Seminar in

Computer Architecture
Meeting 4: Memory Channel Partitioning

Prof. Onur Mutlu

ETH Zurich
Fall 2021
14 October 2021

Example Paper Presentations

Last Week: RowClone

Mindset: Memory as an Accelerator

H
P
mini-ceul £l Gpy GPU |
CPU CPU core : [throughput)] kthroughput)] :
core core core core :
video
core
CPU CPU Levouahput] Jtwoughpun
: > : [throughput)| Kthroughput)| :
core core imagingl ;| core core | Memory
LLC
N Specialized
Memory Controllef compute-capability
in memory

Memory Bus

A\ H "

PRGNSR Memory simiiar to a conventional acceieratol Be (= O -

LdJd

¢ DEPARTMENT OF INFORMATION TECHNOLOGY AND ELECTRICAL ENGINEERING (D-ITET)
Seminar in Computer Arch. - Meeting 3: RowClone: In-Memory Data Copy and Initialization (Fall 2021)

373 views * Streamed live on Oct 7, 2021 ik 22 GCP o0) SHARE =+ SAVE

@ Onur Mutlu Lectures ANALYTICS EDIT VIDEO
&> 19.2K subscribers

https://www.youtube.com/watch?v=n6Pwglqgax E&list=PL502s0XY2Zi 7UBNmMC9B8Yr5JSwTG9yH4&index=4

https://www.youtube.com/watch?v=n6Pwg1qax_E&list=PL5Q2soXY2Zi_7UBNmC9B8Yr5JSwTG9yH4&index=4

Prior Week: GateKeeper

SneakySnake Walkthrough

Building Neighborhood Map Finding the Optimal Routing Path

Y DEPARTMENT OF INFORMATION TECHNOLOGY AND ELECTRICAL ENGINEERING (D-ITET)
Seminar in Computer Architecture (Fall 2021) - Lecture 2: GateKeeper and Fast Genome Analysis

558 views * Streamed live on Sep 30, 2021 k25 GPo /> SHARE =+ SAVE
@ Onur Mutlu Lectures ANALYTICS | EDIT vIDEO
&> 19.2K subscribers

https://www.youtube.com/watch?v=jkloUexuHRqg&list=PL502s0XY2Zi 7UBNmMC9B8Yr5JSwWTG9yH4&index=3

https://www.youtube.com/watch?v=jk1oUexuHRg&list=PL5Q2soXY2Zi_7UBNmC9B8Yr5JSwTG9yH4&index=3

2019: REAPER

Single-cell Failure Probability (Real)

operate here

[
(=]
(=)

S
~
w

=2
U
S

=
[
3

>
=
=
5]
o
o
—
o
=
=
@
<5
o
<
5]
=

=

(=)

=)
-
tnh

Refresh Interval (s)

®
3
2

7| ‘D 15:57 / 49:27 - Single-cell Failure Probability (Real) >

© ETH ZURICH
Seminar in Computer Architecture - Meeting 3b: Example Review IIl: REAPER (ETH Zdrich, Fall 2019)

220 views + Oct 6, 2019 e 6 GPO0 > SHARE =+ SAVE

e Onur Mutlu.Lectures ANALYTICS EDIT VIDEO
&> 19.2K subscribers

https://www.youtube.com/watch?v=CJ62UrB4LEI&list=PL5Q2s0XY2Zi 22a-Br3hXr55hy7s3ZDwH&index=5

https://www.youtube.com/watch?v=CJ62UrB4LEI&list=PL5Q2soXY2Zi_22a-Br3hXr55hy7s3ZDwH&index=5

Last Semester: BlockHammer

Recap: Bloom filter

? Question: does a set contain a certain element?

