
SQRL: Hardware Accelerator for Collecting Software Data
Structures

Snehasish Kumar,
Arrvindh Shriraman

School of Computing Science
Simon Fraser University
{ska124,ashriram}

@cs.sfu.ca

Vijayalakshmi Srinivasan
IBM Research

viji@us.ibm.com

Dan Lin, Jordon Phillips
School of Computing Science

Simon Fraser University
{lindanl,jjp14}@cs.sfu.ca

ABSTRACT
Software data structures are a critical aspect of emerging data-

centric applications which makes it imperative to improve the en-
ergy efficiency of data delivery. We propose SQRL, a hardware ac-
celerator that integrates with the last-level-cache (LLC) and enables
energy-efficient iterative computation on data structures. SQRL in-
tegrates a data structure-specific LLC refill engine (Collector) with
a compute array of lightweight processing elements (PEs). The col-
lector exploits knowledge of the compute kernel to i) run ahead of
the PEs in a decoupled fashion to gather data objects and ii) throttle
fetch rate and adaptively tile the dataset based on the locality charac-
teristics. The collector exploits data structure knowledge to find the
memory level parallelism and eliminate data structure instructions.

1. Introduction
Emerging applications in a diverse set of fields depend on iterative

computation over large data structures [4]. Interestingly, the main
benefits of parallelizing such applications come from fetching mul-
tiple data objects simultaneously and hiding long memory latencies.
Unfortunately, the load/store interface of general-purpose processors
do not scale to exploit the available memory bandwidth.

We propose SQRL, an accelerator that integrates with the last-
level-cache and enables energy-efficient iterative computation on data
structures. Supporting iterative computation requires SQRL to adapt
to the locality requirements of the compute kernel and effectively
supply data as the kernel streams over the entire dataset. Inspired
by the decoupled access-execute paradigm [6], SQRL partitions it-
erative computation on data structures into two regions: the data
collection and the compute kernel. SQRL employs a data structure-
specific controller (called the Collector) that traverses the data struc-
ture, fetching the elements and staging the corresponding cache lines
in the LLC until the array of Processing Elements (PEs) consume
them. The PEs operate on the data objects implicitly supplied by the
collector. SQRL is aware of the compute iterations and appropriately
tiles the data to fit in the LLC to prevent thrashing. Similarly, the
collector is aware of the organization of the data structure and runs
ahead of the compute kernel so as to prefetch the objects to hide
memory latency. The collector stalls if the LLC starts getting filled

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the Owner/Author.

PACT’14, August 24–27, 2014, Edmonton, AB, Canada.

Copyright 2014 ACM 978-1-4503-2809-8/14/08 ...$15.00.

http://dx.doi.org/10.1145/2628071.2628118.

with locked lines to ensure the LLC does not evict data which has
not been consumed by the compute kernel.

2. SQRL: Hardware accelerator for collecting

software data structures
To assist the acceleration of iterative computation on data struc-

tures, we have developed a software runtime to construct a load slice
and store slice which include information on the type of data struc-
tures, the location of the data structure and the object indices needed
within an iteration. Our benchmarks are implemented using C++
STL (Standard Template Library) and use templated iterators. We
replace the iterators with calls to the SQRL’s C++ runtime environ-
ment. We illustrate SQRL’s operation using Vector Collectors for
the Blackscholes benchmark. Each iteration in Blackscholes (Fig-
ure 1) reads 5 vector elements of type float, one vector of type char
and writes into a float vector. The load slice of Blackscholes consists
of the following vectors, spot[],strike[],rate[],volatility[], time[] and
type[] and the store slice consists of price[]; all vectors employ a unit
stride.

In Blackscholes, each of the vectors are accessed with a unit stride
i.e., in the ith iteration the ith element is accessed. The Keys/Iter
is a single entry with offset 0. The descriptor limits the number of
vectors accessed per-loop iteration (8 in this paper). The descrip-
tor for spot[] in Blackscholes would be: <LD,&spot[0], FLOAT (4
bytes), nOptions (length of vector), [0] (unit stride access) >.

The loop is unrolled with each PE executing a single iteration of
the compute kernel; PEs sync up after each iteration. Each iteration
requires space for 4×5 (floats) + 1 (char) + 4 (float) = 25 bytes. The
1 KB OBJ-$ can thus hold data for 40 iterations of the Blackscholes
kernel (a loop tile). As shown in Figure 1, the Collector issues an

asynchronous request for data (②3). Once the data is filled into the

LLC, the Ref. Counter is set (②4) to ensure that the data is not evicted
prior to consumption by the PEs. The collector pushes the required

data into the OBJ-$ (②1) and starts a wavefront (set of iterations) to

commence execution (②2). Each wavefront consists of 8 concurrent
iterations (as SQRL has 8 PEs). For Blackscholes, there 5 wavefronts
are executed until all the data in the OBJ-$ is consumed and a refill

(②1) is required. The dirty data in the OBJ-$ is written back to the

LLC and the Ref. Counter is unset (②5).

3. Evaluation
We evaluate SQRL using a detailed cycle-accurate x86 simulator

and the parameters are summarized in Table 1. We use Macsim [1]
to model the out-of-order core(footnote), GEMS [2] to model the
cache hierarchy, and DRAMsim2 [5] to model the main memory of
the system. We added support for SQRL’s cores into Macsim, and
model the state machine of SQRL’s collectors. We model core and

475

D
R

A
M

D1()

D2()

price()

i = 0

D1()

D2()

i = 8

PEs Obj. Cache
spot[0…39]

type[0…39]

Ref.# Data

Last-Level Cache

Mem.
Req.3

4

Collector
1

Refill

1

Start
2

begin blackscholes

 // Initialize collectors
 c_spot = new coll(LD,&spot,FP,#length,0,VEC)

 // Run collectors in step.
 group.add (c_spot…c_time);

 // Unroll to # of PEs. Tile based on Obj.$ size.
 start(kernel(),#iterations)

end

...

 c_time = new coll (LD,&time,FP,#length,0,VEC) 5 End

#
R

e
f-

-

price()

...

