
Seminar in

Computer Architecture
Meeting 4: Memory Channel Partitioning

Prof. Onur Mutlu

ETH Zürich

Fall 2021

14 October 2021

Example Paper Presentations

2

Last Week: RowClone

3
https://www.youtube.com/watch?v=n6Pwg1qax_E&list=PL5Q2soXY2Zi_7UBNmC9B8Yr5JSwTG9yH4&index=4

https://www.youtube.com/watch?v=n6Pwg1qax_E&list=PL5Q2soXY2Zi_7UBNmC9B8Yr5JSwTG9yH4&index=4

Prior Week: GateKeeper

4
https://www.youtube.com/watch?v=jk1oUexuHRg&list=PL5Q2soXY2Zi_7UBNmC9B8Yr5JSwTG9yH4&index=3

https://www.youtube.com/watch?v=jk1oUexuHRg&list=PL5Q2soXY2Zi_7UBNmC9B8Yr5JSwTG9yH4&index=3

2019: REAPER

5
https://www.youtube.com/watch?v=CJ62UrB4LEI&list=PL5Q2soXY2Zi_22a-Br3hXr55hy7s3ZDwH&index=5

https://www.youtube.com/watch?v=CJ62UrB4LEI&list=PL5Q2soXY2Zi_22a-Br3hXr55hy7s3ZDwH&index=5

Last Semester: BlockHammer

6
https://www.youtube.com/watch?v=4SLC9YeQCe0&list=PL5Q2soXY2Zi_awYdjmWVIUegsbY7TPGW4&index=5

https://www.youtube.com/watch?v=4SLC9YeQCe0&list=PL5Q2soXY2Zi_awYdjmWVIUegsbY7TPGW4&index=5

Last Semester: ComputeDRAM

7
https://www.youtube.com/watch?v=5o4Z3FLjJsU&list=PL5Q2soXY2Zi_awYdjmWVIUegsbY7TPGW4&index=6

https://www.youtube.com/watch?v=5o4Z3FLjJsU&list=PL5Q2soXY2Zi_awYdjmWVIUegsbY7TPGW4&index=6

Last Semester: Deep Compression & SneakySnake

8
https://www.youtube.com/watch?v=vaM3wVvQey8&list=PL5Q2soXY2Zi_awYdjmWVIUegsbY7TPGW4&index=7

https://www.youtube.com/watch?v=vaM3wVvQey8&list=PL5Q2soXY2Zi_awYdjmWVIUegsbY7TPGW4&index=7

Last Semester: Alpha 21264 & Mirage Cores

9
https://www.youtube.com/watch?v=7RPoDXLD2Qo&list=PL5Q2soXY2Zi_awYdjmWVIUegsbY7TPGW4&index=8

https://www.youtube.com/watch?v=7RPoDXLD2Qo&list=PL5Q2soXY2Zi_awYdjmWVIUegsbY7TPGW4&index=8

Last Semester: FIGARO

10
https://www.youtube.com/watch?v=YK3NpvTDvD4&list=PL5Q2soXY2Zi_awYdjmWVIUegsbY7TPGW4&index=9

https://www.youtube.com/watch?v=YK3NpvTDvD4&list=PL5Q2soXY2Zi_awYdjmWVIUegsbY7TPGW4&index=9

Today: Another Example

Paper Presentation

11

We Will Briefly Review This Paper

◼ Sai Prashanth Muralidhara, Lavanya Subramanian, Onur Mutlu,
Mahmut Kandemir, and Thomas Moscibroda,
"Reducing Memory Interference in Multicore Systems via
Application-Aware Memory Channel Partitioning"
Proceedings of the 44th International Symposium on
Microarchitecture (MICRO), Porto Alegre, Brazil, December
2011. Slides (pptx)

12

http://users.ece.cmu.edu/~omutlu/pub/memory-channel-partitioning-micro11.pdf
http://www.microarch.org/micro44/
http://users.ece.cmu.edu/~omutlu/pub/subramanian_micro11_talk.pptx

