 2019 Onur Mutlu Lectures VIEW FULL PLAYLIST Design of Digital Circuits - ETH Zürich - Spring 2018 Onur Mutlu Lectures VIEW FULL PLAYLIST Digital Circuits and Computer Architecture - ETH Zurich -... Onur Mutlu Lectures VIEW FULL PLAYLIST Spring 2015 -- Computer Architecture Lectures --... Carnegie Mellon Computer Architec... VIEW FULL PLAYLIST #### **Advanced Computer Architecture Courses 2020-2012** Computer Architecture - ETH Zürich - Fall 2020 Onur Mutlu Lectures VIEW FULL PLAYLIST Computer Architecture - ETH Zürich - Fall 2019 Onur Mutlu Lectures VIEW FULL PLAYLIST Computer Architecture - ETH Zürich - Fall 2018 Onur Mutlu Lectures VIEW FULL PLAYLIST Computer Architecture - ETH Zürich - Fall 2017 Onur Mutlu Lectures VIEW FULL PLAYLIST Fall 2015 - 740 Computer Architecture VIEW FULL PLAYLIST Fall 2013 - 740 Computer Architecture - Carnegie Mellon Carnegie Mellon Computer Architec... Carnegie Mellon Computer Architec... VIEW FULL PLAYLIST #### **Special Courses on Memory Systems** Memory Technology Lectures Onur Mutlu Lectures VIEW FULL PLAYLIST Memory Systems and Memory... 2019 Onur Mutlu Lectures VIEW FULL PLAYLIST Champéry Winter School 2020 - Perugia NiPS Summer School Onur Mutlu Lectures VIEW FULL PLAYLIST SAMOS Tutorial 2019 - Memory TU Wien 2019 - Memory **Systems** Onur Mutlu Lectures VIEW FULL PLAYLIST Systems and Memory-Centric... Onur Mutlu Lectures VIEW FULL PLAYLIST ACACES 2018 Lectures --Memory Systems and Memory... Onur Mutlu Lectures VIEW FULL PLAYLIST 13 #### Online Courses & Lectures #### First Computer Architecture & Digital Design Course - Digital Design and Computer Architecture - Spring 2021 Livestream Edition: https://www.youtube.com/watch?v=LbC0EZY8yw4&list=PL5Q2soXY2Zi_uej3aY39YB5pfW4SJ7LIN #### Advanced Computer Architecture Course - Computer Architecture - Fall 2020 Edition: <u>https://www.youtube.com/watch?v=c3mPdZA-</u> Fmc&list=PL5Q2soXY2Zi9xidyIqBxUz7xRPS-wisBN #### DDCA (Spring 2021) - https://safari.ethz.ch/digitaltechnik/ spring2021/doku.php?id=schedule - https://www.youtube.com/watch?v =LbC0EZY8yw4&list=PL5Q2soXY2Zi _uej3aY39YB5pfW4SJ7LIN - Bachelor's course - 2nd semester at ETH Zurich - Rigorous introduction into "How Computers Work" - Digital Design/Logic - Computer Architecture - 10 FPGA Lab Assignments #### Comp Arch (Fall 2020) - https://safari.ethz.ch/architecture/fall2020/doku.php?id=schedule - https://www.youtube.com/watch?v=c3 mPdZA-Fmc&list=PL5Q2soXY2Zi9xidyIgBxUz7x RPS-wisBN - Master's level course - Taken by Bachelor's/Masters/PhD students - Cutting-edge research topics + fundamentals in Computer Architecture - 5 Simulator-based Lab Assignments - Potential research exploration - Many research readings Search Q Recent Changes Media Manager Sitemap Trace: • start • schedule Home nnouncements #### Materials - Lecture Buzzwords - Readings - HWs - LabsEyams - Exams - Tutorials #### Resources - Computer Architecture FS19: Course Webpage - Course Webpage Computer Architecture FS19: - Digitaltechnik SS20: Course Webpage - Digitaltechnik SS20: Lecture - Moodle - Piazza (Q&A) - € HotCRP - Verilog Practice Website (HDLBits) #### Lecture Video Playlist on YouTube #### Fall 2020 Lectures & Schedule | Week | Date | Lecture | Readings | Lab | HW | |------|---------------|--|------------------------|--------------|-------------| | W1 | 17.09
Thu. | L1: Introduction and Basics (PDF) im(PPT) Vouline Video | Described
Suggested | | HW 0
Out | | | 18.09
Fri. | L2a: Memory Performance Attacks (PDF) im(PPT) Vouter Video | Described
Suggested | Lab 1
Out | | | | | L2b: Data Retention and Memory Refresh (PDF) (PPT) Vou Video | Described
Suggested | | | | | | L2c: Course Logistics (PDF) (PPT) Vou Video | | | | | W2 | 24.09
Thu. | L3a: Introduction to Genome Sequence Analysis (PDF) (PPT) Vout Video | Described
Suggested | | HW 1
Out | | | | L3b: Memory Systems: Challenges and Opportunities (PDF) (PPT) (Volume Video | Described
Suggested | | | | | 25.09
Fri. | L4a: Memory Systems: Solution Directions (PDF) (PPT) You Video | Described
Suggested | | | | | | L4b: RowHammer (PDF) (PPT) Vouline Video | Described
Suggested | | | | W3 | 01.10
Thu. | L5a: RowHammer in 2020: TRRespass (PDF) (PPT) Voulin Video | Described
Suggested | | | | | | L5b: RowHammer in 2020: Revisiting RowHammer (PDF) (PDF) (PDF) (Volume Video | Described
Suggested | | | | | | LSc: Secure and Reliable Memory | Described | | | #### Open Source Tools: SAFARI GitHub #### Some Open Source Tools (I) - Rowhammer Program to Induce RowHammer Errors - https://github.com/CMU-SAFARI/rowhammer - Ramulator Fast and Extensible DRAM Simulator - https://github.com/CMU-SAFARI/ramulator - MemSim Simple Memory Simulator - https://github.com/CMU-SAFARI/memsim - NOCulator Flexible Network-on-Chip Simulator - https://github.com/CMU-SAFARI/NOCulator - SoftMC FPGA-Based DRAM Testing Infrastructure - https://github.com/CMU-SAFARI/SoftMC - Other open-source software from my group - https://github.com/CMU-SAFARI/ - http://www.ece.cmu.edu/~safari/tools.html #### Some Open Source Tools (II) - MQSim A Fast Modern SSD Simulator - https://github.com/CMU-SAFARI/MQSim - Mosaic GPU Simulator Supporting Concurrent Applications - https://github.com/CMU-SAFARI/Mosaic - IMPICA Processing in 3D-Stacked Memory Simulator - https://github.com/CMU-SAFARI/IMPICA - SMLA Detailed 3D-Stacked Memory Simulator - https://github.com/CMU-SAFARI/SMLA - HWASim Simulator for Heterogeneous CPU-HWA Systems - https://github.com/CMU-SAFARI/HWASim - Other open-source software from my group - https://github.com/CMU-SAFARI/ - http://www.ece.cmu.edu/~safari/tools.html ## More Open Source Tools (III) #### **COVIDHunter** Pythia COVIDHunter *: xx: An accurate and
flexible COVID-19 outbreak simulation model that A Customizable Hardware Prefetching Framework Using Online Reinforcement Learning. forecasts the strength of future mitigation measures and the numbers of cases, machine-learning reinforcement-learning prefetcher cache-replacement hospitalizations, and deaths for a given day, while considering the potential effect of branch-predictor champsim-simulator champsim-tracer environmental conditions. Described by Alser et al. (preliminary version at https://arxiv.org/abs/2... ● C++ ♀1 ☆0 ⊙ 0 ┆ 0 Updated yesterday simulation epidemiology covid-19 covid-19-data covid-19-tracker reproduction-number covidhunter BurstLink ● Swift គ្នMIT ម្1 ☆5 ⊙0 ព្រ0 Updated on Jun 27 មុ0 ☆0 ⊙0 រុ 10 Updated 21 days ago prim-benchmarks MIG-7-PHY-DDR3-Controller PrIM (Processing-In-Memory benchmarks) is the first benchmark suite for a real-world A DDR3 Controller that uses the Xilinx MIG-7 PHY to interface with DDR3 devices. processing-in-memory (PIM) architecture. PrIM is developed to evaluate, analyze, and Verilog ម្1 ☆1 ⊙0 ព្0 Updated on Aug 22 characterize the first publicly-available real-world PIM architecture, the UPMEM PIM architecture. Described by Gómez-Luna et al. (preliminary version at Pythia-HDL https://arxiv.org/abs/2... Implementation of Pythia: A Customizable Hardware Prefetching Framework Using Online ●C ស្MIT មុខ ☆18 ⊙0 រុះ្វ0 Updated on Jun 16 Reinforcement Learning in Chisel HDL. machine-learning scala reinforcement-learning chisel chisel3 firrtl hdl SNP-Selective-Hiding An optimization-based mechanism 🧬 🔐 to selectively hide the minimum number of ● Scala ஷMIT ೪೦ ☆೦ ⊙೦ № 0 Updated on Jul 31 overlapping SNPs among the family members 📸 who participated in the genomic studies (i.e. GWAS). Our goal is to distort the dependencies among the family members in the HARP Private original database for achieving better privacy without significantly degrading the data 약0 ☆0 ⊙0 fl 0 Updated on Jul 31 gwas genomics data-privacy differential-privacy genomic-data-analysis **EINSim** laplace-distribution genomic-privacy DRAM error-correction code (ECC) simulator incorporating statistical error properties ● MATLAB មុ0 ☆0 ⊙0 រៀ0 Updated on Jun 16 and DRAM design characteristics for inferring pre-correction error characteristics using only the post-correction errors. Described in the 2019 DSN paper by Patel et al.: https://people.inf.ethz.ch/omutlu/pub/understanding-and-modeling-in-DRAM-ECC_dsn19.pdf. SneakySnake 2 is the first and the only pre-alignment filtering algorithm that works efficiently and fast on modern CPU, FPGA, and GPU architectures. It greatly (by more simulator reliability statistical-inference dram error-correcting-codes than two orders of magnitude) expedites sequence alignment calculation for both short map-estimation error-correction and long reads. Described in the Bioinformatics (2020) by Alser et al. https://arxiv.org/abs... ● C++ គ្នា MIT មូ0 ☆5 ⊙0 រឿ 0 Updated on Jul 29 fpga gpu smith-waterman needleman-wunsch sequence-alignment DAMOV DAMOV is a benchmark suite and a methodical framework targeting the study of data movement bottlenecks in modern applications. It is intended to study new architectures, such as near-data processing. Described by Oliveira et al. (preliminary version at https://arxiv.org/pdf/2105.03725.pdf) A Fast and Extensible DRAM Simulator, with built-in support for modeling many different ● C++ ♀1 ☆12 ⊙1 ₺ 0 Updated on Jul 13 DRAM technologies including DDRx, LPDDRx, GDDRx, WIOx, HBMx, and various academic proposals. Described in the IEEE CAL 2015 paper by Kim et al. at MetaSys http://users.ece.cmu.edu/~omutlu/pub/ramulator_dram_simulator-ieee-cal15.pdf Metasys is the first open-source FPGA-based infrastructure with a prototype in a RISC-V ● C++ ஷ MIT ு 130 ☆ 250 ⊙ 49 ൂ 1 4 Updated on May 11 core, to enable the rapid implementation and evaluation of a wide range of cross-layer software/hardware cooperative techniques techniques in real hardware. Described in our pre-print: https://arxiv.org/abs/2105.08123 Source code for the software implementations of the GenASM algorithms proposed in our ម្1 ស្0 ⊙0 no Updated on Jul 9 MICRO 2020 paper: Senol Cali et. al., "GenASM: A High-Performance, Low-Power Approximate String Matching Acceleration Framework for Genome Sequence Analysis" at https://people.inf.ethz.ch/omutlu/pub/GenASM-approximate-string-matching-framework-NATSA is the first near-data-processing accelerator for time series analysis based on the for-genome-analys... Matrix Profile (SCRIMP) algorithm. NATSA exploits modern 3D-stacked High Bandwidth approximate-string-matching read-mapping hw-sw-co-design Memory (HBM) to enable efficient and fast matrix profile computation near memory. read-alignment bitap-algorithm pre-alignment-filtering Described in ICCD 2020 by Fernandez et al. https://people.inf.ethz.ch/omutlu/pub/NATSA_time-... genome-sequence-analysis accelerator hbm time-series-analysis matrix-profile near-data-processing C++ ♀1 ☆4 ⊙0 ♪ 1 0 Updated on Jun 28 AirLift is a tool that updates mapped reads from one reference genome to another. Unlike ## Papers, Talks, Videos, Artifacts All are available at https://people.inf.ethz.ch/omutlu/projects.htm http://scholar.google.com/citations?user=7XyGUGkAAAAJ&hl=en https://www.youtube.com/onurmutlulectures https://github.com/CMU-SAFARI/ ## Principle: Teaching and Research Teaching drives Research Research drives Teaching ## Focus on Insight Encourage New Ideas ## Principle: Learning and Scholarship # Focus on learning and scholarship ## Create an environment that values free exploration, openness, collaboration, hard work, creativity Principle: Learning and Scholarship ## The quality of your work defines your impact Principle: Good Mindset, Goals & Focus # You can make a good impact on the world #### Research & Teaching: Some Overview Talks #### https://www.youtube.com/onurmutlulectures - Future Computing Architectures - https://www.youtube.com/watch?v=kgiZISOcGFM&list=PL5Q2soXY2Zi8D_5MGV6EnXEJHnV2YFBJI&index=1 - Enabling In-Memory Computation - https://www.youtube.com/watch?v=njX 14584Jw&list=PL5Q2soXY2Zi8D 5MGV6EnXEJHnV2YFBJl&index=16 - Accelerating Genome Analysis - https://www.youtube.com/watch?v=r7sn41lH-4A&list=PL5Q2soXY2Zi8D_5MGV6EnXEJHnV2YFBJl&index=41 - Rethinking Memory System Design - https://www.youtube.com/watch?v=F7xZLNMIY1E&list=PL5Q2soXY2Zi8D 5MGV6EnXEJHnV2YFBJl&index=3 - Intelligent Architectures for Intelligent Machines - https://www.youtube.com/watch?v=c6 LgzuNdkw&list=PL5Q2soXY2Zi8D 5MGV6EnXEJHnV2YFBJl&index=25 - The Story of RowHammer - https://www.youtube.com/watch?v=sqd7PHQQ1AI&list=PL5Q2soXY2Zi8D_5MGV6EnXEJHnV2YFBJl&index=39 #### An Interview on Research and Education - Computing Research and Education (@ ISCA 2019) - https://www.youtube.com/watch?v=8ffSEKZhmvo&list=PL5Q2 soXY2Zi_4oP9LdL3cc8G6NIjD2Ydz - Maurice Wilkes Award Speech (10 minutes) - https://www.youtube.com/watch?v=tcQ3zZ3JpuA&list=PL5Q2 soXY2Zi8D 5MGV6EnXEJHnV2YFBJl&index=15 30 ## More Thoughts and Suggestions (I) Onur Mutlu, #### "Some Reflections (on DRAM)" Award Speech for <u>ACM SIGARCH Maurice Wilkes Award</u>, at the **ISCA** Awards Ceremony, Phoenix, AZ, USA, 25 June 2019. [Slides (pptx) (pdf)] [Video of Award Acceptance Speech (Youtube; 10 minutes) (Youku; 13 minutes)] [Video of Interview after Award Acceptance (Youtube; 1 hour 6 minutes) (Youku; 1 hour 6 minutes)] [News Article on "ACM SIGARCH Maurice Wilkes Award goes to Prof. Onur Mutlu"] Onur Mutlu, #### "How to Build an Impactful Research Group" 57th Design Automation Conference Early Career Workshop (DAC), Virtual, 19 July 2020. [Slides (pptx) (pdf)] ## More Thoughts and Suggestions (II) Onur Mutlu, "Computer Architecture: Why Is It So Important and Exciting Today?" Invited Lecture at *Izmir Institute of Technology (IYTE)*, Virtual, 16 October 2020. [Slides (pptx) (pdf)] [Talk Video (2 hours 12 minutes)] Onur Mutlu, "Applying to Graduate School & Doing Impactful Research" Invited Panel Talk at <u>the 3rd Undergraduate Mentoring Workshop</u>, held with <u>the</u> <u>48th International Symposium on Computer Architecture (**ISCA**)</u>, Virtual, 18 June 2021. [Slides (pptx) (pdf)] [Talk Video (50 minutes)] ## A Talk on Impactful Research & Teaching #### How to Approach This Course ## "Formative Experience" #### How to Approach This Course # "Reading and analyzing papers will help us a lot into the future" #### How to Approach This Course # "High investment, high return" #### How to Approach This Course # "Guidance from 3 top researchers in the field" #### How to Approach This Course # "I would definitely recommend this course" #### How to Approach This Course ### "I really love Computer Architecture" ### Learning experience Long-term tradeoff analysis Critical thinking & decision making ## Why Study Computer Architecture? #### Computer Architecture - is the science and art of designing computing platforms (hardware, interface, system SW, and programming model) - to achieve a set of design goals - E.g., highest performance on earth on workloads X, Y, Z - E.g., longest battery life at a form factor that fits in your pocket with cost < \$\$\$ CHF - E.g., best average performance across all known workloads at the best performance/cost ratio - **...** - □ Designing a supercomputer is different from designing a smartphone → But, many fundamental principles are similar **Figure 3.** TPU Printed Circuit Board. It can be inserted in the slot for an SATA disk in a server, but the card uses PCIe Gen3 x16. **Figure 4.** Systolic data flow of the Matrix Multiply Unit. Software has the illusion that each 256B input is read at once, and they instantly update one location of each of 256 accumulator RAMs. Jouppi et al., "In-Datacenter Performance Analysis of a Tensor Processing Unit", ISCA 2017. - ML accelerator: 260 mm², 6 billion transistors, 600 GFLOPS GPU, 12 ARM 2.2 GHz CPUs. - Two redundant chips for better safety. #### What is Computer Architecture? The
science and art of designing, selecting, and interconnecting hardware components and designing the hardware/software interface to create a computing system that meets functional, performance, energy consumption, cost, and other specific goals. #### The Transformation Hierarchy Computer Architecture (expanded view) Computer Architecture (narrow view) #### Why Study Computer Architecture? - Enable better systems: make computers faster, cheaper, smaller, more reliable, ... - By exploiting advances and changes in underlying technology/circuits #### Enable new applications - Life-like 3D visualization 20 years ago? Virtual reality? - Self-driving cars? - Personalized genomics? Personalized medicine? #### Enable better solutions to problems - Software innovation is built on trends and changes in computer architecture - > 50% performance improvement per year has enabled this innovation - Understand why computers work the way they do #### Computer Architecture Today (I) - Today is a very exciting time to study computer architecture - Industry is in a large paradigm shift (to novel architectures) - many different potential system designs possible - Many difficult problems motivating and caused by the shift - Huge hunger for data and new data-intensive applications - Power/energy/thermal constraints - Complexity of design - Difficulties in technology scaling - Memory bottleneck - Reliability problems - Programmability problems - Security and privacy issues - No clear, definitive answers to these problems #### Computer Architecture Today (II) These problems affect all parts of the computing stack – if we do not change the way we design systems Many new demands from the top (Look Up) Fast changing demands and personalities of users (Look Up) Many new issues at the bottom (Look Down) No clear, definitive answers to these problems #### Computer Architecture Today (III) - Computing landscape is very different from 10-20 years ago - Both UP (software and humanity trends) and DOWN (technologies and their issues), FORWARD and BACKWARD, and the resulting requirements and constraints #### Axiom To achieve the highest energy efficiency and performance: #### we must take the expanded view of Computer Architecture Co-design across the hierarchy: Algorithms to devices Specialize as much as possible within the design goals #### Historical: Opportunities at the Bottom #### There's Plenty of Room at the Bottom From Wikipedia, the free encyclopedia "There's Plenty of Room at the Bottom: An Invitation to Enter a New Field of Physics" was a lecture given by physicist Richard Feynman at the annual American Physical Society meeting at Caltech on December 29, 1959. [1] Feynman considered the possibility of direct manipulation of individual atoms as a more powerful form of synthetic chemistry than those used at the time. Although versions of the talk were reprinted in a few popular magazines, it went largely unnoticed and did not inspire the conceptual beginnings of the field. Beginning in the 1980s, nanotechnology advocates cited it to establish the scientific credibility of their work. #### Historical: Opportunities at the Bottom (II) #### There's Plenty of Room at the Bottom From Wikipedia, the free encyclopedia Feynman considered some ramifications of a general ability to manipulate matter on an atomic scale. He was particularly interested in the possibilities of denser computer circuitry, and microscopes that could see things much smaller than is possible with scanning electron microscopes. These ideas were later realized by the use of the scanning tunneling microscope, the atomic force microscope and other examples of scanning probe microscopy and storage systems such as Millipede, created by researchers at IBM. Feynman also suggested that it should be possible, in principle, to make nanoscale machines that "arrange the atoms the way we want", and do chemical synthesis by mechanical manipulation. He also presented the possibility of "swallowing the doctor", an idea that he credited in the essay to his friend and graduate student Albert Hibbs. This concept involved building a tiny, swallowable surgical robot. #### Historical: Opportunities at the Top #### **REVIEW** #### There's plenty of room at the Top: What will drive computer performance after Moore's law? - (D) Charles E. Leiserson¹, (D) Neil C. Thompson^{1,2,*}, (D) Joel S. Emer^{1,3}, (D) Bradley C. Kuszmaul^{1,†}, Butler W. Lampson^{1,4}, (D)... - + See all authors and affiliations Science 05 Jun 2020: Vol. 368, Issue 6495, eaam9744 DOI: 10.1126/science.aam9744 Much of the improvement in computer performance comes from decades of miniaturization of computer components, a trend that was foreseen by the Nobel Prize—winning physicist Richard Feynman in his 1959 address, "There's Plenty of Room at the Bottom," to the American Physical Society. In 1975, Intel founder Gordon Moore predicted the regularity of this miniaturization trend, now called Moore's law, which, until recently, doubled the number of transistors on computer chips every 2 years. Unfortunately, semiconductor miniaturization is running out of steam as a viable way to grow computer performance—there isn't much more room at the "Bottom." If growth in computing power stalls, practically all industries will face challenges to their productivity. Nevertheless, opportunities for growth in computing performance will still be available, especially at the "Top" of the computing-technology stack: software, algorithms, and hardware architecture. #### Axiom, Revisited There is plenty of room both at the top and at the bottom but much more so when you communicate well between and optimize across the top and the bottom #### Hence the Expanded View Computer Architecture (expanded view) ## Some Cross-Layer Design Examples (Foreshadowing) #### Expressive (Memory) Interfaces Nandita Vijaykumar, Abhilasha Jain, Diptesh Majumdar, Kevin Hsieh, Gennady Pekhimenko, Eiman Ebrahimi, Nastaran Hajinazar, Phillip B. Gibbons and Onur Mutlu, "A Case for Richer Cross-layer Abstractions: Bridging the Semantic Gap with Expressive Memory" Proceedings of the <u>45th International Symposium on Computer Architecture</u> (**ISCA**), Los Angeles, CA, USA, June 2018. [Slides (pptx) (pdf)] [Lightning Talk Slides (pptx) (pdf)] [Lightning Talk Video] #### A Case for Richer Cross-layer Abstractions: Bridging the Semantic Gap with Expressive Memory Nandita Vijaykumar^{†§} Abhilasha Jain[†] Diptesh Majumdar[†] Kevin Hsieh[†] Gennady Pekhimenko[‡] Eiman Ebrahimi[§] Nastaran Hajinazar[‡] Phillip B. Gibbons[†] Onur Mutlu^{§†} #### X-MeM Aids Many Optimizations | Table 1: Summary of the | example memory o | optimizations that | XMem aids. | |-------------------------|------------------|--------------------|------------| |-------------------------|------------------|--------------------|------------| | Memory optimization | Example semantics provided by XMem (described in §3.3) | Example Benefits of XMem | |---|--|---| | Cache
management | (i) Distinguishing between data
structures or pools of similar data;
(ii) Working set size; (iii) Data reuse | Enables: (i) applying different caching policies to different data structures or pools of data; (ii) avoiding cache thrashing by <i>knowing</i> the active working set size; (iii) bypassing/prioritizing data that has no/high reuse. (§5) | | Page placement
in DRAM
e.g., [23, 24] | (i) Distinguishing between data
structures; (ii) Access pattern;
(iii) Access intensity | Enables page placement at the <i>data structure</i> granularity to (i) isolate data structures that have high row buffer locality and (ii) spread out concurrently-accessed irregular data structures across banks and channels to improve parallelism. (§6) | | Cache/memory
compression
e.g., [25–32] | (i) Data type: integer, float, char;
(ii) Data properties: sparse, pointer,
data index | Enables using a <i>different compression algorithm</i> for each data structure based on data type and data properties, e.g., sparse data encodings, FP-specific compression, delta-based compression for pointers [27]. | | Data
prefetching