.I-I-I- Main components: hash functions + bit array

3:21/3411 « Recap: Bloom filter >

Seminar in Computer Architecture - Session 1.2: BlockHammer (ETH Zdrich, Spring 2021)

365 views * Premiered Apr 26, 2021 e 12 GP 0) SHARE =+ SAVE

) Onur Mutlu Lectures ANALYTICS EDIT VIDEO
& 19.2K subscribers

https://www.youtube.com/watch?v=4SLC9YeQCe0&list=PL50Q2s0XY2Zi awYdimWVIUegsbY7TPGW4&index=5

https://www.youtube.com/watch?v=4SLC9YeQCe0&list=PL5Q2soXY2Zi_awYdjmWVIUegsbY7TPGW4&index=5

Last Semester: Compute DRAM

DRAM Commands

N
Lorenzo Rai'fs

Row access strobe: tRAS

Minimum delay between ACTIVATE and
the next PRECHARGE command

Row precharge: tRP

Minimum delay between PRECHARGE
and the next ACTIVATE command

\ Next ACT
Command — ACTIVATE] Il PRECHARGE s

Data

DRAM Action —(_ 0penow X seriamputer) / :

>

A 5:14/1:02:20

Seminar in Computer Architecture - Session 2.2: ComputeDRAM (Spring 2021)

666 views + Streamed live on Apr 1, 2021 e 22 GP O) SHARE =+ SAVE

@ Shir Butiu Lectires ANALYTICS | EDIT VIDEO
&> 19.2K subscribers

https://www.youtube.com/watch?v=504Z3FLjJsU&Ilist=PL5Q2s0XY2Zi awYdimWVIUegsbY7TPGW4&index=6

https://www.youtube.com/watch?v=5o4Z3FLjJsU&list=PL5Q2soXY2Zi_awYdjmWVIUegsbY7TPGW4&index=6

Last Semester: Deep Compression & SneakySnake

Discussion (I): End-to-End Performance s

* Latency/throughput is not mentioned by the paper
* Critical for real-time processing as was targeted by the paper

* Speedup is actually... not true... (in my opinion)
* Only densely connected layers are measured to have a significant speedup
* Overheads are mostly in CNN layers

* The overall throughput does not increase if the bottleneck layer is not
boosted much (and so is latency)
* How do you think that it would be fairer methodology to measure the

speedup? What would you expect really from throughput by using this
approach? What kind of benchmarks would make sense?

’ -}I 44:29/2:05:45

© DEPARTMENT OF INFORMATION TECHNOLOGY AND ELECTRICAL ENGINEERING (D-ITET)
Seminar in Computer Architecture - Session 6: Deep Compression & SneakySnake (Spring 2021)

572 views * Streamed live on May 6, 2021 ik 21 GP 0) SHARE =+ SAVE

@ Onur Mutlu 'Lectures —— —
&> 19.2K subscribers - -

https://www.youtube.com/watch?v=vaM3wVvQey8&list=PL5Q2s0XY2Zi awYdimWVIUeqgsbY7TPGW4&index=7

https://www.youtube.com/watch?v=vaM3wVvQey8&list=PL5Q2soXY2Zi_awYdjmWVIUegsbY7TPGW4&index=7

Last Semester: Alpha 21264 & Mirage Cores

<X
SAMSUNG e —
EXYI'\OS NVIDIA
snapdragon
* Apple A series * Nintendo
= Many Android Smartphones (A14 used in Switch using
iPhone 12s) Nvidia Tegra XI

4 P Pl N 5714/15150

) DEPARTMENT OF INFORMATION TECHNOLOGY AND ELECTRICAL ENGINEERING (D-ITET)
Seminar in Computer Arch. - Session 7: The Alpha 21264 Microprocessor & Mirage Cores (Spring 2021)
753 views * Streamed live on May 20, 2021

ik 23 GJ 0) SHARE =+ SAVE

@ Onur Mutlu Lectures ANALYTICS EDIT VIDEO
> 19.2K subscribers

https://www.youtube.com/watch?v=7RPoDXLD2Qo&list=PL5Q2s0XY2Zi awYdimWVIUegsbY7TPGW4&index=8 9

https://www.youtube.com/watch?v=7RPoDXLD2Qo&list=PL5Q2soXY2Zi_awYdjmWVIUegsbY7TPGW4&index=8

Last Semester: FIGARO

.
FIGARO: working principle "