Application-Aware

Memory Channel Partitioning

Sai Prashanth Muralidhara§ Lavanya Subramanian †

Onur Mutlu † Mahmut Kandemir§

Thomas Moscibroda ‡

§ Pennsylvania State University † Carnegie Mellon University
‡ Microsoft Research

Background, Problem & Goal

14

Main Memory is a Bottleneck

15

◼ Main memory latency is long

◼ Core stalls, performance degrades

◼ Multiple applications share the main memory

Main MemoryCore

Core

Core

Memory
Controller

Channel

Problem of Inter-Application Interference

16

Channel Main Memory

Core

Core

Memory
Controller

ReqReqReq

◼ Applications’ requests interfere at the main memory

◼ This inter-application interference degrades system
performance

◼ Problem further exacerbated due to

❑ Increasing number of cores

❑ Limited off-chip pin bandwidth

Outline

17

Goal:
Mitigate

Inter-Application Interference

Previous Approach:
Application-Aware Memory

Request Scheduling

Our First Approach:
Application-Aware Memory

Channel Partitioning

Our Second Approach:
Integrated Memory

Partitioning and Scheduling

Background: Main Memory

18

Row
Buffer

Bank 0 Bank 1 Bank 2 Bank 3

Row
Buffer

Row
Buffer

Row
Buffer

R
o
w

s

Columns

◼ FR-FCFS memory scheduling policy [Zuravleff et al., US Patent ‘97; Rixner et al., ISCA ‘00]

❑ Row-buffer hit first

❑ Oldest request first

◼ Unaware of inter-application interference

Channel
Memory

Controller

Bank 0 Bank 1 Bank 2 Bank 3

Row
Buffer

Novelty

19

Previous Approach

20

Previous Approach:
Application-Aware Memory

Request Scheduling

Our First Approach:
Application-Aware Memory

Channel Partitioning

Our Second Approach:
Integrated Memory

Partitioning and Scheduling

Previous Approach:
Application-Aware Memory

Request Scheduling

Goal:
Mitigate

Inter-Application Interference

Application-Aware Memory Request Scheduling

◼ Monitor application memory access
characteristics

◼ Rank applications based on memory access
characteristics

◼ Prioritize requests at the memory controller,
based on ranking

21

thread

Threads in the
system

thread

thread

thread

thread

thread

thread

Non-
intensive
cluster

Intensive
cluster

thread

thread

thread

Memory-non-intensive

Memory-intensive

Prioritized

higher
priority

higher
priority

Throughput

Fairness

An Example: Thread Cluster Memory Scheduling

Figure: Kim et al., MICRO 2010

22

Application-Aware Memory Request Scheduling

23

Advantages

◼ Reduces interference between applications by

request reordering

◼ Improves system performance

Disadvantages

◼ Requires modifications to memory scheduling logic for

❑ Ranking

❑ Prioritization

◼ Cannot completely eliminate interference by request
reordering

Key Approach and Ideas

24

The Paper’s Approach

25

Previous Approach:
Application-Aware Memory

Request Scheduling

Our First Approach:
Application-Aware Memory

Channel Partitioning

Our Second Approach:
Integrated Memory

Partitioning and Scheduling

Our First Approach:
Application-Aware Memory

Channel Partitioning

Goal:
Mitigate

Inter-Application Interference

Observation: Modern Systems Have Multiple Channels

A new degree of freedom

Mapping data across multiple channels

26

Channel 0Red
App

Blue
App

Memory
Controller

Memory
Controller

Channel 1

Memory

Core

Core

Memory

Data Mapping in Current Systems

27

Channel 0Red
App

Blue
App

Memory
Controller

Memory
Controller

Channel 1

Memory

Core

Core

Memory

Causes interference between applications’ requests

Page

Partitioning Channels Between Applications

28

Channel 0Red
App

Blue
App

Memory
Controller

Memory
Controller

Channel 1

Memory

Core

Core

Memory

Page

Eliminates interference between applications’ requests

Overview: Memory Channel Partitioning (MCP)