e.g., [33–36] | (i) Access pattern: strided, irregular, irregular but repeated (e.g., graphs), access stride; (ii) Data type: index, pointer | Enables (i) highly accurate software-driven prefetching while leveraging the benefits of hardware prefetching (e.g., by being memory bandwidth-aware, avoiding cache thrashing); (ii) using different prefetcher <i>types</i> for different data structures: e.g., stride [33], tile-based [20], pattern-based [34–37], data-based for indices/pointers [38,39], etc. | | DRAM cache
management
e.g., [40–46] | (i) Access intensity; (ii) Data reuse; (iii) Working set size | (i) Helps avoid cache thrashing by knowing working set size [44]; (ii) Better DRAM cache management via reuse behavior and access intensity information. | | Approximation in memory e.g., [47–53] | (i) Distinguishing between pools of similar data; (ii) Data properties: tolerance towards approximation | Enables (i) each memory component to track how approximable data is (at a fine granularity) to inform approximation techniques; (ii) data placement in heterogeneous reliability memories [54]. | | Data placement:
NUMA systems
e.g., [55, 56] | (i) Data partitioning across threads (i.e., relating data to threads that access it); (ii) Read-Write properties |
Reduces the need for profiling or data migration (i) to co-locate data with threads that access it and (ii) to identify Read-Only data, thereby enabling techniques such as replication. | | Data placement:
hybrid
memories
e.g., [16, 57, 58] | (i) Read-Write properties
(Read-Only/Read-Write); (ii) Access
intensity; (iii) Data structure size;
(iv) Access pattern | Avoids the need for profiling/migration of data in hybrid memories to (i) effectively manage the asymmetric read-write properties in NVM (e.g., placing Read-Only data in the NVM) [16, 57]; (ii) make tradeoffs between data structure "hotness" and size to allocate fast/high bandwidth memory [14]; and (iii) leverage row-buffer locality in placement based on access pattern [45]. | | Managing
NUCA systems
e.g., [15,59] | (i) Distinguishing pools of similar data;
(ii) Access intensity; (iii) Read-Write or
Private-Shared properties | (i) Enables using different cache policies for different data pools (similar to [15]); (ii) Reduces the need for reactive mechanisms that detect sharing and read-write characteristics to inform cache policies. | #### Expressive (Memory) Interfaces for GPUs Nandita Vijaykumar, Eiman Ebrahimi, Kevin Hsieh, Phillip B. Gibbons and Onur Mutlu, "The Locality Descriptor: A Holistic Cross-Layer Abstraction to Express Data Locality in GPUs" Proceedings of the <u>45th International Symposium on Computer Architecture</u> (**ISCA**), Los Angeles, CA, USA, June 2018. [Slides (pptx) (pdf)] [Lightning Talk Slides (pptx) (pdf)] [Lightning Talk Video] #### The Locality Descriptor: #### A Holistic Cross-Layer Abstraction to Express Data Locality in GPUs Nandita Vijaykumar^{†§} Eiman Ebrahimi[‡] Kevin Hsieh[†] Phillip B. Gibbons[†] Onur Mutlu^{§†} [†]Carnegie Mellon University [‡]NVIDIA [§]ETH Zürich #### Heterogeneous-Reliability Memory Yixin Luo, Sriram Govindan, Bikash Sharma, Mark Santaniello, Justin Meza, Aman Kansal, Jie Liu, Badriddine Khessib, Kushagra Vaid, and Onur Mutlu, "Characterizing Application Memory Error Vulnerability to Optimize Data Center Cost via Heterogeneous-Reliability Memory" Proceedings of the 44th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN), Atlanta, GA, June 2014. [Summary] [Slides (pptx) (pdf)] [Coverage on ZDNet] #### Characterizing Application Memory Error Vulnerability to Optimize Datacenter Cost via Heterogeneous-Reliability Memory Yixin Luo Sriram Govindan* Bikash Sharma* Mark Santaniello* Justin Meza Aman Kansal* Jie Liu* Badriddine Khessib* Kushagra Vaid* Onur Mutlu Carnegie Mellon University, yixinluo@cs.cmu.edu, {meza, onur}@cmu.edu *Microsoft Corporation, {srgovin, bsharma, marksan, kansal, jie.liu, bkhessib, kvaid}@microsoft.com 67 #### EDEN: Data-Aware Efficient DNN Inference Skanda Koppula, Lois Orosa, A. Giray Yaglikci, Roknoddin Azizi, Taha Shahroodi, Konstantinos Kanellopoulos, and Onur Mutlu, <u>"EDEN: Enabling Energy-Efficient, High-Performance Deep Neural Network Inference Using Approximate DRAM"</u> Proceedings of the <u>52nd International Symposium on Microarchitecture</u> (**MICRO**), Columbus, OH, USA, October 2019. [Slides (pptx) (pdf)] [Lightning Talk Slides (pptx) (pdf)] [Poster (pptx) (pdf)] [Lightning Talk Video (90 seconds)] [Full Talk Lecture (38 minutes)] #### EDEN: Enabling Energy-Efficient, High-Performance Deep Neural Network Inference Using Approximate DRAM Skanda Koppula Lois Orosa A. Giray Yağlıkçı Roknoddin Azizi Taha Shahroodi Konstantinos Kanellopoulos Onur Mutlu ETH Zürich #### SMASH: SW/HW Indexing Acceleration Konstantinos Kanellopoulos, Nandita Vijaykumar, Christina Giannoula, Roknoddin Azizi, Skanda Koppula, Nika Mansouri Ghiasi, Taha Shahroodi, Juan Gomez-Luna, and Onur Mutlu, "SMASH: Co-designing Software Compression and Hardware-**Accelerated Indexing for Efficient Sparse Matrix Operations**" Proceedings of the <u>52nd International Symposium on</u> Microarchitecture (MICRO), Columbus, OH, USA, October 2019. [Slides (pptx) (pdf)] [Lightning Talk Slides (pptx) (pdf)] [Poster (pptx) (pdf)] [Lightning Talk Video (90 seconds)] [Full Talk Lecture (30 minutes)] #### **SMASH: Co-designing Software Compression** and Hardware-Accelerated Indexing for Efficient Sparse Matrix Operations Konstantinos Kanellopoulos¹ Nandita Vijaykumar^{2,1} Christina Giannoula^{1,3} Roknoddin Azizi¹ Skanda Koppula¹ Nika Mansouri Ghiasi¹ Taha Shahroodi¹ Juan Gomez Luna¹ Onur Mutlu^{1,2} #### Rethinking Virtual Memory Nastaran Hajinazar, Pratyush Patel, Minesh Patel, Konstantinos Kanellopoulos, Saugata Ghose, Rachata Ausavarungnirun, Geraldo Francisco de Oliveira Jr., Jonathan Appavoo, Vivek Seshadri, and Onur Mutlu, <u>"The Virtual Block Interface: A Flexible Alternative to the Conventional Virtual Memory Framework"</u> Proceedings of the <u>47th International Symposium on Computer Architecture</u> (**ISCA**), Valencia, Spain, June 2020. [Slides (pptx) (pdf)] [Lightning Talk Slides (pptx) (pdf)] [ARM Research Summit Poster (pptx) (pdf)] [Talk Video (26 minutes)] [Lightning Talk Video (3 minutes)] #### The Virtual Block Interface: A Flexible Alternative to the Conventional Virtual Memory Framework Nastaran Hajinazar^{*†} Pratyush Patel[™] Minesh Patel^{*} Konstantinos Kanellopoulos^{*} Saugata Ghose[‡] Rachata Ausavarungnirun[⊙] Geraldo F. Oliveira^{*} Jonathan Appavoo[¢] Vivek Seshadri[▽] Onur Mutlu^{*‡} *ETH Zürich [†]Simon Fraser University [™]University of Washington [‡]Carnegie Mellon University [™]King Mongkut's University of Technology North Bangkok [⋄]Boston University [™]Microsoft Research India # Many Interesting Things Are Happening Today in Computer Architecture ## Many Interesting Things Are Happening Today in Computer Architecture # Performance and Energy Efficiency # Intel Optane Persistent Memory (2019) - Non-volatile main memory - Based on 3D-XPoint Technology # PCM as Main Memory: Idea in 2009 Benjamin C. Lee, Engin Ipek, Onur Mutlu, and Doug Burger, "Architecting Phase Change Memory as a Scalable DRAM Alternative" Proceedings of the <u>36th International Symposium on Computer</u> <u>Architecture</u> (**ISCA**), pages 2-13, Austin, TX, June 2009. <u>Slides</u> (pdf) ## Architecting Phase Change Memory as a Scalable DRAM Alternative Benjamin C. Lee† Engin Ipek† Onur Mutlu‡ Doug Burger† †Computer Architecture Group Microsoft Research Redmond, WA {blee, ipek, dburger}@microsoft.com ‡Computer Architecture Laboratory Carnegie Mellon University Pittsburgh, PA onur@cmu.edu # PCM as Main Memory: Idea in 2009 Benjamin C. Lee, Ping Zhou, Jun Yang, Youtao Zhang, Bo Zhao, Engin Ipek, Onur Mutlu, and Doug Burger, "Phase Change Technology and the Future of Main Memory" IEEE Micro, Special Issue: Micro's Top Picks from 2009 Computer Architecture Conferences (MICRO TOP PICKS), Vol. 30, No. 1, pages 60-70, January/February 2010. # PHASE-CHANGE TECHNOLOGY AND THE FUTURE OF MAIN MEMORY # Cerebras's Wafer Scale Engine (2019) The largest ML accelerator chip **400,000** cores #### **Cerebras WSE** 1.2 Trillion transistors 46,225 mm² ### **Largest GPU** 21.1 Billion transistors 815 mm² **NVIDIA** TITAN V https://www.anandtech.com/show/14758/hot-chips-31-live-blogs-cerebras-wafer-scale-deep-learning # Cerebras's Wafer Scale Engine-2 (2021) The largest ML accelerator chip (2021) **850,000** cores #### **Cerebras WSE-2** 2.6 Trillion transistors 46,225 mm² ### **Largest GPU** 54.2 Billion transistors 826 mm² **NVIDIA** Ampere GA100 https://www.anandtech.com/show/14758/hot-chips-31-live-blogs-cerebras-wafer-scale-deep-learning # UPMEM Processing-in-DRAM Engine (2019) - Processing in DRAM Engine - Includes standard DIMM modules, with a large number of DPU processors combined with DRAM chips. - Replaces standard DIMMs - DDR4 R-DIMM modules - 8GB+128 DPUs (16 PIM chips) - Standard 2x-nm DRAM process - Large amounts of compute & memory bandwidth # 2,560-DPU System # Understanding a Modern PIM Architecture Samsung Newsroom CORPORATE PRODUCTS PRESS RESOURCES VIEWS **ABOUTUS** ## Samsung Develops Industry's First High **Bandwidth Memory with AI Processing Power** Korea on February 17, 2021 The new architecture will deliver over twice the system performance and reduce energy consumption by more than 70% Samsung Electronics, the world leader in advanced memory technology, today announced that it has developed the industry's first High Bandwidth Memory (HBM) integrated with artificial intelligence (AI) processing power - the HBM-PIM The new processing-in-memory (PIM) architecture brings powerful AI computing capabilities inside highperformance memory, to accelerate large-scale processing in data centers, high performance computing (HPC) systems and Al-enabled mobile applications. Kwangil Park, senior vice president of Memory Product Planning at Samsung Electronics stated, "Our groundbreaking HBM-PIM is the industry's first programmable PIM solution tailored for diverse Al-driven workloads such as HPC, training and inference. We plan to build upon this breakthrough by further collaborating with AI solution providers for even more advanced PIM-powered applications." ### FIMDRAM based on HBM2 [3D Chip Structure of HBM with FIMDRAM] #### **Chip Specification** 128DQ / 8CH / 16 banks / BL4 32 PCU blocks (1 FIM block/2 banks) 1.2 TFLOPS (4H) FP16 ADD / Multiply (MUL) / Multiply-Accumulate (MAC) / Multiply-and- Add (MAD) #### ISSCC 2021 / SESSION 25 / DRAM / 25.4 25.4 A 20nm 6GB Function-In-Memory DRAM, Based on HBM2 with a 1.2TFLOPS Programmable Computing Unit Using Bank-Level Parallelism, for Machine Learning Applications Young-Cheon Kwon¹, Suk Han Lee¹, Jaehoon Lee¹, Sang-Hyuk Kwon¹, Je Min Ryu¹, Jong-Pil Son¹, Seongil O¹, Hak-Soo Yu¹, Haesuk Lee¹, Soo Young Kim¹, Youngmin Cho¹, Jin Guk Kim¹, Jongyoon Choi¹, Hyun-Sung Shin¹, Jin Kim¹, BengSeng Phuah¹, HyoungMin Kim¹, Myeong Jun Song¹, Ahn Choi¹, Daeho Kim¹, SooYoung Kim¹, Eun-Bong Kim¹, David Wang², Shinhaeng Kang¹, Yuhwan Ro³, Seungwoo Seo³, JoonHo Song³, Jaeyoun Youn¹, Kyomin Sohn¹, Nam Sung Kim¹ ¹Samsung
Electronics, Hwaseong, Korea ²Samsung Electronics, San Jose, CA ³Samsung Electronics, Suwon, Korea ## **Programmable Computing Unit** - Configuration of PCU block - Interface unit to control data flow - Execution unit to perform operations - Register group - 32 entries of CRF for instruction memory - 16 GRF for weight and accumulation - 16 SRF to store constants for MAC operations [Block diagram of PCU in FIMDRAM] #### ISSCC 2021 / SESSION 25 / DRAM / 25.4 25.4 A 20nm 6GB Function-In-Memory DRAM, Based on HBM2 with a 1.2TFLOPS Programmable Computing Unit Using Bank-Level Parallelism, for Machine Learning Applications Young-Cheon Kwon', Suk Han Lee', Jaehoon Lee', Sang-Hyuk Kwon', Jee Min Ryu', Jong-Pil Son', Seongili O', Hak-Soo Yu', Haesuk Lee', Soo Young Kim', Youngmin Cho', Jin Guk Kim', Jongyoon Chor', Hyun-Sung Shin', Jin Kim', BengSeng Phuah', Hyounghim Kim', Myeong Jun Song', Anh Chol', Daeho Kim', SooYoung Kim', Eun-Bong Kim', David Wang', Shinhaeng Kang', Yuhwan Roi, Seungwoo Seo', JoonHo Song', Jaeyoun Youn', Kyomin Sohn', Mam Sung Kim' #### [Available instruction list for FIM operation] | Туре | CMD | Description | |-------------------|------|-----------------------------| | Floating