Transferring data between two local row buffers

Subarray A (Source) Subarray B (Destination)
1 ACTIVATE (A)
‘OO IIIIO Q“ ""‘ 2. RELOC
Wordline 0 Wordline 0
9900 -0 900 -0
Wordline 1 Wordline 1
- - L - - L] - -
- - - - - - - - - 5 o
- -
900 -0 9090 -0
Wordline N Wordline N
o - ~ & o - o~ zZ
el g 2 g 2 g 2 g
5 & 2 = 2 L 5§ & 3 3

f

“Local row buffer Local row buffer

Global row buffer

) 20:26/58:49

> bl

© DEPARTMENT OF INFORMATION TECHNOLOGY AND ELECTRICAL ENGINEERING (D-ITET)
Seminar in Computer Architecture - Session 9: FIGARO (Spring 2021)

386 views * Streamed live on Jun 3, 2021 ik 12 G0) SHARE =+ SAVE
P -
&> 19-2Ksubscribers

https://www.youtube.com/watch?v=YK3NpvTDvD4&list=PL502s0XY2Zi awYdimWVIUeqgsbY7TPGW4&index=9

10

https://www.youtube.com/watch?v=YK3NpvTDvD4&list=PL5Q2soXY2Zi_awYdjmWVIUegsbY7TPGW4&index=9

Today: Another Example
Paper Presentation

We Will Briefly Review This Paper

Sai Prashanth Muralidhara, Lavanya Subramanian, Onur Mutlu,
Mahmut Kandemir, and Thomas Moscibroda,

"Reducing Memory Interference in Multicore Systems via
Application-Aware Memory Channel Partitioning”
Proceedings of the 44th International Symposium on
Microarchitecture (MICRO), Porto Alegre, Brazil, December
2011. Slides (pptx)

Reducing Memory Interference in Multicore Systems via
Application-Aware Memory Channel Partitioning

Sai Prashanth Muralidhara Lavanya Subramanian Onur Mutlu
Pennsylvania State University Carnegie Mellon University Carnegie Mellon University

smuralid@cse.psu.edu Isubrama@ece.cmu.edu onur@cmu.edu

Mahmut Kandemir Thomas Moscibroda
Pennsylvania State University Microsoft Research Asia
kandemir@cse.psu.edu moscitho@microsoft.com

12

http://users.ece.cmu.edu/~omutlu/pub/memory-channel-partitioning-micro11.pdf
http://www.microarch.org/micro44/
http://users.ece.cmu.edu/~omutlu/pub/subramanian_micro11_talk.pptx

Application-Aware
Memory Channel Partitioning

Sai Prashanth Muralidhara 8 Lavanya Subramanian t

Onur Mutlut Mahmut Kandemir $
Thomas Moscibroda ¥

§ Pennsylvania State University TCarnegie Mellon University
I Microsoft Research

SAFARI Carnegie Mellon

Background, Problem & Goal

Main Memory 1s a Bottleneck

Memory | Main Memor
Controller < EChanneI > Y

= Main memory latency is long
= Core stalls, performance degrades
= Multiple applications share the main memory

15

Problem of Inter-Application Interference

i Memory)
i Controlle.ﬁ B Req

Main Memory

= Applications’ requests interfere at the main memory
= This inter-application interference degrades system

performance

= Problem further exacerbated due to
o Increasing number of cores
o Limited off-chip pin bandwidth

16

Outline

Goal:
Mitigate
Inter-Application Interference

N

Previous Approach: Our First Approach:
Application-Aware Memory Application-Aware Memory
Request Scheduling Channel Partitioning

~_

Our Second Approach:
Integrated Memory
Partitioning and Scheduling

Background: Main Memory

Columns

Row
Buffer Bu1Ffer Buffer

Memory ch | I\
Controller anne l/

FR' FCFS memory SChEd U I | I"Ig pOI |Cy [Zuravleff et al., US Patent '97; Rixner et al., ISCA *00]
o Row-buffer hit first
o Oldest request first

Unaware of inter-application interference

18

Novelty

Previous Approach

Goal:
Mitigate
Inter-Application Interference

Previous Approach: Our First Approach:
Application-Aware Memory Application-Aware Memory
Request Scheduling Channel Partitioning