◼ Goal

❑ Eliminate harmful interference between applications

◼ Basic Idea

❑ Map the data of badly-interfering applications to different
channels

◼ Key Principles

❑ Separate low and high memory-intensity applications

❑ Separate low and high row-buffer locality applications

29

Key Insight 1: Separate by Memory Intensity

High memory-intensity applications interfere with low
memory-intensity applications in shared memory channels

30

Map data of low and high memory-intensity applications
to different channels

12345
Channel 0

Bank 1

Channel 1

Bank 0

Conventional Page Mapping

Red
App

Blue
App

Time Units

Core

Core

Bank 1

Bank 0

Channel Partitioning

Red
App

Blue
App

Channel 0
Time Units

12345

Channel 1

Core

Core

Bank 1

Bank 0

Bank 1

Bank 0

Saved Cycles

Saved Cycles

Key Insight 2: Separate by Row-Buffer Locality

31

High row-buffer locality applications interfere with low

row-buffer locality applications in shared memory channels

Conventional Page Mapping

Channel 0

Bank 1

Channel 1

Bank 0R1

R0R2R3R0

R4

Request Buffer
State

Bank 1

Bank 0

Channel 1

Channel 0

R0R0

Service Order

123456

R2R3

R4

R1

Time
units

Bank 1

Bank 0

Bank 1

Bank 0

Channel 1

Channel 0

R0R0

Service Order

123456

R2R3

R4R1

Time
units

Bank 1

Bank 0

Bank 1

Bank 0

R0

Channel 0

R1

R2R3

R0

R4

Request Buffer
State

Channel Partitioning

Bank 1

Bank 0

Bank 1

Bank 0

Channel 1

Saved
CyclesMap data of low and high row-buffer locality applications

to different channels

Mechanisms (in some detail)

32

Memory Channel Partitioning (MCP) Mechanism

1. Profile applications

2. Classify applications into groups

3. Partition channels between application groups

4. Assign a preferred channel to each application

5. Allocate application pages to preferred channel

33

Hardware

System
Software

1. Profile Applications

34

◼ Hardware counters collect application memory
access characteristics

◼ Memory access characteristics

❑ Memory intensity:

Last level cache Misses Per Kilo Instruction (MPKI)

❑ Row-buffer locality:

Row-buffer Hit Rate (RBH) - percentage of
accesses that hit in the row buffer

2. Classify Applications

35

Test MPKI

High Intensity

HighLow

Low Intensity

Test RBH

High Intensity
Low Row-Buffer

Locality

Low

High Intensity
High Row-Buffer

Locality

High

3. Partition Channels Among Groups: Step 1

36

Channel 1

Assign number of channels
proportional to number of
applications in group

.

.

.

High Intensity
Low Row-Buffer

Locality

Low Intensity

Channel 2

Channel N-1

Channel N

Channel 3

High Intensity
High Row-Buffer

Locality

3. Partition Channels Among Groups: Step 2

37

Channel 1

High Intensity
Low Row-Buffer

Locality

High Intensity
High Row-Buffer

Locality

Low Intensity

Channel 2

Channel N-1

Channel N

.

.

.Assign number of channels
proportional to bandwidth
demand of group

Channel 3

Channel 1

.

.

High Intensity
Low Row-Buffer

Locality

High Intensity
High Row-Buffer

Locality

Low Intensity

Channel 2

Channel N-1

Channel N

Channel N-1

Channel N

Channel 3

.

.

.