Point | ADD | FP16 addition | | | MUL | FP16 multiplication | | | MAC | FP16 multiply-accumulate | | | MAD | FP16 multiply and add | | Data Path | MOVE | Load or store data | | | FILL | Copy data from bank to GRFs | | Control Path | NOP | Do nothing | | | JUMP | Jump instruction | | | EXIT | Exit instruction | #### ISSCC 2021 / SESSION 25 / DRAM / 25.4 25.4 A 20nm 6GB Function-In-Memory DRAM, Based on HBM2 with a 1.2TFLOPS Programmable Computing Unit Using Bank-Level Parallelism, for Machine Learning Applications Young-Cheon Kwon', Suk Han Lee', Jaehoon Lee', Sang-Hyuk Kwon', Jee Min Ryu', Jong-Pil Son', Seongil 0', Hak-Soo Yu', Haesuk Lee', Soo Young Kim', Youngmin Cho!, Jin Guk Kim', Jongyoon Chor', Hyun-Sung Shim', Jik Rim', BengSeng Phuah', Hyounghim Kim', Myeong Jun Song', Ann Chol', Daeho Kim', SooYoung Kim', Eur-Bong Kim', David Wang', Shinhaeng Kang', Yuhwan Roi, Seungwoo Seo', JoonHo Song', Jaeyoun Youn', Kyomin Sohn', Mam Sung Kim' ## **Chip Implementation** - Mixed design methodology to implement FIMDRAM - Full-custom + Digital RTL [Digital RTL design for PCU block] #### ISSCC 2021 / SESSION 25 / DRAM / 25.4 25.4 A 20nm 6GB Function-In-Memory DRAM, Based on HBM2 with a 1.2TFLOPS Programmable Computing Unit Using Bank-Level Parallelism. for Machine Learning Applications Young-Cheon Kwon', Suk Han Lee', Jaehoon Lee', Sang-Hyuk Kwon', Jeh Min Ryu', Jong-Pil Son', Seongili O', Hak-Soo Vyi, Haesuk Lee', Soo Young Kim', Youngmin Cho', Jin Guk Kim', Jongyoon Cho', Hyun-Sung Shim', Jid Kim', BengSeng Phuah', Hyounghim Kim', Myeong Jun Song', Ahn Choi', Daeho Kim', SooYoung Kim', Eun-Bong Kim', David Wang', Shinhaeng Kang', Yuhwan Ro', Seungwoo Seo', JoonHo Song', Jaeyoun Youn', Kyomin Sohn', Man Sung Kim', # Samsung AxDIMM (2021) - DDR5-PIM - DLRM recommendation system # Processing in Memory: Two Approaches - 1. Processing near Memory - 2. Processing using Memory # Specialized Processing in Memory (2015) Junwhan Ahn, Sungpack Hong, Sungjoo Yoo, Onur Mutlu, and Kiyoung Choi, "A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing" Proceedings of the <u>42nd International Symposium on</u> <u>Computer Architecture</u> (**ISCA**), Portland, OR, June 2015. [Slides (pdf)] [Lightning Session Slides (pdf)] ### A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing Junwhan Ahn Sungpack Hong[§] Sungjoo Yoo Onur Mutlu[†] Kiyoung Choi junwhan@snu.ac.kr, sungpack.hong@oracle.com, sungjoo.yoo@gmail.com, onur@cmu.edu, kchoi@snu.ac.kr Seoul National University [§]Oracle Labs [†]Carnegie Mellon University # Simple Processing in Memory (2015) Junwhan Ahn, Sungjoo Yoo, Onur Mutlu, and Kiyoung Choi, "PIM-Enabled Instructions: A Low-Overhead, Locality-Aware Processing-in-Memory Architecture" Proceedings of the <u>42nd International Symposium on</u> Computer Architecture (ISCA), Portland, OR, June 2015. [Slides (pdf)] [Lightning Session Slides (pdf)] ## PIM-Enabled Instructions: A Low-Overhead, Locality-Aware Processing-in-Memory Architecture Junwhan Ahn Sungjoo Yoo Onur Mutlu[†] Kiyoung Choi junwhan@snu.ac.kr, sungjoo.yoo@gmail.com, onur@cmu.edu, kchoi@snu.ac.kr Seoul National University [†]Carnegie Mellon University # Processing in Memory on Mobile Devices Amirali Boroumand, Saugata Ghose, Youngsok Kim, Rachata Ausavarungnirun, Eric Shiu, Rahul Thakur, Daehyun Kim, Aki Kuusela, Allan Knies, Parthasarathy Ranganathan, and Onur Mutlu, "Google Workloads for Consumer Devices: Mitigating Data Movement Bottlenecks" Proceedings of the <u>23rd International Conference on Architectural</u> <u>Support for Programming Languages and Operating</u> <u>Systems</u> (**ASPLOS**), Williamsburg, VA, USA, March 2018. ## Google Workloads for Consumer Devices: Mitigating Data Movement Bottlenecks Amirali Boroumand¹ Saugata Ghose¹ Youngsok Kim² Rachata Ausavarungnirun¹ Eric Shiu³ Rahul Thakur³ Daehyun Kim^{4,3} Aki Kuusela³ Allan Knies³ Parthasarathy Ranganathan³ Onur Mutlu^{5,1} # Efficient Synchronization for NDP Christina Giannoula, Nandita Vijaykumar, Nikela Papadopoulou, Vasileios Karakostas, Ivan Fernandez, Juan Gómez-Luna, Lois Orosa, Nectarios Koziris, Georgios Goumas, and Onur Mutlu, "SynCron: Efficient Synchronization Support for Near-Data-Processing Architectures" Proceedings of the <u>27th International Symposium on High-Performance</u> <u>Computer Architecture</u> (**HPCA**), Virtual, February-March 2021. # SynCron: Efficient Synchronization Support for Near-Data-Processing Architectures Christina Giannoula^{†‡} Nandita Vijaykumar^{*‡} Nikela Papadopoulou[†] Vasileios Karakostas[†] Ivan Fernandez^{§‡} Juan Gómez-Luna[‡] Lois Orosa[‡] Nectarios Koziris[†] Georgios Goumas[†] Onur Mutlu[‡] [†]National Technical University of Athens [‡]ETH Zürich ^{*}University of Toronto [§]University of Malaga # Accelerating GPU Execution with PIM (I) Kevin Hsieh, Eiman Ebrahimi, Gwangsun Kim, Niladrish Chatterjee, Mike O'Connor, Nandita Vijaykumar, Onur Mutlu, and Stephen W. Keckler, "Transparent Offloading and Mapping (TOM): Enabling Programmer-Transparent Near-Data Processing in GPU Systems" Proceedings of the <u>43rd International Symposium on Computer</u> <u>Architecture</u> (**ISCA**), Seoul, South Korea, June 2016. [Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)] ## Transparent Offloading and Mapping (TOM): Enabling Programmer-Transparent Near-Data Processing in GPU Systems Kevin Hsieh[‡] Eiman Ebrahimi[†] Gwangsun Kim* Niladrish Chatterjee[†] Mike O'Connor[†] Nandita Vijaykumar[‡] Onur Mutlu^{§‡} Stephen W. Keckler[†] [‡]Carnegie Mellon University [†]NVIDIA *KAIST [§]ETH Zürich # Accelerating GPU Execution with PIM (II) Ashutosh Pattnaik, Xulong Tang, Adwait Jog, Onur Kayiran, Asit K. Mishra, Mahmut T. Kandemir, Onur Mutlu, and Chita R. Das, "Scheduling Techniques for GPU Architectures with Processing-In-Memory Capabilities" Proceedings of the <u>25th International Conference on Parallel</u> <u>Architectures and Compilation Techniques</u> (**PACT**), Haifa, Israel, September 2016. # Scheduling Techniques for GPU Architectures with Processing-In-Memory Capabilities Ashutosh Pattnaik¹ Xulong Tang¹ Adwait Jog² Onur Kayıran³ Asit K. Mishra⁴ Mahmut T. Kandemir¹ Onur Mutlu^{5,6} Chita R. Das¹ ¹Pennsylvania State University ²College of William and Mary ³Advanced Micro Devices, Inc. ⁴Intel Labs ⁵ETH Zürich ⁶Carnegie Mellon University # Accelerating Linked Data Structures Kevin Hsieh, Samira Khan, Nandita Vijaykumar, Kevin K. Chang, Amirali Boroumand, Saugata Ghose, and Onur Mutlu, "Accelerating Pointer Chasing in 3D-Stacked Memory: Challenges, Mechanisms, Evaluation" Proceedings of the 34th IEEE International Conference on Computer Design (ICCD), Phoenix, AZ, USA, October 2016. # Accelerating Pointer Chasing in 3D-Stacked Memory: Challenges, Mechanisms, Evaluation Kevin Hsieh[†] Samira Khan[‡] Nandita Vijaykumar[†] Kevin K. Chang[†] Amirali Boroumand[†] Saugata Ghose[†] Onur Mutlu^{§†} [†] Carnegie Mellon University [‡] University of Virginia [§] ETH Zürich # Accelerating Dependent Cache Misses Milad Hashemi, Khubaib, Eiman Ebrahimi, Onur Mutlu, and Yale N. Patt, "Accelerating Dependent Cache Misses with an Enhanced Memory Controller" Proceedings of the <u>43rd International Symposium on Computer</u> <u>Architecture</u> (**ISCA**), Seoul, South Korea, June 2016. [Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)] # Accelerating Dependent Cache Misses with an Enhanced Memory Controller Milad Hashemi*, Khubaib[†], Eiman Ebrahimi[‡], Onur Mutlu[§], Yale N. Patt* *The University of Texas at Austin †Apple ‡NVIDIA §ETH Zürich & Carnegie Mellon University # Accelerating Runahead Execution Milad Hashemi, Onur Mutlu, and Yale N. Patt, "Continuous Runahead: Transparent Hardware Acceleration for Memory Intensive Workloads" Proceedings of the 49th International Symposium on Microarchitecture (MICRO), Taipei, Taiwan, October 2016. [Slides (pptx) (pdf)] [Lightning Session Slides (pdf)] [Poster (pptx) (pdf)] # Continuous Runahead: Transparent Hardware Acceleration for Memory Intensive Workloads Milad Hashemi*, Onur Mutlu§, Yale N. Patt* *The University of Texas at Austin §ETH Zürich # Accelerating Climate Modeling Gagandeep Singh, Dionysios Diamantopoulos, Christoph Hagleitner, Juan Gómez-Luna, Sander Stuijk, Onur Mutlu, and Henk Corporaal, "NERO: A Near High-Bandwidth Memory Stencil Accelerator for Weather Prediction Modeling" Proceedings of the <u>30th International Conference on Field-Programmable Logic</u> <u>and Applications</u> (**FPL**), Gothenburg, Sweden, September 2020. [Slides (pptx) (pdf)] [Lightning Talk Slides (pptx) (pdf)] [Talk Video (23 minutes)] Nominated for the Stamatis Vassiliadis Memorial Award. # NERO: A Near High-Bandwidth Memory Stencil Accelerator for Weather Prediction Modeling Gagandeep
Singh a,b,c Dionysios Diamantopoulos c Christoph Hagleitner c Juan Gómez-Luna b Sander Stuijk a Onur Mutlu b Henk Corporaal a Eindhoven University of Technology b ETH Zürich c IBM Research Europe, Zurich # Accelerating Approximate String Matching Damla Senol Cali, Gurpreet S. Kalsi, Zulal Bingol, Can Firtina, Lavanya Subramanian, Jeremie S. Kim, Rachata Ausavarungnirun, Mohammed Alser, Juan Gomez-Luna, Amirali Boroumand, Anant Nori, Allison Scibisz, Sreenivas Subramoney, Can Alkan, Saugata Ghose, and Onur Mutlu, "GenASM: A High-Performance, Low-Power Approximate String Matching Acceleration Framework for Genome Sequence Analysis" Proceedings of the <u>53rd International Symposium on Microarchitecture</u> (**MICRO**), Virtual, October 2020. [<u>Lighting Talk Video</u> (1.5 minutes)] [<u>Lightning Talk Slides (pptx) (pdf)</u>] [<u>Talk Video</u> (18 minutes)] [<u>Slides (pptx) (pdf)</u>] ## GenASM: A High-Performance, Low-Power Approximate String Matching Acceleration Framework for Genome Sequence Analysis Damla Senol Cali^{†™} Gurpreet S. Kalsi[™] Zülal Bingöl[▽] Can Firtina[⋄] Lavanya Subramanian[‡] Jeremie S. Kim^{⋄†} Rachata Ausavarungnirun[⊙] Mohammed Alser[⋄] Juan Gomez-Luna[⋄] Amirali Boroumand[†] Anant Nori[™] Allison Scibisz[†] Sreenivas Subramoney[™] Can Alkan[▽] Saugata Ghose^{⋆†} Onur Mutlu^{⋄†▽} † Carnegie Mellon University [™] Processor Architecture Research Lab, Intel Labs [▽] Bilkent University [⋄] ETH Zürich ‡ Facebook [⊙] King Mongkut's University of Technology North Bangkok [⋆] University of Illinois at Urbana–Champaign SAFARI # Accelerating Time Series Analysis Ivan Fernandez, Ricardo Quislant, Christina Giannoula, Mohammed Alser, Juan Gómez-Luna, Eladio Gutiérrez, Oscar Plata, and Onur Mutlu, "NATSA: A Near-Data Processing Accelerator for Time Series Analysis" Proceedings of the 38th IEEE International Conference on Computer Design (ICCD), Virtual, October 2020. [Slides (pptx) (pdf)] [Talk Video (10 minutes)] Source Code # NATSA: A Near-Data Processing Accelerator for Time Series Analysis Ivan Fernandez[§] Ricardo Quislant[§] Christina Giannoula[†] Mohammed Alser[‡] Juan Gómez-Luna[‡] Eladio Gutiérrez[§] Oscar Plata[§] Onur Mutlu[‡] [§]University of Malaga [†]National Technical University of Athens [‡]ETH Zürich # FPGA-based Processing Near Memory Gagandeep Singh, Mohammed Alser, Damla Senol Cali, Dionysios Diamantopoulos, Juan Gómez-Luna, Henk Corporaal, and Onur Mutlu, "FPGA-based Near-Memory Acceleration of Modern Data-Intensive Applications" <u>IEEE Micro</u> (**IEEE MICRO**), 2021. # FPGA-based Near-Memory Acceleration of Modern Data-Intensive Applications Gagandeep Singh[⋄] Mohammed Alser[⋄] Damla Senol Cali[⋈] Dionysios Diamantopoulos[▽] Juan Gómez-Luna[⋄] Henk Corporaal[⋆] Onur Mutlu^{⋄⋈} [⋄]ETH Zürich [⋈] Carnegie Mellon University *Eindhoven University of Technology [▽]IBM Research Europe ## DAMOV Analysis Methodology & Workloads ## DAMOV: A New Methodology and Benchmark Suite for Evaluating Data Movement Bottlenecks GERALDO F. OLIVEIRA, ETH Zürich, Switzerland JUAN GÓMEZ-LUNA, ETH Zürich, Switzerland LOIS OROSA, ETH Zürich, Switzerland