Our Second Approach:
Integrated Memory
Partitioning and Scheduling

20

Application-Aware Memory Request Scheduling

Monitor application memory access
characteristics

Rank applications based on memory access
characteristics

Prioritize requests at the memory controller,
based on ranking

21

An Example: Thread Cluster Memory Scheduling

/h/'gher)
priority
Non- -
_ - - intensive —
Memory-non-intensive clust =

J
’

s
Y
’ Pﬂaﬂly priority
Intensw
cluster

Figure: Kim et al.,, MICRO 2010

Threads in t

system

Memory-intensive

22

Application-Aware Memory Request Scheduling

Advantages
Reduces interference between applications by
request reordering
Improves system performance

Disadvantages

Requires modifications to memory scheduling logic for

o Ranking
o Prioritization

Cannot completely eliminate interference by request
reordering

23

Key Approach and Ideas

The Paper’s Approach

Goal:
Mitigate
Inter-Application Interference

Our First Approach:

Application-Aware Memory

Channel Partitioning

25

Observation: Modern Systems Have Multiple Channels

Core

Red <}:D Memory Channel 0 Memory

App Controller <:>
Core ><
Blue QZD Memory C Channell) Memory

App Controller

A new degree of freedom
Mapping data across multiple channels

26

Data Mapping in Current Systems

Core
Red @ Memory
App Controller

2

Blue <}:{> Memory
Controller

App

Page

Memo

Core

=
(b

Causes interference between applications’ requests

27

Partitioning Channels Between Applications

Core
Red @ Memory
App Controller

QZD Memory
Controller

Page

Memo

Memo

Eliminates interference between applications’ requests

28

Overview: Memory Channel Partitioning (MCP)

= Goal
o Eliminate harmful interference between applications

= Basic Idea

o Map the data of badly-interfering applications to different
channels

= Key Principles
o Separate low and high memory-intensity applications
a Separate low and high row-buffer locality applications

29

Key Insight 1: Separate by Memory Intensity

Map data of low and high memory-intensity applications
to different channels

30

Key Insight 2: Separate by Row-Butfer Locality

Map data of low and high row-buffer locality applications
to different channels

31

Mechanisms (in some detail)

32

Memory Channel Partitioning (MCP) Mechanism

/ Hardware
1. Profile applications

2. Classify applications into groups

3. Partition channels between application groups
4. Assign a preferred channel to each application
5. Allocate application pages to preferred channel

N

System
Software

33

1. Profile Applications

Hardware counters collect application memory
access characteristics

Memory access characteristics

o Memory intensity:

_ast level cache Misses Per Kilo Instruction (MPKI)
a Row-buffer locality:

Row-buffer Hit Rate (RBH) - percentage of
accesses that hit in the row buffer

34

2. Classity Applications

Low High
Low Intensity High Intensity
Test RBH

High Intensity High Intensity

Low Row-Buffer High Row-Buffer
Locality Locality

3. Partition Channels Among Groups: Step 1

Low Intensity

High Intensity
Low Row-Buffer
Locality

High Intensity
High Row-Buffer
Locality

>

Assign number of channels
« proportional to number of
*.applications in group

gu—

[

Channel 1

Channel 2

Channel 3

Channel N-1

Channel N

36

3. Partition Channels Among Groups: Step 2

Low Intensity ‘; 7

High Intensity -
Low Row-Buffer
Locality

Assign number of channels
proportional to bandwidth

demand of group
High Intensity

High Row-Buffer
Locality

pu—

|1

Channel 1

Channel 2

Channel 3

Channel N-1

Channel N

37

4. Assign Preferred Channel to Application

= Assign each application a preferred channel from
its group’s allocated channels

= Distribute applications to channels such that
group’s bandwidth demand is balanced across its
channels

MPKI: 1
Channel 1

MPKI: 1 MPKI: 3

| MPKL: 3

MPKI: 4

38

5. Allocate Page to Prefterred Channel

Enforce channel preferences
computed in the previous step

On a page fault, the operating system

o allocates page to preferred channel if free page
available in preferred channel

o if free page not available, replacement policy tries to
allocate page to preferred channel

o if it fails, allocate page to another channel

39

Interval Based Operation

Current AInterval

Next lInterval

[

\

|

—_—

1. Profile applications

\4

time

5. Enforce channel preferences

2. Classify applications into groups
3. Partition channels between groups
4. Assign preferred channel to applications

40

Integrating Partitioning and Scheduling

Goal:
Mitigate
Inter-Application Interference

N

Previous Approach: Our First Approach:
Application-Aware Memory Application-Aware Memory
Request Scheduling Channel Partitioning