4. Assign Preferred Channel to Application

38

Channel 1

Low Intensity

Channel 2

MPKI: 1

MPKI: 3

MPKI: 4

MPKI: 1

MPKI: 3

MPKI: 4

◼ Assign each application a preferred channel from
its group’s allocated channels

◼ Distribute applications to channels such that
group’s bandwidth demand is balanced across its
channels

5. Allocate Page to Preferred Channel

◼ Enforce channel preferences
computed in the previous step

◼ On a page fault, the operating system

❑ allocates page to preferred channel if free page
available in preferred channel

❑ if free page not available, replacement policy tries to
allocate page to preferred channel

❑ if it fails, allocate page to another channel

39

Interval Based Operation

40

time

Current Interval Next Interval

1. Profile applications

2. Classify applications into groups
3. Partition channels between groups
4. Assign preferred channel to applications

5. Enforce channel preferences

Integrating Partitioning and Scheduling

41

Previous Approach:
Application-Aware Memory

Request Scheduling

Our First Approach:
Application-Aware Memory

Channel Partitioning

Our Second Approach:
Integrated Memory

Partitioning and Scheduling

Goal:
Mitigate

Inter-Application Interference

Observations

◼ Applications with very low memory-intensity rarely
access memory
→ Dedicating channels to them results in precious
memory bandwidth waste

◼ They have the most potential to keep their cores busy
→ We would really like to prioritize them

◼ They interfere minimally with other applications
→ Prioritizing them does not hurt others

42

Integrated Memory Partitioning and Scheduling (IMPS)

◼ Always prioritize very low memory-intensity
applications in the memory scheduler

◼ Use memory channel partitioning to mitigate
interference between other applications

43

Key Results:

Methodology and Evaluation

44

Hardware Cost

◼ Memory Channel Partitioning (MCP)

❑ Only profiling counters in hardware

❑ No modifications to memory scheduling logic

❑ 1.5 KB storage cost for a 24-core, 4-channel system

◼ Integrated Memory Partitioning and Scheduling (IMPS)

❑ A single bit per request

❑ Scheduler prioritizes based on this single bit

45

Methodology

◼ Simulation Model

❑ 24 cores, 4 channels, 4 banks/channel

❑ Core Model

◼ Out-of-order, 128-entry instruction window

◼ 512 KB L2 cache/core

❑ Memory Model – DDR2

◼ Workloads

❑ 240 SPEC CPU 2006 multiprogrammed workloads
(categorized based on memory intensity)

◼ Metrics

❑ System Performance

46

=
i

alone

i

shared

i

IPC

IPC
SpeedupWeighted

Previous Work on Memory Scheduling

◼ FR-FCFS [Zuravleff et al., US Patent 1997, Rixner et al., ISCA 2000]

❑ Prioritizes row-buffer hits and older requests

❑ Application-unaware

◼ ATLAS [Kim et al., HPCA 2010]

❑ Prioritizes applications with low memory-intensity

◼ TCM [Kim et al., MICRO 2010]

❑ Always prioritizes low memory-intensity applications

❑ Shuffles request priorities of high memory-intensity applications

47

Comparison to Previous Scheduling Policies

48

1%

5%

0.9

0.95

1

1.05

1.1

1.15

N
o

rm
al

iz
e

d

Sy
st

e
m

 P
e

rf
o

rm
an

ce FRFCFS

ATLAS

TCM

MCP

IMPS

7%

11%

Significant performance improvement over baseline FRFCFS
Better system performance than the best previous scheduler

at lower hardware cost

Averaged over 240 workloads

49

0.94

0.96

0.98

1

1.02

1.04

1.06

1.08

1.1

1.12

FRFCFS ATLAS TCM

N
o

rm
al

iz
e

d
Sy

st
e

m
 P

e
rf

o
rm

an
ce

No IMPS

IMPS

0.94

0.96

0.98

1

1.02

1.04

1.06

1.08

1.1

1.12

FRFCFS ATLAS TCM

N
o

rm
al

iz
e

d

Sy
st

e
m

 P
e

rf
o

rm
an

ce

No IMPS

IMPS improves performance regardless of scheduling policy
Highest improvement over FRFCFS as IMPS designed for FRFCFS

Interaction with Memory Scheduling

Averaged over 240 workloads

Summary

50

Summary

◼ Uncontrolled inter-application interference in main memory
degrades system performance

◼ Application-aware memory channel partitioning (MCP)

❑ Separates the data of badly-interfering applications
to different channels, eliminating interference

◼ Integrated memory partitioning and scheduling (IMPS)