SAUGATA GHOSE, University of Illinois at Urbana-Champaign, USA NANDITA VIJAYKUMAR, University of Toronto, Canada IVAN FERNANDEZ, University of Malaga, Spain & ETH Zürich, Switzerland MOHAMMAD SADROSADATI, Institute for Research in Fundamental Sciences (IPM), Iran & ETH Zürich, Switzerland ONUR MUTLU, ETH Zürich, Switzerland Data movement between the CPU and main memory is a first-order obstacle against improving performance, scalability, and energy efficiency in modern systems. Computer systems employ a range of techniques to reduce overheads tied to data movement, spanning from traditional mechanisms (e.g., deep multi-level cache hierarchies, aggressive hardware prefetchers) to emerging techniques such as Near-Data Processing (NDP), where some computation is moved close to memory. Prior NDP works investigate the root causes of data movement bottlenecks using different profiling methodologies and tools. However, there is still a lack of understanding about the key metrics that can identify different data movement bottlenecks and their relation to traditional and emerging data movement mitigation mechanisms. Our goal is to methodically identify potential sources of data movement over a broad set of applications and to comprehensively compare traditional compute-centric data movement mitigation techniques (e.g., caching and prefetching) to more memory-centric techniques (e.g., NDP), thereby developing a rigorous understanding of the best techniques to mitigate each source of data movement. With this goal in mind, we perform the first large-scale characterization of a wide variety of applications, across a wide range of application domains, to identify fundamental program properties that lead to data movement to/from main memory. We develop the first systematic methodology to classify applications based on the sources contributing to data movement bottlenecks. From our large-scale characterization of 77K functions across 345 applications, we select 144 functions to form the first open-source benchmark suite (DAMOV) for main memory data movement studies. We select a diverse range of functions that (1) represent different types of data movement bottlenecks, and (2) come from a wide range of application domains. Using NDP as a case study, we identify new insights about the different data movement bottlenecks and use these insights to determine the most suitable data movement mitigation mechanism for a particular application. We open-source DAMOV and the complete source code for our new characterization methodology at https://github.com/CMU-SAFARI/DAMOV. SAFARI https://arxiv.org/pdf/2105.03725.pdf ## More on DAMOV Analysis Methodology & Workloads # Processing in Memory: Two Approaches - 1. Processing near Memory - 2. Processing using Memory # In-DRAM Processing (2013) Vivek Seshadri et al., "<u>Ambit: In-Memory Accelerator</u> for Bulk Bitwise Operations Using Commodity DRAM <u>Technology</u>," MICRO 2017. Ambit: In-Memory Accelerator for Bulk Bitwise Operations Using Commodity DRAM Technology Vivek Seshadri^{1,5} Donghyuk Lee^{2,5} Thomas Mullins^{3,5} Hasan Hassan⁴ Amirali Boroumand⁵ Jeremie Kim^{4,5} Michael A. Kozuch³ Onur Mutlu^{4,5} Phillip B. Gibbons⁵ Todd C. Mowry⁵ 1 Microsoft Research India 2 NVIDIA Research 3 Intel 4 ETH Zürich 5 Carnegie Mellon University # In-DRAM Bulk Bitwise Execution (2017) Vivek Seshadri and Onur Mutlu, "In-DRAM Bulk Bitwise Execution Engine" Invited Book Chapter in Advances in Computers, to appear in 2020. [Preliminary arXiv version] ## In-DRAM Bulk Bitwise Execution Engine Vivek Seshadri Microsoft Research India visesha@microsoft.com Onur Mutlu ETH Zürich onur mutlu@inf.ethz.ch ## SIMDRAM Framework Nastaran Hajinazar, Geraldo F. Oliveira, Sven Gregorio, Joao Dinis Ferreira, Nika Mansouri Ghiasi, Minesh Patel, Mohammed Alser, Saugata Ghose, Juan Gomez-Luna, and Onur Mutlu, "SIMDRAM: An End-to-End Framework for Bit-Serial SIMD Computing in DRAM" Proceedings of the 26th International Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS), Virtual, March-April 2021. [2-page Extended Abstract] [Short Talk Slides (pptx) (pdf)] [Talk Slides (pptx) (pdf)] [Short Talk Video (5 mins)] [Full Talk Video (27 mins)] # SIMDRAM: A Framework for Bit-Serial SIMD Processing using DRAM *Nastaran Hajinazar^{1,2} Nika Mansouri Ghiasi¹ *Geraldo F. Oliveira¹ Minesh Patel¹ Juan Gómez-Luna¹ Sven Gregorio¹ Mohammed Alser¹ Onur Mutlu¹ João Dinis Ferreira¹ Saugata Ghose³ ¹ETH Zürich ²Simon Fraser University ³University of Illinois at Urbana–Champaign # Bulk Data Copy and Initialization in DRAM Vivek Seshadri, Yoongu Kim, Chris Fallin, Donghyuk Lee, Rachata Ausavarungnirun, Gennady Pekhimenko, Yixin Luo, Onur Mutlu, Michael A. Kozuch, Phillip B. Gibbons, and Todd C. Mowry, "RowClone: Fast and Energy-Efficient In-DRAM Bulk Data Copy and "RowClone: Fast and Energy-Efficient In-DRAM Bulk Data Copy and Initialization" Proceedings of the <u>46th International Symposium on Microarchitecture</u> (**MICRO**), Davis, CA, December 2013. [Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)] [Poster (pptx) (pdf)] # RowClone: Fast and Energy-Efficient In-DRAM Bulk Data Copy and Initialization Vivek Seshadri Yoongu Kim Chris Fallin* Donghyuk Lee vseshadr@cs.cmu.edu yoongukim@cmu.edu cfallin@c1f.net donghyuk1@cmu.edu Rachata Ausavarungnirun Gennady Pekhimenko Yixin Luo rachata@cmu.edu gpekhime@cs.cmu.edu yixinluo@andrew.cmu.edu Onur Mutlu Phillip B. Gibbons† Michael A. Kozuch† Todd C. Mowry onur@cmu.edu phillip.b.gibbons@intel.com michael.a.kozuch@intel.com tcm@cs.cmu.edu Carnegie Mellon University †Intel Pittsburgh # LISA: Increasing Connectivity in DRAM Kevin K. Chang, Prashant J. Nair, Saugata Ghose, Donghyuk Lee, Moinuddin K. Qureshi, and Onur Mutlu, "Low-Cost Inter-Linked Subarrays (LISA): Enabling Fast Inter-Subarray Data Movement in DRAM" Proceedings of the <u>22nd International Symposium on High-</u> <u>Performance Computer Architecture</u> (**HPCA**), Barcelona, Spain, March 2016. [Slides (pptx) (pdf)] [Source Code] ## Low-Cost Inter-Linked Subarrays (LISA): Enabling Fast Inter-Subarray Data Movement in DRAM Kevin K. Chang[†], Prashant J. Nair*, Donghyuk Lee[†], Saugata Ghose[†], Moinuddin K. Qureshi*, and Onur Mutlu[†] † Carnegie Mellon University * Georgia Institute of Technology #### FIGARO: Fine-Grained In-DRAM Copy Yaohua Wang, Lois Orosa, Xiangjun Peng, Yang Guo, Saugata Ghose, Minesh Patel, Jeremie S. Kim, Juan Gómez Luna, Mohammad Sadrosadati, Nika Mansouri Ghiasi, and Onur Mutlu, "FIGARO: Improving System Performance via Fine-Grained In-DRAM Data Relocation and Caching" Proceedings of the <u>53rd International Symposium on Microarchitecture</u> (MICRO), Virtual, October 2020. # FIGARO: Improving System Performance via Fine-Grained In-DRAM Data Relocation and Caching Yaohua Wang* Lois Orosa[†] Xiangjun
Peng[⊙]* Yang Guo* Saugata Ghose^{◇‡} Minesh Patel[†] Jeremie S. Kim[†] Juan Gómez Luna[†] Mohammad Sadrosadati[§] Nika Mansouri Ghiasi[†] Onur Mutlu^{†‡} *National University of Defense Technology $^{\dagger}ETH$ Zürich $^{\odot}Ch$ inese University of Hong Kong $^{\diamond}$ University of Illinois at Urbana–Champaign $^{\ddagger}Carnegie$ Mellon University § Institute of Research in Fundamental Sciences #### Network-On-Memory: Fast Inter-Bank Copy Seyyed Hossein SeyyedAghaei Rezaei, Mehdi Modarressi, Rachata Ausavarungnirun, Mohammad Sadrosadati, Onur Mutlu, and Masoud Daneshtalab, "NoM: Network-on-Memory for Inter-Bank Data Transfer in Highly-Banked Memories" IEEE Computer Architecture Letters (CAL), to appear in 2020. #### NoM: Network-on-Memory for Inter-bank Data Transfer in Highly-banked Memories Seyyed Hossein SeyyedAghaei Rezaei¹ Mehdi Modarressi^{1,3} Rachata Ausavarungnirun² Mohammad Sadrosadati³ Onur Mutlu⁴ Masoud Daneshtalab⁵ ¹University of Tehran ²King Mongkut's University of Technology North Bangkok ³Institute for Research in Fundamental Sciences ⁴ETH Zürich ⁵Mälardalens University #### In-DRAM Physical Unclonable Functions Jeremie S. Kim, Minesh Patel, Hasan Hassan, and Onur Mutlu, "The DRAM Latency PUF: Quickly Evaluating Physical Unclonable Functions by Exploiting the Latency-Reliability Tradeoff in Modern DRAM Devices" Proceedings of the <u>24th International Symposium on High-Performance Computer</u> <u>Architecture</u> (**HPCA**), Vienna, Austria, February 2018. [Lightning Talk Video] [Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)] [Full Talk Lecture Video (28 minutes)] #### The DRAM Latency PUF: Quickly Evaluating Physical Unclonable Functions by Exploiting the Latency-Reliability Tradeoff in Modern Commodity DRAM Devices Jeremie S. Kim^{†§} Minesh Patel[§] Hasan Hassan[§] Onur Mutlu^{§†} [†]Carnegie Mellon University [§]ETH Zürich #### In-DRAM True Random Number Generation Jeremie S. Kim, Minesh Patel, Hasan Hassan, Lois Orosa, and Onur Mutlu, "D-RaNGe: Using Commodity DRAM Devices to Generate True Random Numbers with Low Latency and High Throughput" Proceedings of the <u>25th International Symposium on High-Performance Computer</u> <u>Architecture</u> (**HPCA**), Washington, DC, USA, February 2019. [Slides (pptx) (pdf)] [Full Talk Video (21 minutes)] [Full Talk Lecture Video (27 minutes)] Top Picks Honorable Mention by IEEE Micro. #### D-RaNGe: Using Commodity DRAM Devices to Generate True Random Numbers with Low Latency and High Throughput Jeremie S. Kim $^{\ddagger \S}$ Minesh Patel § Hasan Hassan § Lois Orosa § Onur Mutlu $^{\S \ddagger}$ ‡ Carnegie Mellon University § ETH Zürich #### PIM Review and Open Problems #### A Modern Primer on Processing in Memory Onur Mutlu^{a,b}, Saugata Ghose^{b,c}, Juan Gómez-Luna^a, Rachata Ausavarungnirun^d SAFARI Research Group ^aETH Zürich ^bCarnegie Mellon University ^cUniversity of Illinois at Urbana-Champaign ^dKing Mongkut's University of Technology North Bangkok Onur Mutlu, Saugata Ghose, Juan Gomez-Luna, and Rachata Ausavarungnirun, "A Modern Primer on Processing in Memory" Invited Book Chapter in <u>Emerging Computing: From Devices to Systems</u> Looking Beyond Moore and Von Neumann, Springer, to be published in 2021. #### PIM Review and Open Problems (II) #### A Workload and Programming Ease Driven Perspective of Processing-in-Memory Saugata Ghose[†] Amirali Boroumand[†] Jeremie S. Kim^{†§} Juan Gómez-Luna[§] Onur Mutlu^{§†} [†]Carnegie Mellon University [§]ETH Zürich Saugata Ghose, Amirali Boroumand, Jeremie S. Kim, Juan Gomez-Luna, and Onur Mutlu, "Processing-in-Memory: A Workload-Driven Perspective" Invited Article in <u>IBM Journal of Research & Development</u>, Special Issue on Hardware for Artificial Intelligence, to appear in November 2019. [Preliminary arXiv version] #### A Tutorial on PIM Onur Mutlu, "Memory-Centric Computing Systems" Invited Tutorial at 66th International Electron Devices Meeting (IEDM), Virtual, 12 December 2020. [Slides (pptx) (pdf)] [Executive Summary Slides (pptx) (pdf)] [Tutorial Video (1 hour 51 minutes)] [Executive Summary Video (2 minutes)] [Abstract and Bio] [Related Keynote Paper from VLSI-DAT 2020] [Related Review Paper on Processing in Memory] https://www.youtube.com/watch?v=H3sEaINPBOE 1,641 views • Dec 23, 2020 **ANALYTICS** **EDIT VIDEO** #### Detailed Lectures on PIM (I) - Computer Architecture, Fall 2020, Lecture 6 - Computation in Memory (ETH Zürich, Fall 2020) - https://www.youtube.com/watch?v=oGcZAGwfEUE&list=PL5Q2soXY2Zi9xidyIgBxUz 7xRPS-wisBN&index=12 - Computer Architecture, Fall 2020, Lecture 7 - Near-Data Processing (ETH Zürich, Fall 2020) - https://www.youtube.com/watch?v=j2GIigqn1Qw&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=13 - Computer Architecture, Fall 2020, Lecture 11a - Memory Controllers (ETH Zürich, Fall 2020) - https://www.youtube.com/watch?v=TeG773OgiMQ&list=PL5Q2soXY2Zi9xidyIgBxUz 7xRPS-wisBN&index=20 - Computer Architecture, Fall 2020, Lecture 12d - Real Processing-in-DRAM with UPMEM (ETH Zürich, Fall 2020) - https://www.youtube.com/watch?v=Sscy1Wrr22A&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=25 #### Detailed Lectures on PIM (II) - Computer Architecture, Fall 2020, Lecture 15 - Emerging Memory Technologies (ETH Zürich, Fall 2020) - https://www.youtube.com/watch?v=AlE1rD9G_YU&list=PL5Q2soXY2Zi9xidyIgBxUz 7xRPS-wisBN&index=28 - Computer Architecture, Fall 2020, Lecture 16a - Opportunities & Challenges of Emerging Memory Technologies (ETH Zürich, Fall 2020) - https://www.youtube.com/watch?v=pmLszWGmMGQ&list=PL5Q2soXY2Zi9xidyIgBx Uz7xRPS-wisBN&index=29 - Computer Architecture, Fall 2020, Guest Lecture - In-Memory Computing: Memory Devices & Applications (ETH Zürich, Fall 2020) - https://www.youtube.com/watch?v=wNmqQHiEZNk&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=41 ## TESLA Full Self-Driving Computer (2019) - ML accelerator: 260 mm², 6 billion transistors, 600 GFLOPS GPU, 12 ARM 2.2 GHz CPUs. - Two redundant chips for better safety. #### Google TPU Generation I (~2016) **Figure 3.