~_

Our Second Approach:
Integrated Memory
Partitioning and Scheduling

Observations

= Applications with very low memory-intensity rarely
access memory
- Dedicating channels to them results in precious
memory bandwidth waste

= They have the most potential to keep their cores busy
- We would really like to prioritize them

= They interfere minimally with other applications
—> Prioritizing them does not hurt others

42

Integrated Memory Partitioning and Scheduling (IMPS)

= Always prioritize very low memory-intensity
applications in the memory scheduler

= Use memory channel partitioning to mitigate
interference between other applications

43

Key Results:
Methodology and Evaluation

Hardware Cost

Memory Channel Partitioning (MCP)

o Only profiling counters in hardware

o No modifications to memory scheduling logic

o 1.5 KB storage cost for a 24-core, 4-channel system

Integrated Memory Partitioning and Scheduling (IMPS)

o A single bit per request
o Scheduler prioritizes based on this single bit

45

Methodology

Simulation Model
24 cores, 4 channels, 4 banks/channel

Core Model
Out-of-order, 128-entry instruction window
512 KB L2 cache/core

Memory Model — DDR2

Workloads

240 SPEC CPU 2006 multiprogrammed workloads
(categorized based on memory intensity)

Metrics

_ IPC_shared
System Performance Weighted Speedup=2_~—2

46

Previous Work on Memory Scheduling

FR-FCFS [zuravieff et al., US Patent 1997, Rixner et al., ISCA 2000]
o Prioritizes row-buffer hits and older requests
o Application-unaware

ATLAS [Kim et al., HPCA 2010]
o Prioritizes applications with low memory-intensity

TCM [Kim et al., MICRO 2010]
o Always prioritizes low memory-intensity applications
o Shuffles request priorities of high memory-intensity applications

47

Comparison to Previous Scheduling Policies

Averaged over 240 workloads

1.15
5980
8 44 I A B FRFCFS
©
i \
g £ 1.05 m ATLAS
© ‘T
e 9 HTCM
v Q. 1 -
S E
2 9 = MCP
£.0.95 -
A ® IMPS
0.9 -

S B BP Y2785, 00 1he becL s SehpdeT
dt Iower naraware Cos

48

Interaction with Memory Scheduling

Averaged over 240 workloads

1.12 / ‘)

U 11 -

[=
s ©
g 5
TEB = N\l NVFES
= = IMPS
2

FRFCFS ATLAS TCM

IMPS improves performance regardless of scheduling policy
Highest improvement over FRFCFS as IMPS designed for FRFCFS

49

Summary

50

Summary

Uncontrolled inter-application interference in main memory
degrades system performance

Application-aware memory channel partitioning (MCP)

o Separates the data of badly-interfering applications
to different channels, eliminating interference

Integrated memory partitioning and scheduling (IMPS)
a Prioritizes very low memory-intensity applications in scheduler
o Handles other applications’ interference by partitioning

MCP/IMPS provide better performance than application-
aware memory request scheduling at lower hardware cost

51

Strengths

Strengths of the Paper

Novel solution to a key problem in multi-core systems,
memory interference; the importance of problem will
Increase over time

Keeps the memory scheduling hardware simple
Combines multiple interference reduction techniques

Can provide performance isolation across applications
mapped to different channels

General idea of partitioning can be extended to smaller
granularities in the memory hierarchy: banks, subarrays,
etc.

Well-written paper

Thorough simulation-based evaluation
53

Weaknesses

54

Weaknesses/Limitations of the Paper
Mechanism may not work effectively if workload changes
behavior after profiling

Overhead of moving pages between channels restricts
mechanism’s benefits

Small number of memory channels reduces the scope of
partitioning

Load imbalance across channels can reduce performance

o The paper addresses this and compares to another mechanism

Software-hardware cooperative solution might not always
be easy to adopt

Evaluation is done solely in simulation
Evaluation does not consider multi-chip systems

Are these the best workloads to evaluate?
55

Recall: Try to Avoid Rat Holes

Performance Analysis Rat Holes

>

Specific
Details

R’

Performance Configuration
Criteria

R °

Benchmark

Source: P. Jarupunphol, “Using Buddhist Insights to Analyse the Cause of System Project Failures,” Ph.D. Thesis, 2013 56

Thoughts and Ideas

Extensions (I)

Can this idea be extended to different granularities in
memory?

o Partition banks, subarrays, mats across workloads

Can this idea be extended to provide performance
predictability and performance isolation? How?