❑ Prioritizes very low memory-intensity applications in scheduler

❑ Handles other applications’ interference by partitioning

◼ MCP/IMPS provide better performance than application-
aware memory request scheduling at lower hardware cost

51

Strengths

52

Strengths of the Paper

◼ Novel solution to a key problem in multi-core systems,
memory interference; the importance of problem will
increase over time

◼ Keeps the memory scheduling hardware simple

◼ Combines multiple interference reduction techniques

◼ Can provide performance isolation across applications
mapped to different channels

◼ General idea of partitioning can be extended to smaller
granularities in the memory hierarchy: banks, subarrays,
etc.

◼ Well-written paper

◼ Thorough simulation-based evaluation

53

Weaknesses

54

Weaknesses/Limitations of the Paper
◼ Mechanism may not work effectively if workload changes

behavior after profiling

◼ Overhead of moving pages between channels restricts
mechanism’s benefits

◼ Small number of memory channels reduces the scope of
partitioning

◼ Load imbalance across channels can reduce performance

❑ The paper addresses this and compares to another mechanism

◼ Software-hardware cooperative solution might not always
be easy to adopt

◼ Evaluation is done solely in simulation

◼ Evaluation does not consider multi-chip systems

◼ Are these the best workloads to evaluate?
55

Recall: Try to Avoid Rat Holes

56Source: P. Jarupunphol, “Using Buddhist Insights to Analyse the Cause of System Project Failures,” Ph.D. Thesis, 2013

Thoughts and Ideas

57

Extensions (I)

◼ Can this idea be extended to different granularities in
memory?

❑ Partition banks, subarrays, mats across workloads

◼ Can this idea be extended to provide performance
predictability and performance isolation? How?

◼ How can MCP be combined effectively with other
interference reduction techniques?

❑ E.g., source throttling methods [Ebrahimi+, ASPLOS 2010]

❑ E.g., thread scheduling methods

◼ Can this idea be evaluated on a real system? How?

58

Aside: Source Throttling

◼ Eiman Ebrahimi, Chang Joo Lee, Onur Mutlu, and Yale N. Patt,
"Fairness via Source Throttling: A Configurable and High-
Performance Fairness Substrate for Multi-Core Memory
Systems"
Proceedings of the 15th International Conference on Architectural
Support for Programming Languages and Operating
Systems (ASPLOS), pages 335-346, Pittsburgh, PA, March 2010. Slides
(pdf)
Best paper award.

59

https://people.inf.ethz.ch/omutlu/pub/fst_asplos10.pdf
http://www.ece.cmu.edu/CALCM/asplos10/doku.php
https://people.inf.ethz.ch/omutlu/pub/ebrahimi_asplos10_talk.pdf

Takeaways

60

Key Takeaways

◼ A novel method to reduce memory interference

◼ Simple and effective

◼ Hardware/software cooperative

◼ Good potential for work building on it to extend it

❑ To different structures

❑ To different metrics

❑ Multiple works have already built on the paper (see bank
partitioning works in PACT 2012, HPCA 2012 + HPCA 2013)

◼ Easy to read and understand paper
61

Example: Application to Core Mapping

◼ Reetuparna Das, Rachata Ausavarungnirun, Onur Mutlu, Akhilesh
Kumar, and Mani Azimi,
"Application-to-Core Mapping Policies to Reduce Memory
System Interference in Multi-Core Systems"
Proceedings of the 19th International Symposium on High-Performance
Computer Architecture (HPCA), Shenzhen, China, February
2013. Slides (pptx)

62

https://people.inf.ethz.ch/omutlu/pub/application-to-core-mapping_hpca13.pdf
http://www.cs.utah.edu/~lizhang/HPCA19/
https://people.inf.ethz.ch/omutlu/pub/das_hpca13_talk.pptx