** TPU Printed Circuit Board. It can be inserted in the slot for an SATA disk in a server, but the card uses PCIe Gen3 x16. **Figure 4.** Systolic data flow of the Matrix Multiply Unit. Software has the illusion that each 256B input is read at once, and they instantly update one location of each of 256 accumulator RAMs. Jouppi et al., "In-Datacenter Performance Analysis of a Tensor Processing Unit", ISCA 2017. ## Google TPU Generation II (2017) https://www.nextplatform.com/2017/05/17/first-depth-look-googles-new-second-generation-tpu/ 4 TPU chips vs 1 chip in TPU1 High Bandwidth Memory vs DDR3 Floating point operations vs FP16 45 TFLOPS per chip vs 23 TOPS Designed for training and inference vs only inference #### An Example Modern Systolic Array: TPU3 TPU v2 - 4 chips, 2 cores per chip TPU v3 - 4 chips, 2 cores per chip 32GB HBM per chip vs 16GB HBM in TPU2 4 Matrix Units per chip vs 2 Matrix Units in TPU2 90 TFLOPS per chip vs 45 TFLOPS in TPU2 #### An Example Modern Systolic Array: TPU (II) As reading a large SRAM uses much more power than arithmetic, the matrix unit uses systolic execution to save energy by reducing reads and writes of the Unified Buffer [Kun80][Ram91][Ovt15b]. Figure 4 shows that data flows in from the left, and the weights are loaded from the top. A given 256-element multiply-accumulate operation moves through the matrix as a diagonal wavefront. The weights are preloaded, and take effect with the advancing wave alongside the first data of a new block. Control and data are pipelined to give the illusion that the 256 inputs are read at once, and that they instantly update one location of each of 256 accumulators. From a correctness perspective, software is unaware of the systolic nature of the matrix unit, but for performance, it does worry about the latency of the unit. Jouppi et al., "In-Datacenter Performance Analysis of a Tensor Processing Unit", ISCA 2017. #### An Example Modern Systolic Array: TPU (III) **Figure 1.** TPU Block Diagram. The main computation part is the yellow Matrix Multiply unit in the upper right hand corner. Its inputs are the blue Weight FIFO and the blue Unified Buffer (UB) and its output is the blue Accumulators (Acc). The yellow Activation Unit performs the nonlinear functions on the Acc, which go to the UB. ## Many (Other) AI/ML Chips - Alibaba - Amazon - Facebook - Google - Huawei - Intel - Microsoft - NVIDIA - Tesla - Many Others and Many Startups... - Many More to Come... ## Many (Other) AI/ML Chips # Many Interesting Things Are Happening Today in Computer Architecture # Many Interesting Things Are Happening Today in Computer Architecture # Reliability and Security ## Security: RowHammer (2014) #### The Story of RowHammer - One can predictably induce bit flips in commodity DRAM chips - □ >80% of the tested DRAM chips are vulnerable - First example of how a simple hardware failure mechanism can create a widespread system security vulnerability Forget Software—Now Hackers Are Exploiting Physics |--| ANDY GREENBERG SECURITY 08.31.16 7:00 AM # FORGET SOFTWARE—NOW HACKERS ARE EXPLOITING PHYSICS #### Modern DRAM is Prone to Disturbance Errors Repeatedly reading a row enough times (before memory gets refreshed) induces disturbance errors in adjacent rows in most real DRAM chips you can buy today #### Most DRAM Modules Are Vulnerable A company **B** company **C** company Up to 1.0×10⁷ errors Up to 2.7×10^6 errors Up to 3.3×10^5 errors #### One Can Take Over an Otherwise-Secure System #### Flipping Bits in Memory Without Accessing Them: An Experimental Study of DRAM Disturbance Errors Abstract. Memory isolation is a key property of a reliable and secure computing system — an access to one memory address should not have unintended side effects on data stored in other addresses. However, as DRAM process technology # Project Zero Flipping Bits in Memory Without Accessing Them: An Experimental Study of DRAM
Disturbance Errors (Kim et al., ISCA 2014) News and updates from the Project Zero team at Google Exploiting the DRAM rowhammer bug to gain kernel privileges (Seaborn+, 2015) Monday, March 9, 2015 Exploiting the DRAM rowhammer bug to gain kernel privileges #### Security: RowHammer (2014) It's like breaking into an apartment by repeatedly slamming a neighbor's door until the vibrations open the door you were after ## More Security Implications (I) "We can gain unrestricted access to systems of website visitors." Not there yet, but ... ROOT privileges for web apps! Daniel Gruss (@lavados), Clémentine Maurice (@BloodyTangerine), December 28, 2015 — 32c3, Hamburg, Germany Rowhammer.js: A Remote Software-Induced Fault Attack in JavaScript (DIMVA'16) 135 ### More Security Implications (II) "Can gain control of a smart phone deterministically" Hammer And Root Millions of Androids Drammer: Deterministic Rowhammer Attacks on Mobile Platforms, CCS'16¹³⁶ #### More Security Implications (III) Using an integrated GPU in a mobile system to remotely escalate privilege via the WebGL interface IZ&IT TECH SCIENCE POLICY CARS G "GRAND PWNING UNIT" — # Drive-by Rowhammer attack uses GPU to compromise an Android phone JavaScript based GLitch pwns browsers by flipping bits inside memory chips. **DAN GOODIN - 5/3/2018, 12:00 PM** # Grand Pwning Unit: Accelerating Microarchitectural Attacks with the GPU Pietro Frigo Vrije Universiteit Amsterdam p.frigo@vu.nl Cristiano Giuffrida Vrije Universiteit Amsterdam giuffrida@cs.vu.nl Herbert Bos Vrije Universiteit Amsterdam herbertb@cs.vu.nl Kaveh Razavi Vrije Universiteit Amsterdam kaveh@cs.vu.nl #### More Security Implications (IV) Rowhammer over RDMA (I) BIZ & IT TECH SCIENCE POLICY CARS GAMING & CULTURE THROWHAMMER - # Packets over a LAN are all it takes to trigger serious Rowhammer bit flips The bar for exploiting potentially serious DDR weakness keeps getting lower. **DAN GOODIN - 5/10/2018, 5:26 PM** #### Throwhammer: Rowhammer Attacks over the Network and Defenses Andrei Tatar VU Amsterdam Radhesh Krishnan VU Amsterdam Herbert Bos VU Amsterdam Elias Athanasopoulos *University of Cyprus* Kaveh Razavi VU Amsterdam Cristiano Giuffrida VII Amsterdam #### More Security Implications (V) Rowhammer over RDMA (II) Nethammer—Exploiting DRAM Rowhammer Bug Through Network Requests # Nethammer: Inducing Rowhammer Faults through Network Requests Moritz Lipp Graz University of Technology Daniel Gruss Graz University of Technology Misiker Tadesse Aga University of Michigan Clémentine Maurice Univ Rennes, CNRS, IRISA Lukas Lamster Graz University of Technology Michael Schwarz Graz University of Technology Lukas Raab Graz University of Technology #### More Security Implications (VI) IEEE S&P 2020 # RAMBleed: Reading Bits in Memory Without Accessing Them Andrew Kwong University of Michigan ankwong@umich.edu Daniel Genkin University of Michigan genkin@umich.edu Daniel Gruss Graz University of Technology daniel.gruss@iaik.tugraz.at Yuval Yarom University of Adelaide and Data61 yval@cs.adelaide.edu.au ### More Security Implications (VII) #### USENIX Security 2019 # Terminal Brain Damage: Exposing the Graceless Degradation in Deep Neural Networks Under Hardware Fault Attacks Sanghyun Hong, Pietro Frigo[†], Yiğitcan Kaya, Cristiano Giuffrida[†], Tudor Dumitraș University of Maryland, College Park †Vrije Universiteit Amsterdam #### A Single Bit-flip Can Cause Terminal Brain Damage to DNNs One specific bit-flip in a DNN's representation leads to accuracy drop over 90% Our research found that a specific bit-flip in a DNN's bitwise representation can cause the accuracy loss up to 90%, and the DNN has 40-50% parameters, on average, that can lead to the accuracy drop over 10% when individually subjected to such single bitwise corruptions... **Read More** ### More Security Implications (VIII) #### USENIX Security 2020 #### DeepHammer: Depleting the Intelligence of Deep Neural Networks through Targeted Chain of Bit Flips Fan Yao University of Central Florida fan.yao@ucf.edu Adnan Siraj Rakin Deliang Fan Arizona State University asrakin@asu.edu dfan@asu.edu #### Degrade the **inference accuracy** to the level of **Random Guess** Example: ResNet-20 for CIFAR-10, 10 output classes Before attack, Accuracy: 90.2% After attack, Accuracy: ~10% (1/10) #### RowHammer: Seven Years Ago... Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin, Ji Hye Lee, Donghyuk Lee, Chris Wilkerson, Konrad Lai, and Onur Mutlu, "Flipping Bits in Memory Without Accessing Them: An Experimental Study of DRAM Disturbance Errors" Proceedings of the 41st International Symposium on Computer Architecture (ISCA), Minneapolis, MN, June 2014. [Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)] [Source Code and Data] #### Flipping Bits in Memory Without Accessing Them: An Experimental Study of DRAM Disturbance Errors Yoongu Kim¹ Ross Daly* Jeremie Kim¹ Chris Fallin* Ji Hye Lee¹ Donghyuk Lee¹ Chris Wilkerson² Konrad Lai Onur Mutlu¹ Carnegie Mellon University ²Intel Labs 143 #### RowHammer: Now and Beyond... Onur Mutlu and Jeremie Kim, "RowHammer: A Retrospective" <u>IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems</u> (**TCAD**) Special Issue on Top Picks in Hardware and Embedded Security, 2019. [Preliminary arXiv version] [Slides from COSADE 2019 (pptx)] [Slides from VLSI-SOC 2020 (pptx) (pdf)] [Talk Video (30 minutes)] ## RowHammer: A Retrospective Onur Mutlu^{§‡} Jeremie S. Kim^{‡§} §ETH Zürich [‡]Carnegie Mellon University ## RowHammer in 2020 #### RowHammer in 2020 (I) Jeremie S. Kim, Minesh Patel, A. Giray Yaglikci, Hasan Hassan, Roknoddin Azizi, Lois Orosa, and Onur Mutlu, "Revisiting RowHammer: An Experimental Analysis of Modern Devices and Mitigation Techniques" Proceedings of the <u>47th International Symposium on Computer</u> Architecture (ISCA), Valencia, Spain, June 2020. [Slides (pptx) (pdf)] [Lightning Talk Slides (pptx) (pdf)] [Talk Video (20 minutes)] [Lightning Talk Video (3 minutes)] ## Revisiting RowHammer: An Experimental Analysis of Modern DRAM Devices and Mitigation Techniques Jeremie S. Kim^{§†} Minesh Patel[§] A. Giray Yağlıkçı[§] Hasan Hassan[§] Roknoddin Azizi[§] Lois Orosa[§] Onur Mutlu^{§†} §ETH Zürich †Carnegie Mellon University ## Key Takeaways from 1580 Chips Newer DRAM chips are more vulnerable to RowHammer There are chips today whose weakest cells fail after only 4800 hammers • Chips of newer DRAM technology nodes can exhibit RowHammer bit flips 1) in **more rows** and 2) **farther away** from the victim row. Existing mitigation mechanisms are NOT effective #### RowHammer in 2020 (II) Pietro Frigo, Emanuele Vannacci, Hasan Hassan, Victor van der Veen, Onur Mutlu, Cristiano Giuffrida, Herbert Bos, and Kaveh Razavi, "TRRespass: Exploiting the Many Sides of Target Row Refresh" Proceedings of the <u>41st IEEE Symposium on Security and Privacy</u> (**S&P**), San Francisco, CA, USA, May 2020. [Slides (pptx) (pdf)] [Lecture Slides (pptx) (pdf)] [Talk Video (17 minutes)] [Lecture Video (59 minutes)] Source Code [Web Article] Best paper award. Pwnie Award 2020 for Most Innovative Research. Pwnie Awards 2020 # TRRespass: Exploiting the Many Sides of Target Row Refresh Pietro Frigo*† Emanuele