#
R

e
f+

+

3

c
o

m
p

u
te

 l
o

o
p

for Tile

price[0…39]

...

Left: Blackscholes kernel modified to work with SQRL. ②1 Loop tile refill from LLC triggered every 40 iterations as OBJ-$ can hold 40

iterations worth of data. ②2 Execution proceeds in tiles. In Blackscholes a tile of 40 iterations executed on the PE as 8 unrolled iterations at

a time. ②3 Memory request issued by collector to fetch the cache blocks corresponding to the data structure. LLC refills from memory. ②4

collector locks line by setting Ref.# to number of elements needed in the iteration. ②5 When the compute iteration completes, the PE
decrements the reference count to release the cache lines. Ref.#: 6bit field.

Figure 1: Blackscholes Execution on SQRL.

PE energy using McPAT using 45nm technology, and use CACTI [3]
to model energy of the caches. The energy consumption of SQRL
components are modeled with the templates for the register files,
buffers, and ALUs from the Niagara 1 pipeline.

We evaluate the efficacy of SQRL on a set of 6 benchmarks, Blacksc-
holes, Datacube, BTree, HashTable, TextSearch, Recommender. The
workloads include multiple iterative regions and we profile the entire
run apart from the initialization phase.

Table 1: System parameters

Cores 2 GHz, 4-way OOO, 96 entry ROB, 6 ALU, 2 FPU

L1 64K 4-way D-Cache, 3 cycles

LLC 4M shared 16 way, 4 Banks, 20 cycles Directory-
based MESI

Energy Params L1 (100pJ Hit). LLC (230pJ hit)
L1-LLC link (6.8pJ/byte), LLC-DRAM (62.5 pJ
per byte)

SQRL Components

2GHz. 8 PEs, 4 stages in-order at 2 Ghz, 1 FPU
and 1 ALU (per PE) Instruction buffer (1KB, 256
entries)
INT RF: 32 entries, FP RF: 32 entries

Obj-$ (1KB fully-assoc. sector cache, 32 tags). 1
cycle

SQRL Area Overhead (at 45nm using McPAT)

SQRL 24.099mm2 (8 PEs)

SQRL w/o FPU 5.46mm2

3.1 SQRL vs. OOO Baseline

Result 1: SQRL improves performance of the kernel by 18× com-
pared to a general purpose processor. Maximum speedup (BTree):
111×. Minimum speedup (Blackscholes): 7×.
Result 2: SQRL is able to reduce energy in the PEs relative to the
OOO core by 8× on average.
Result 3: On-chip network energy is reduced on average by 2× by
eliminating L1-LLC transfers.
Result 4: SQRL’s shallow memory hierarchy helps reduce on-chip
cache access energy by 21×.
Result 5: SQRL is able to attain on average a 13× increase in off-
chip DRAM bandwidth. Max: 102×(BTree)

4. Summary
We have focused on exploiting data structure information to pro-

vide compute accelerators and kilo-instruction processors with energy-
efficient interfaces to the memory hierarchy. We developed SQRL,
a hardware accelerator that integrates with the LLC and supports

0

15

30

45

60

75

0

1

2

3

4

5
(Higher is better)

Network Cache

 E
n

er
g

y
 R

ed
u

ct
io

n
 (

N
et

w
o

rk
)

 E
n

er
g

y
 R

ed
u

ct
io

n
 (

C
ac

h
e)

1
6

.8

Figure 2: Energy reduction (Unit: × Times). SQRL vs OOO. Left
Y-axis: Network energy. Right Y-axis: Cache energy.

energy efficient iterative computation on software data structures.
SQRL exploits information about the computation kernel and ac-
tively manages the space in the LLC to ensure that no data fetch
is wasted. SQRL deploys cache refill engines that are customized
for software data structures which increases the memory level paral-
lelism, eliminates the penalty of transfers through the cache hierar-
chy, and removes data structure instructions.

5. References
[1] Macsim : Simulator for heterogeneous architecture -

https://code.google.com/p/macsim/.

[2] M. M. K. Martin, D. J. Sorin, B. M. Beckmann, M. R. Marty,
M. Xu, A. R. Alameldeen, K. E. Moore, M. D. Hill, and D. A.
Wood. Multifacet’s general execution-driven multiprocessor
simulator (gems) toolset. SIGARCH Comput. Archit. News,
33(4):92–99, Nov. 2005.

[3] N. Muralimanohar, R. Balasubramonian, and N. Jouppi.
Optimizing NUCA Organizations and Wiring Alternatives for
Large Caches with CACTI 6.0. In PROC of the 40th MICRO,
2007.

[4] P. Ranganathan. From Micro-processors to Nanostores:
Rethinking Data-Centric Systems. Computer,
44(January):39–48, 2011.

[5] P. Rosenfeld, E. Cooper-Balis, and B. Jacob. Dramsim2: A
cycle accurate memory system simulator. Computer
Architecture Letters, 10(1):16 –19, jan.-june 2011.

[6] J. E. Smith. Decoupled access/execute computer architectures.
In 25 years of the international symposia on computer
architecture (selected papers), 1998.

476

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: move down by 7.92 points
 Normalise (advanced option): 'original'

 32

 D:20140711100321
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 795
 352

 Fixed
 Down
 7.9200
 0.0000

 Both
 10
 AllDoc
 10

 CurrentAVDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0
 Quite Imposing Plus 2
 1

 1
 2
 1
 2

 1

 HistoryList_V1
 qi2base