Application-to-Core Mapping to Reduce Interference

◼ Reetuparna Das, Rachata Ausavarungnirun, Onur Mutlu, Akhilesh
Kumar, and Mani Azimi,
"Application-to-Core Mapping Policies to Reduce Memory
System Interference in Multi-Core Systems"
Proceedings of the 19th International Symposium on High-Performance
Computer Architecture (HPCA), Shenzhen, China, February 2013.
Slides (pptx)

◼ Key ideas:

❑ Cluster threads to memory controllers (to reduce across chip interference)

❑ Isolate interference-sensitive (low-intensity) applications in a separate
cluster (to reduce interference from high-intensity applications)

❑ Place applications that benefit from memory bandwidth closer to the
controller (to improve performance)

63

http://users.ece.cmu.edu/~omutlu/pub/application-to-core-mapping_hpca13.pdf
http://www.cs.utah.edu/~lizhang/HPCA19/
http://users.ece.cmu.edu/~omutlu/pub/das_hpca13_talk.pptx

Multi-Core to Many-Core

Multi-Core Many-Core

64

Many-Core On-Chip Communication

65

Memory
Controller

Shared
Cache Bank$

$

Light

Heavy

Applications

Problem: Spatial Task Scheduling

Applications Cores

How to map applications to cores?

66

Challenges in Spatial Task Scheduling

Applications Cores

How to reduce destructive interference between applications?

How to reduce communication distance?

67

How to prioritize applications to improve throughput?

Application-to-Core Mapping

68

Clustering

Balancing

Isolation

Radial
Mapping

Improve Locality
Reduce Interference

Improve Bandwidth
Utilization

Reduce Interference

Improve Bandwidth
Utilization

Step 1 — Clustering

69

Inefficient data mapping to memory and caches

Memory

Controller

Step 1 — Clustering

Improved Locality

70

Reduced Interference

Cluster 0 Cluster 2

Cluster 1 Cluster 3

System Performance

0.8

0.9

1.0

1.1

1.2

1.3

MPKI500 MPKI1000 MPKI1500 MPKI2000 Avg

N
o

rm
a

li
z
e

d
 W

e
ig

h
te

d

S
p

e
e

d
u

p
BASE BASE+CLS A2C

71

System performance improves by 17%

Network Power

72

0.0

0.2

0.4

0.6

0.8

1.0

1.2

MPKI500 MPKI1000 MPKI1500 MPKI2000 Avg

N
o

rm
a

li
z
e

d
 N

o
C

P

o
w

e
r

BASE BASE+CLS A2C

Average network power consumption reduces by 52%

Example: Application to Core Mapping

◼ Reetuparna Das, Rachata Ausavarungnirun, Onur Mutlu, Akhilesh
Kumar, and Mani Azimi,
"Application-to-Core Mapping Policies to Reduce Memory
System Interference in Multi-Core Systems"
Proceedings of the 19th International Symposium on High-Performance
Computer Architecture (HPCA), Shenzhen, China, February
2013. Slides (pptx)

73

https://people.inf.ethz.ch/omutlu/pub/application-to-core-mapping_hpca13.pdf
http://www.cs.utah.edu/~lizhang/HPCA19/
https://people.inf.ethz.ch/omutlu/pub/das_hpca13_talk.pptx

Example Follow-On Works (II)

◼ https://lph.ece.utexas.edu/merez/uploads/MattanErez/bpart_hpca12.pdf

74

https://lph.ece.utexas.edu/merez/uploads/MattanErez/bpart_hpca12.pdf

Example Follow-On Work (III)

◼ https://liulei-sys-inventor.github.io/files/pact140-liu-final.pdf

75

https://liulei-sys-inventor.github.io/files/pact140-liu-final.pdf

Open Discussion

76

Discussion Starters

◼ Thoughts on the previous ideas?

◼ How practical is this?

◼ Will the problem become bigger and more important over
time?

◼ Will the solution become more important over time?

◼ Are other solutions better?

◼ Is this solution clearly advantageous in some cases?

77

Seminar in

Computer Architecture
Meeting 4: Memory Channel Partitioning

Prof. Onur Mutlu

ETH Zürich

Fall 2021

14 October 2021