Vannacci*† Hasan Hassan§ Victor van der Veen¶ Onur Mutlu§ Cristiano Giuffrida* Herbert Bos* Kaveh Razavi* it Amsterdam §ETH Zürich ¶Qualcomm Technologies Inc. #### RowHammer in 2020 (III) Lucian Cojocar, Jeremie Kim, Minesh Patel, Lillian Tsai, Stefan Saroiu, Alec Wolman, and Onur Mutlu, "Are We Susceptible to Rowhammer? An End-to-End Methodology for Cloud Providers" Proceedings of the <u>41st IEEE Symposium on Security and</u> <u>Privacy</u> (**S&P**), San Francisco, CA, USA, May 2020. [Slides (pptx) (pdf)] [Talk Video (17 minutes)] #### Are We Susceptible to Rowhammer? An End-to-End Methodology for Cloud Providers Lucian Cojocar, Jeremie Kim^{§†}, Minesh Patel[§], Lillian Tsai[‡], Stefan Saroiu, Alec Wolman, and Onur Mutlu^{§†} Microsoft Research, [§]ETH Zürich, [†]CMU, [‡]MIT #### BlockHammer Solution in 2021 A. Giray Yaglikci, Minesh Patel, Jeremie S. Kim, Roknoddin Azizi, Ataberk Olgun, Lois Orosa, Hasan Hassan, Jisung Park, Konstantinos Kanellopoulos, Taha Shahroodi, Saugata Ghose, and Onur Mutlu, "BlockHammer: Preventing RowHammer at Low Cost by Blacklisting Rapidly-Accessed DRAM Rows" Proceedings of the <u>27th International Symposium on High-Performance</u> <u>Computer Architecture</u> (**HPCA**), Virtual, February-March 2021. [Slides (pptx) (pdf)] [Short Talk Slides (pptx) (pdf)] [Talk Video (22 minutes)] [Short Talk Video (7 minutes)] ## BlockHammer: Preventing RowHammer at Low Cost by Blacklisting Rapidly-Accessed DRAM Rows A. Giray Yağlıkçı¹ Minesh Patel¹ Jeremie S. Kim¹ Roknoddin Azizi¹ Ataberk Olgun¹ Lois Orosa¹ Hasan Hassan¹ Jisung Park¹ Konstantinos Kanellopoulos¹ Taha Shahroodi¹ Saugata Ghose² Onur Mutlu¹ ¹ETH Zürich ²University of Illinois at Urbana–Champaign #### The Story of RowHammer Lecture ... Onur Mutlu, #### "The Story of RowHammer" Keynote Talk at <u>Secure Hardware, Architectures, and Operating Systems</u> <u>Workshop</u> (**SeHAS**), held with <u>HiPEAC 2021 Conference</u>, Virtual, 19 January 2021. [Slides (pptx) (pdf)] [Talk Video (1 hr 15 minutes, with Q&A)] #### Detailed Lectures on RowHammer - Computer Architecture, Fall 2020, Lecture 4b - RowHammer (ETH Zürich, Fall 2020) - https://www.youtube.com/watch?v=KDy632z23UE&list=PL5Q2soXY2Zi9xidyIgBxUz 7xRPS-wisBN&index=8 - Computer Architecture, Fall 2020, Lecture 5a - RowHammer in 2020: TRRespass (ETH Zürich, Fall 2020) - https://www.youtube.com/watch?v=pwRw7QqK_qA&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=9 - Computer Architecture, Fall 2020, Lecture 5b - RowHammer in 2020: Revisiting RowHammer (ETH Zürich, Fall 2020) - https://www.youtube.com/watch?v=gR7XR-Eepcg&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=10 - Computer Architecture, Fall 2020, Lecture 5c - Secure and Reliable Memory (ETH Zürich, Fall 2020) -
https://www.youtube.com/watch?v=HvswnsfG3oQ&list=PL5Q2soXY2Zi9xidyIgBxUz 7xRPS-wisBN&index=11 ## Security: Meltdown and Spectre (2018) #### Meltdown and Spectre - Someone can steal secret data from the system even though - your program and data are perfectly correct and - your hardware behaves according to the specification and - there are no software vulnerabilities/bugs #### Why? - Speculative execution leaves traces of secret data in the processor's cache (internal storage) - It brings data that is not supposed to be brought/accessed if there was no speculative execution - A malicious program can inspect the contents of the cache to "infer" secret data that it is not supposed to access - A malicious program can actually force another program to speculatively execute code that leaves traces of secret data #### More on Meltdown/Spectre Vulnerabilities ## Project Zero News and updates from the Project Zero team at Google Wednesday, January 3, 2018 #### Reading privileged memory with a side-channel Posted by Jann Horn, Project Zero We have discovered that CPU data cache timing can be abused to efficiently leak information out of misspeculated execution, leading to (at worst) arbitrary virtual memory read vulnerabilities across local security boundaries in various contexts. #### Two Upcoming RowHammer Papers in MICRO 2021 Lois Orosa, Abdullah Giray Yaglikci, Haocong Luo, Ataberk Olgun, Jisung Park, Hasan Hassan, Minesh Patel, Jeremie S. Kim, Onur Mutlu, "A Deeper Look into RowHammer's Sensitivities: Experimental Analysis of Real DRAM Chips and Implications on Future Attacks and Defenses" **MICRO 2021** #### A Deeper Look into RowHammer's Sensitivities: Experimental Analysis of Real DRAM Chips and Implications on Future Attacks and Defenses Lois Orosa* ETH Zürich A. Giray Yağlıkçı* ETH Zürich Haocong Luo ETH Zürich Ataberk Olgun ETH Zürich, TOBB ETÜ Jisung Park ETH Zürich Hasan Hassan ETH Zürich Minesh Patel ETH Zürich Jeremie S. Kim ETH Zürich Onur Mutlu ETH Zürich #### Two Upcoming RowHammer Papers in MICRO 2021 Hasan Hassan, Yahya Can Tugrul, Jeremie S. Kim, Victor van der Veen, Kaveh Razavi, Onur Mutlu, "Uncovering In-DRAM RowHammer Protection Mechanisms: A New Methodology, Custom RowHammer Patterns, and Implications" **MICRO 2021** ## Uncovering In-DRAM RowHammer Protection Mechanisms: A New Methodology, Custom RowHammer Patterns, and Implications Hasan Hassan † Yahya Can Tuğrul $^{\dagger \ddagger}$ Jeremie S. Kim † Victor van der Veen $^{\sigma}$ Kaveh Razavi † Onur Mutlu † † ETH Zürich † TOBB University of Economics & Technology $^{\sigma}$ Qualcomm Technologies Inc. # Many Interesting Things Are Happening Today in Computer Architecture # Many Interesting Things Are Happening Today in Computer Architecture ## **More Demanding Workloads** #### Increasingly Demanding Applications ## Dream ## and, they will come As applications push boundaries, computing platforms will become increasingly strained. #### How to Analyze a Genome? NO machine gives the **complete sequence** of genome as output #### Genome Analysis in Real Life ## Current sequencing machine provides small randomized fragments of the original DNA sequence Alser+, "Technology dictates algorithms: Recent developments in read alignment", ## New Genome Sequencing Technologies ## Nanopore sequencing technology and tools for genome assembly: computational analysis of the current state, bottlenecks and future directions Damla Senol Cali ™, Jeremie S Kim, Saugata Ghose, Can Alkan, Onur Mutlu Briefings in Bioinformatics, bby017, https://doi.org/10.1093/bib/bby017 Published: 02 April 2018 Article history ▼ Oxford Nanopore MinION #### Data → performance & energy bottleneck ## Analysis is Bottlenecked in Read Mapping!! 71% ■ Read Mapping ■ Others #### High-Throughput Genome Sequencers Illumina MiSeq Illumina NovaSeq 6000 Pacific Biosciences Sequel II Pacific Biosciences RS II Oxford Nanopore MinION ... and more! All produce data with different properties. #### The Genomic Era Short Read Alignment Reference Genome 1 Sequencing **Genome Analysis** **Read Mapping** 2 #### Data → performance & energy bottleneck read4: CGCTTCCAT read5: CCATGACGC read6: TTCCATGAC **Scientific Discovery** 4 3 **Variant Calling** # Need for Speed #### Personalized Medicine for Critically Ill Infants - rWGS can be performed in 2-day (costly) or 5-day time to interpretation. - Diagnostic rWGS for infants - Avoids morbidity - Reduces hospital stay length by 6%-69% - Reduces inpatient cost by \$800,000-\$2,000,000. Article | Open Access | Published: 04 April 2018 Rapid whole-genome sequencing decreases infant morbidity and cost of hospitalization Lauge Farnaes, Amber Hildreth, Nathaly M. Sweeney, Michelle M. Clark, S Chowdhury, Shareef Nahas, Julie A. Cakici, Wendy Benson, Robert H. Kal Richard Kronick, Matthew N. Bainbridge, Jennifer Friedman, Jeffrey J. Go Ding, Narayanan Veeraraghavan, David Dimmock & Stephen F. Kingsmore npj Genomic Medicine 3, Article number: 10 (2018) | Cite this article Article Open Access | Published: 05 May 2020 Clinical utility of 24-h rapid trio-exome sequencing for critically ill infants Huijun Wang, Yanyan Qian, Yulan Lu, Qian Qin, Guoping Lu, Guoqiang Cheng, Ping Zhang, Lin Yang, Bingbing Wu ☑ & Wenhao Zhou ☑ npj Genomic Medicine 5, Article number: 20 (2020) | Cite this article #### Scalable Genome Analysis "From 2019, all seriously ill children in UK will be offered whole genome sequencing as part of their care" ## Microbiome Profiling #### City-Scale Microbiome Profiling (A) The five boroughs of NYC include (1) Manhattan (green), (2) Brooklyn (yellow), (3) Queens (orange), (4) Bronx (red), (5) Staten Island (lavender). (B) The collection from the 466 subway stations of NYC across the 24 subway lines involved three main steps: (1) collection with Copan Elution swabs, (2) data entry into the database, and (3) uploading of the data. An image is shown of the current collection database, taken from http://pathomap.giscloud.com. (C) Workflow for sample DNA extraction, library preparation, sequencing, quality trimming of the FASTQ files, and alignment with MegaBLAST and MetaPhIAn to discern taxa present #### Population-Scale Microbiome Profiling #### Example: Rapid Surveillance of Ebola Outbreak Figure 1: Deployment of the portable genome surveillance system in Guinea. Quick+, "Real-time, portable genome sequencing for Ebola surveillance", Nature, 2016 #### Why Do We Care? An Example 200 Oxford Nanopore sequencers have left UK for China, to support rapid, near-sample coronavirus sequencing for outbreak surveillance Fri 31st January 2020 Following extensive support of, and collaboration with, public health professionals in China, Oxford Nanopore has shipped an additional 200 MinION sequencers and related consumables to China. These will be used to support the ongoing surveillance of the current coronavirus outbreak, adding to a large number of the devices already installed in the country. Each MinION sequencer is approximately the size of a stapler, and can provide rapid sequence information about the coronavirus. 700Kg of Oxford Nanopore sequencers and consumables are on their way for use by Chinese scientists in understanding the current coronavirus outbreak. #### We Need Faster & Scalable Genome Analysis Understanding genetic variations Rapid surveillance of **disease outbreaks** Developing **personalized medicine** # We need intelligent algorithms and intelligent architectures that handle data well #### Accelerating Read Mapping Alser+, "Accelerating Genome Analysis: A Primer on an Ongoing Journey", IEEE Micro, 2020. #### Our Contributions #### GateKeeper: FPGA-Based Alignment Filtering Mohammed Alser, Hasan Hassan, Hongyi Xin, Oguz Ergin, Onur Mutlu, and Can Alkan "GateKeeper: A New Hardware Architecture for Accelerating Pre-Alignment in DNA Short Read Mapping" Bioinformatics, [published online, May 31], 2017. [Source Code] [Online link at Bioinformatics Journal] ## GateKeeper: a new hardware architecture for accelerating pre-alignment in DNA short read mapping Mohammed Alser ™, Hasan Hassan, Hongyi Xin, Oğuz Ergin, Onur Mutlu ™, Can Alkan ™ Bioinformatics, Volume 33, Issue 21, 1 November 2017, Pages 3355–3363, https://doi.org/10.1093/bioinformatics/btx342 Published: 31 May 2017 Article history ▼ #### In-Memory DNA Sequence Analysis Jeremie S. Kim, Damla Senol Cali, Hongyi Xin, Donghyuk Lee, Saugata Ghose, Mohammed Alser, Hasan Hassan, Oguz Ergin, Can Alkan, and Onur Mutlu, "GRIM-Filter: Fast Seed Location Filtering in DNA Read Mapping Using Processing-in-Memory Technologies" BMC Genomics, 2018. Proceedings of the <u>16th Asia Pacific Bioinformatics Conference</u> (**APBC**), Yokohama, Japan, January 2018. <u>arxiv.org Version (pdf)</u> # GRIM-Filter: Fast seed location filtering in DNA read mapping using processing-in-memory technologies Jeremie S. Kim^{1,6*}, Damla Senol Cali¹, Hongyi Xin², Donghyuk Lee³, Saugata Ghose¹, Mohammed Alser⁴, Hasan Hassan⁶, Oguz Ergin⁵, Can Alkan^{4*} and Onur Mutlu^{6,1*} From The Sixteenth Asia Pacific Bioinformatics Conference 2018 Yokohama, Japan. 15-17 January 2018 ## Shouji (障子) [Alser+, Bioinformatics 2019] Mohammed Alser, Hasan Hassan, Akash Kumar, Onur Mutlu, and Can Alkan, "Shouji: A Fast and Efficient Pre-Alignment Filter for Sequence Alignment" Bioinformatics, [published online, March 28], 2019. Source Code [Online link at Bioinformatics Journal] Bioinformatics, 2019, 1–9 doi: 10.1093/bioinformatics/btz234 Advance Access Publication Date: 28 March 2019 Original Paper Sequence alignment ## Shouji: a fast and efficient pre-alignment filter for sequence alignment Mohammed Alser^{1,2,3,*}, Hasan Hassan¹, Akash Kumar², Onur Mutlu^{1,3,*} and Can Alkan^{3,*} ¹Computer Science Department, ETH Zürich, Zürich 8092, Switzerland, ²Chair for Processor Design, Center For Advancing Electronics Dresden, Institute of Computer Engineering, Technische Universität Dresden, 01062 Dresden,