How can MCP be combined effectively with other
interference reduction techniques?

o E.g., source throttling methods [Ebrahimi+, ASPLOS 2010]
o E.g., thread scheduling methods

Can this idea be evaluated on a real system? How?

58

Aside: Source Throttling

= Eiman Ebrahimi, Chang Joo Lee, Onur Mutlu, and Yale N. Patt,
"Fairness via Source Throttling: A Configurable and High-
Performance Fairness Substrate for Multi-Core Memory
Systems"”
Proceedings of the 15th International Conference on Architectural
Support for Programming Languages and Operating
Systems (ASPLOS), pages 335-346, Pittsburgh, PA, March 2010. Slides
(pdf)

Best paper award.

Fairness via Source Throttling: A Configurable and High-Performance
Fairness Substrate for Multi-Core Memory Systems

Eiman Ebrahimif Chang Joo Leef Onur Mutlu§ Yale N. Pattf

fDepartment of Electrical and Computer Engineering §Computer Architecture Laboratory (CALCM)
The University of Texas at Austin Carnegie Mellon University
{ebrahimi, cjlee, patt} @ece.utexas.edu onur@cmu.edu

SAFARI >

https://people.inf.ethz.ch/omutlu/pub/fst_asplos10.pdf
http://www.ece.cmu.edu/CALCM/asplos10/doku.php
https://people.inf.ethz.ch/omutlu/pub/ebrahimi_asplos10_talk.pdf

Takeaways

Key Takeaways

A novel method to reduce memory interference
Simple and effective
Hardware/software cooperative

Good potential for work building on it to extend it
a To different structures
a To different metrics

o Multiple works have already built on the paper (see bank
partitioning works in PACT 2012, HPCA 2012 + HPCA 2013)

Easy to read and understand paper
61

Example: Application to Core Mapping

Reetuparna Das, Rachata Ausavarungnirun, Onur Mutlu, Akhilesh
Kumar, and Mani Azimi,

"Application-to-Core Mapping Policies to Reduce Memory
System Interference in Multi-Core Systems"

Proceedings of the 19th International Symposium on High-Performance
Computer Architecture (HPCA), Shenzhen, China, February

2013. Slides (pptx)

Application-to-Core Mapping Policies
to Reduce Memory System Interference in Multi-Core Systems

Reetuparna Dasx Rachata Ausavarungnirunf Onur Mutlut Akhilesh Kumarf Mani Azimit
University of Michiganx Carnegie Mellon Universityf Intel Labs:

62

https://people.inf.ethz.ch/omutlu/pub/application-to-core-mapping_hpca13.pdf
http://www.cs.utah.edu/~lizhang/HPCA19/
https://people.inf.ethz.ch/omutlu/pub/das_hpca13_talk.pptx

Application-to-Core Mapping to Reduce Interterence

= Reetuparna Das, Rachata Ausavarungnirun, Onur Mutlu, Akhilesh
Kumar, and Mani Azimi,
"Application-to-Core Mapping Policies to Reduce Memory
System Interference in Multi-Core Systems”
Proceedings of the 19th International Symposium on High-Performance
Computer Architecture (HPCA), Shenzhen, China, February 2013.
Slides (pptx)

= Key ideas:
o Cluster threads to memory controllers (to reduce across chip interference)

o Isolate interference-sensitive (low-intensity) applications in a separate
cluster (to reduce interference from high-intensity applications)

o Place applications that benefit from memory bandwidth closer to the
controller (to improve performance)

SAFARI 63

http://users.ece.cmu.edu/~omutlu/pub/application-to-core-mapping_hpca13.pdf
http://www.cs.utah.edu/~lizhang/HPCA19/
http://users.ece.cmu.edu/~omutlu/pub/das_hpca13_talk.pptx

Multi-Core to Many-Core

HE

Multi-Core

Many-Core

64

Many-Core On-Chip Communication

Applications

A A
Y
$
A

v

A - A

A Memory
Controller

Shared
$ Cache Bank

65

Problem: Spatial Task Scheduling

Applications Cores

'z

How to map applications to cores?