Germany and ³Computer Engineering Department, Bilkent University, 06800 Ankara, Turkey *To whom correspondence should be addressed. Associate Editor: Inanc Birol Received on September 13, 2018; revised on February 27, 2019; editorial decision on March 7, 2019; accepted on March 27, 2019 #### SneakySnake [Alser+, Bioinformatics 2020] Mohammed Alser, Taha Shahroodi, Juan-Gomez Luna, Can Alkan, and Onur Mutlu, "SneakySnake: A Fast and Accurate Universal Genome Pre-Alignment Filter for CPUs, GPUs, and FPGAs" Bioinformatics, 2020. Source Code Online link at Bioinformatics Journal #### Bioinformatics #### SneakySnake: a fast and accurate universal genome prealignment filter for CPUs, GPUs and FPGAs Mohammed Alser ™, Taha Shahroodi, Juan Gómez-Luna, Can Alkan ™, Onur Mutlu ™ Bioinformatics, btaa1015, https://doi.org/10.1093/bioinformatics/btaa1015 Published: 26 December 2020 Article history ▼ #### GenASM Framework [MICRO 2020] Damla Senol Cali, Gurpreet S. Kalsi, Zulal Bingol, Can Firtina, Lavanya Subramanian, Jeremie S. Kim, Rachata Ausavarungnirun, Mohammed Alser, Juan Gomez-Luna, Amirali Boroumand, Anant Nori, Allison Scibisz, Sreenivas Subramoney, Can Alkan, Saugata Ghose, and Onur Mutlu, "GenASM: A High-Performance, Low-Power Approximate String Matching Acceleration Framework for Genome Sequence Analysis" Proceedings of the <u>53rd International Symposium on Microarchitecture</u> (**MICRO**), Virtual, October 2020. [<u>Lighting Talk Video</u> (1.5 minutes)] [Lightning Talk Slides (pptx) (pdf)] [Talk Video (18 minutes)] [Slides (pptx) (pdf)] #### GenASM: A High-Performance, Low-Power Approximate String Matching Acceleration Framework for Genome Sequence Analysis Damla Senol Cali^{†™} Gurpreet S. Kalsi[™] Zülal Bingöl[▽] Can Firtina[⋄] Lavanya Subramanian[‡] Jeremie S. Kim^{⋄†} Rachata Ausavarungnirun[⊙] Mohammed Alser[⋄] Juan Gomez-Luna[⋄] Amirali Boroumand[†] Anant Nori[™] Allison Scibisz[†] Sreenivas Subramoney[™] Can Alkan[▽] Saugata Ghose^{*†} Onur Mutlu^{⋄†▽} † Carnegie Mellon University [™] Processor Architecture Research Lab, Intel Labs [▽] Bilkent University [⋄] ETH Zürich ‡ Facebook [⊙] King Mongkut's University of Technology North Bangkok ^{*} University of Illinois at Urbana–Champaign #### Accelerating Genome Analysis Mohammed Alser, Zülal Bingöl, Damla Senol Cali, Jeremie Kim, Saugata Ghose, Can Alkan, Onur Mutlu "Accelerating Genome Analysis: A Primer on an Ongoing Journey" IEEE Micro, August 2020. Home / Magazines / IEEE Micro / 2020.05 #### **IEEE Micro** ## Accelerating Genome Analysis: A Primer on an Ongoing Journey Sept.-Oct. 2020, pp. 65-75, vol. 40 DOI Bookmark: 10.1109/MM.2020.3013728 #### **Authors** Mohammed Alser, ETH Zürich Zulal Bingol, Bilkent University Damla Senol Cali, Carnegie Mellon University Jeremie Kim, ETH Zurich and Carnegie Mellon University Saugata Ghose, University of Illinois at Urbana-Champaign and Carnegie Mellon University Can Alkan, Bilkent University Onur Mutlu, ETH Zurich, Carnegie Mellon University, and Bilkent University #### Near-memory Pre-alignment Filtering Gagandeep Singh, Mohammed Alser, Damla Senol Cali, Dionysios Diamantopoulos, Juan Gomez-Luna, Henk Corporaal, Onur Mutlu, "FPGA-Based Near-Memory Acceleration of Modern Data-Intensive **Applications**" IEEE Micro, 2021. Source Code Home / Magazines / IEEE Micro / 2021.04 #### **IEEE Micro** ## FPGA-Based Near-Memory Acceleration of Modern Data-Intensive Applications July-Aug. 2021, pp. 39-48, vol. 41 DOI Bookmark: 10.1109/MM.2021.3088396 #### **Authors** Gagandeep Singh, ETH Zürich, Zürich, Switzerland Mohammed Alser, ETH Zürich, Zürich, Switzerland Damla Senol Cali, Carnegie Mellon University, Pittsburgh, PA, USA Dionysios Diamantopoulos, Zürich Lab, IBM Research Europe, Rüschlikon, Switzerland Juan Gomez-Luna, ETH Zürich, Zürich, Switzerland Henk Corporaal, Eindhoven University of Technology, Eindhoven, The Netherlands Onur Mutlu, ETH Zürich, Zürich, Switzerland #### Read Mapping in 111 pages! In-depth analysis of 107 read mappers (1988-2020) Mohammed Alser, Jeremy Rotman, Dhrithi Deshpande, Kodi Taraszka, Huwenbo Shi, Pelin Icer Baykal, Harry Taegyun Yang, Victor Xue, Sergey Knyazev, Benjamin D. Singer, Brunilda Balliu, David Koslicki, Pavel Skums, Alex Zelikovsky, Can Alkan, Onur Mutlu, Serghei Mangul "<u>Technology dictates algorithms: Recent developments in read alignment</u>" Genome Biology, 2021 Source code Alser *et al. Genome Biology* (2021) 22:249 https://doi.org/10.1186/s13059-021-02443-7 Genome Biology REVIEW Open Access ## Technology dictates algorithms: recent developments in read alignment Mohammed Alser^{1,2,3†}, Jeremy Rotman^{4†}, Dhrithi Deshpande⁵, Kodi Taraszka⁴, Huwenbo Shi^{6,7}, Pelin Icer Baykal⁸, Harry Taegyun Yang^{4,9}, Victor Xue⁴, Sergey Knyazev⁸, Benjamin D. Singer^{10,11,12}, Brunilda Balliu¹³, David Koslicki^{14,15,16}, Pavel Skums⁸, Alex Zelikovsky^{8,17}, Can Alkan^{2,18}, Onur Mutlu^{1,2,3†} and Serghei Mangul^{5*†} ## Future of Genome Sequencing & Analysis #### COVID-19 Nanopore Sequencing (I) From ONT (https://nanoporetech.com/covid-19/overview) ## COVID-19 Nanopore Sequencing (II) From ONT (https://nanoporetech.com/covid-19/overview) #### More on Fast Genome Analysis ... https://www.youtube.com/watch?v=ygmQpdDTL7o #### More on Fast Genome Analysis ... Onur Mutlu, "Accelerating Genome Analysis: A Primer on an Ongoing Journey" Invited Lecture at <u>Technion</u>, Virtual, 26 January 2021. [Slides (pptx) (pdf)] [Talk Video (1 hour 37 minutes, including Q&A)] [Related Invited Paper (at IEEE Micro, 2020)] #### Detailed Lectures on Genome Analysis - Computer Architecture, Fall 2020, Lecture 3a - □ Introduction to Genome Sequence Analysis (ETH Zürich, Fall 2020) - https://www.youtube.com/watch?v=CrRb32v7SJc&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=5 - Computer Architecture, Fall 2020, Lecture 8 - □ **Intelligent Genome Analysis** (ETH Zürich, Fall 2020) - https://www.youtube.com/watch?v=ygmQpdDTL7o&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=14 - Computer Architecture, Fall 2020, Lecture 9a - GenASM: Approx. String Matching Accelerator (ETH Zürich, Fall 2020) - https://www.youtube.com/watch?v=XoLpzmN-Pas&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=15 - Accelerating Genomics Project Course, Fall 2020, Lecture 1 - Accelerating Genomics (ETH Zürich, Fall 2020) - https://www.youtube.com/watch?v=rgjl8ZyLsAg&list=PL5Q2soXY2Zi9E2bBVAgCqL gwiDRQDTyId #### Detailed Lectures on Genome Analysis - Computer Architecture, Fall 2020, Lecture 3a - □ Introduction to Genome Sequence Analysis (ETH Zürich, Fall 2020) - https://www.youtube.com/watch?v=CrRb32v7SJc&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=5 - Computer Architecture, Fall 2020, Lecture 8 - □ **Intelligent Genome Analysis** (ETH Zürich, Fall 2020) - https://www.youtube.com/watch?v=ygmQpdDTL7o&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=14 - Computer Architecture, Fall 2020, Lecture 9a - GenASM: Approx. String Matching Accelerator (ETH Zürich, Fall 2020) - https://www.youtube.com/watch?v=XoLpzmN-Pas&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=15 - Accelerating Genomics Project Course, Fall 2020, Lecture 1 - Accelerating Genomics (ETH Zürich, Fall 2020) - https://www.youtube.com/watch?v=rgjl8ZyLsAg&list=PL5Q2soXY2Zi9E2bBVAgCqL gwiDRQDTyId #### Data Overwhelms Modern Machines **Graph/Tree Processing** Data → performance & energy bottleneck **In-Memory Data Analytics** [Clapp+ (Intel), IISWC'15; Awan+, BDCloud'15] **Datacenter Workloads** [Kanev+ (Google), ISCA' I 5] #### Data Overwhelms Modern Machines **TensorFlow Mobile** Data → performance & energy bottleneck Google's video codec Google's video codec #### Data Movement Overwhelms Modern Machines Amirali Boroumand, Saugata Ghose, Youngsok Kim, Rachata Ausavarungnirun, Eric Shiu, Rahul Thakur, Daehyun Kim, Aki Kuusela, Allan Knies, Parthasarathy Ranganathan, and Onur Mutlu, "Google Workloads for Consumer Devices: Mitigating Data Movement Bottlenecks" Proceedings of the 23rd International Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS), Williamsburg, VA, USA, March 2018. #### 62.7% of the total system energy is spent on data movement #### Google Workloads for Consumer Devices: Mitigating Data Movement Bottlenecks Amirali Boroumand¹ Rachata Ausavarungnirun¹ Aki Kuusela³ Allan Knies³ Saugata Ghose¹ Youngsok Kim² Eric Shiu³ Rahul Thakur³ Daehyun Kim^{4,3} Parthasarathy Ranganathan³ Onur Mutlu^{5,1} #### Data Movement vs. Computation Energy A memory access consumes ~100-1000X the energy of a complex addition # Many Interesting Things Are Happening Today in Computer Architecture #### Many Novel Concepts Investigated Today - New Computing Paradigms (Rethinking the Full Stack) - Processing in Memory, Processing Near Data - Neuromorphic Computing - Fundamentally Secure and Dependable Computers - New Accelerators (Algorithm-Hardware Co-Designs) - Artificial Intelligence & Machine Learning - Graph Analytics - Genome Analysis - New Memories and Storage Systems - Non-Volatile Main Memory - Processing in Memory, Intelligent Memory #### Increasingly Demanding Applications ## Dream ## and, they will come As applications push boundaries, computing platforms will become increasingly strained. ### Increasingly Diverging/Complex Tradeoffs #### Data Movement vs. Computation Energy A memory access consumes ~100-1000X the energy of a complex addition ### Increasingly Complex Systems #### Past systems ### Increasingly Complex Systems #### Computer Architecture Today - Computing landscape is very different from 10-20 years ago - Applications and technology both demand novel architectures #### Computer Architecture Today (II) - You can revolutionize the way computers are built, if you understand both the hardware and the software (and change each accordingly) - You can invent new paradigms for computation, communication, and storage -
Recommended book: Thomas Kuhn, "The Structure of Scientific Revolutions" (1962) - Pre-paradigm science: no clear consensus in the field - Normal science: dominant theory used to explain/improve things (business as usual); exceptions considered anomalies - Revolutionary science: underlying assumptions re-examined #### Computer Architecture Today (II) You can revolutionize the way computers are built, if you understand both the hardware and the software (and change each accordingly) You can ir STRUCTURE communid SCIENTIFIC REVOLUTIONS ANNIVERSAWY-EDIT Recomme Scientific REVOLUTIONS! Pre-para THOMAS S. KUH eld eal Normal s ne things (t Revoluti THOMAS S. KUHN ure of eld improve anomalies examined #### Takeaways - It is an exciting time to be understanding and designing computing architectures - Many challenging and exciting problems in platform design - That no one has tackled (or thought about) before - That can have huge impact on the world's future - Driven by huge hunger for data (Big Data), new applications (ML/AI, graph analytics, genomics), ever-greater realism, ... - We can easily collect more data than we can analyze/understand - Driven by significant difficulties in keeping up with that hunger at the technology layer - Five walls: Energy, reliability, complexity, security, scalability # Seminar in Computer Architecture Lecture 1b: Introduction and Basics Prof. Onur Mutlu ETH Zürich Fall 2021 23 September 2021