66

Challenges in Spatial Task Scheduling

Applications Cores

—
—

How to reduce communication distance?

N

How to reduce destructive interference between applications?

\-;

How to prioritize applications to improve throughput?

67

Application-to-Core Map

ping

Improve Bandwidth
Utilization

\

Improve Bandwidth
Utilization

Radial
. Mapping

Isolation

Improve Locality
Reduce Interference

Reduce Interference

SAFARI

68

Step 1 — Clustering

A A

L Memory

\ A Controller

A A

Inefficient data mapping to memory and caches

SAFARI 69

Step 1 — Clustering

Cluster O

Cluster 1

Al [A ¢

Cluster 2

A

Cluster 3

Improved Locality

Reduced Interference

SAFARI

70

System Performance

1.3

m BASE m BASE+CLS

Normalized Weighted
Speedup

MPKI1000 MPKI1500

System performance improves by 17%

71

Network Power

Normalized NoC Power

1.2
m BASE = BASE+CLS “A2C

1.0 -

0.8

0.6 -

0.4 -

0.2 -

0.0 -

MPKI500 MPKI1000 MPKI1500 MPKI2000 Avg

Average network power consumption reduces by 52%

72

Example: Application to Core Mapping

Reetuparna Das, Rachata Ausavarungnirun, Onur Mutlu, Akhilesh
Kumar, and Mani Azimi,

"Application-to-Core Mapping Policies to Reduce Memory
System Interference in Multi-Core Systems"

Proceedings of the 19th International Symposium on High-Performance
Computer Architecture (HPCA), Shenzhen, China, February

2013. Slides (pptx)

Application-to-Core Mapping Policies
to Reduce Memory System Interference in Multi-Core Systems

Reetuparna Dasx Rachata Ausavarungnirunf Onur Mutlut Akhilesh Kumarf Mani Azimit
University of Michiganx Carnegie Mellon Universityf Intel Labs:

73

https://people.inf.ethz.ch/omutlu/pub/application-to-core-mapping_hpca13.pdf
http://www.cs.utah.edu/~lizhang/HPCA19/
https://people.inf.ethz.ch/omutlu/pub/das_hpca13_talk.pptx

Example Follow-On Works (1I)

https://Iph.ece.utexas.edu/merez/uploads/MattanErez/bpart hpcal2.pdf

Balancing DRAM Locality and Parallelism in Shared Memory CMP Systems

Min Kyu Jeong”, Doe Hyun Yoon', Dam Sunwoo?, Michael Sullivan®, Ikhwan Lee”, and Mattan Erez"

" Dept. of Electrical and Computer Engineering, The University of Texas at Austin
I Intelligent Infrastructure Lab, Hewlett-Packard Labs
t ARM Inc.

{mk jeong, mbsullivan, ikhwan, mattan.erez}@mail.utexas.edu
doe—hyun.yoon@hp.com dam.sunwoo@arm.com

74

https://lph.ece.utexas.edu/merez/uploads/MattanErez/bpart_hpca12.pdf

Example Follow-On Work (I1I)

https://liulei-sys-inventor.github.io/files/pact140-liu-final.pdf

A Software Memory Partition Approach for Eliminating
Bank-level Interference in Multicore Systems

Lei Liu, Zehan Cui, Mingjie Xing and Chengyong Wu
State Key Laboratory of Computer Architecture, Institute of Computing Technology,
Chinese Academy of Science

(Revised 2016-01-01)

75

https://liulei-sys-inventor.github.io/files/pact140-liu-final.pdf

Open Discussion

76

Discussion Starters

Thoughts on the previous ideas?
How practical is this?

Will the problem become bigger and more important over
time?

Will the solution become more important over time?

Are other solutions better?
Is this solution clearly advantageous in some cases?

77

Seminar in

Computer Architecture
Meeting 4: Memory Channel Partitioning

Prof. Onur Mutlu

ETH Zurich
Fall 2021
14 October 2021

