
Using Memory Errors to Attack

a Virtual Machine

Sudhakar Govindavajhala

Andrew W. Appel

IEEE Security and Privacy

2003

Executive Summary

2

Executive Summary

◼ Observation

◼ Key Idea and Implementation

◼ Key Results

◼ Takeaways

3

Executive Summary

◼ Observation

❑ Type-checking systems are safe under the assumption that the
computer faithfully executes its specified instructions.

❑ This premise is false in the presence of hardware faults.

◼ Key Idea and Implementation

❑ Write a program that uses memory errors to overtake the system by
conducting a type confusion attack.

❑ Manipulate data placement to maximize the probability of a memory
error resulting in a type confusion.

◼ Key Results

❑ Single bit errors in the program’s data space can be exploited to
execute arbitrary code with a probability of ~70%.

◼ Takeaways

❑ Virtual machines that employ type checking can be vulnerable to
attacks that exploit memory errors

4

Outline

5

Outline

◼ Background

◼ Exploit

◼ Security Analysis

◼ Evaluation of the Attack

◼ Potential Countermeasures

6

Outline

◼ Background

❑ Isolation

❑ Type checking

❑ Java applets and Java Cards

❑ Memory Errors

◼ Exploit

◼ Security Analysis

◼ Evaluation of the Attack

◼ Potential Countermeasures

7

Background

8

Isolation

◼ Separate trusted components from untrusted ones

❑ Example: Virtual memory

❑ Each process operates in its own virtual address space

◼ Type-checking for sound type systems

❑ Employed in virtual machines

❑ Sound type system:

◼ Rejects all incorrect programs

◼ Every evaluation of an expression is guaranteed to match the
expression’s static type

9

Type Checking

◼ What is type checking?

❑ Verifying and enforcing constraints of types

❑ Static vs. dynamic type checking

◼ Ensure type-safety

❑ Do not allow operations/conversions that violate the rules of the
system

◼ Why type checking?

❑ Allows closer coupling between trusted and untrusted
components

❑ Object-oriented shared memory interfaces

❑ No need for message passing / remote procedure calls

❑ Same address space for trusted and untrusted programs

10

Type Checking in JVM

◼ At compile time (static)

❑ Simulates program execution to determine if types are correct

❑ After code is verified, it is trusted

❑ Done by the bytecode verifier

◼ At runtime (dynamic)

❑ No checks for type safety

❑ Exceptions:

◼ Casts

◼ Array stores

◼ Key assumption

❑ Read value is the same as when it was written

❑ Time-of-check-to-time-of-use – the program changes after it
was checked but before it was executed

11

Java Applets & Java Cards

Applets

◼ Program with few privileges

❑ No network access

❑ No access to the file system

◼ Executed in the JVM

❑ Treated as untrusted

Java Cards

◼ Smart Cards

◼ Allow execution of Java Applets

◼ Store secret information (e.g. cryptographic keys, PIN)

12

Memory Errors

◼ What are memory errors?

❑ Incorrect recall or complete loss of information in the memory
system

◼ Soft memory errors

❑ Single event upsets (SEU) – change of state in a single bit

❑ Transient – only lasts a short time

❑ Caused by some kind of disturbance (e.g., RowHammer)

◼ Hard memory errors

❑ Permanent

❑ Error in the circuit (e.g. process defect)

◼ Frequency of memory errors

❑ Once in several months (2003)

❑ About 10 a day per DIMM per Year1

1Bianca Schroeder et al., DRAM Errors in the Wild: A Large-Scale Field Study. SIGMETRICS 2009. 13

Causes of Memory Errors

◼ Alpha particles

❑ Don’t penetrate matter well

◼ Beta rays

❑ Interact too strong with plastic and metal packaging

◼ X-rays

❑ Not enough energy

❑ Not very portable

◼ High-energy protons and neutrons

❑ Need a particle accelerator

◼ Infrared

❑ Electronic components become unreliable at high
temperatures

14

Related Research

◼ D. Boneh et al., On the Importance of Checking Cryptographic

Protocols for Faults. EUROCRYPT 1997.

❑ Used random hardware faults to recover secrets in cryptographic

protocols.

◼ Anderson R., Kuhn M. Low Cost Attacks on Tamper Resistant

Devices. Security Protocols Workshop 1997.

❑ Studies attack techniques on smartcards and other security

processors by inducing errors at specific locations at specific points

in time.

15

Outline

◼ Background

◼ Exploit

❑ Threat Model

❑ Type Confusion Attack

❑ Attack Program

❑ System Level Integration

◼ Security Analysis

◼ Evaluation of the Attack

◼ Potential Countermeasures

16

Exploit

17

Threat Model

◼ Target is a virtual machine that uses type checking as its
protection mechanism

◼ Ability to provide a verified (type checked) program, which
is loaded into memory and executed

◼ Physical Access to the machine

◼ No control over data memory of the program

18

Type Confusion Attack

◼ Circumvent the type-safety

❑ Obtain references of different type that point to the same
object

◼ Read or write to arbitrary location in the programs address
space

❑ Allows execution of arbitrary code

19

Attack Program

◼ Definition of two object types

❑ Object size has to be a power of two

❑ Assuming a 32-bit machine

◼ A acts as the pointer object

◼ B acts as the filler object

20

Memory Layout

◼ Allocate one object of type A

❑ b field points to an arbitrary object
of type B

◼ Allocate as many objects as possible
of type B

❑ All fields a1 to a7 point to the single
object of type A

Detecting a Bit Flip

◼ Wait for a bit flip to happen

◼ Detection of a bit flip

❑ Iterate over all allocated objects of type B

❑ Check if all references still points to the object of type A

❑ Repeat until this is not the case anymore

◼ Assume the object of type A is at address x in memory

❑ All references in objects of type B store the address x

❑ If a bit flip happens that reference stores an address that
differs from x

22

Implications of a Bit Flip

◼ Bitflip in bits 10 to 27

❑ Reference address changes by more than the object size

❑ Reference now points to header of B object

Implications of a Bit Flip

◼ Bits 2 – 9

❑ Reference address changes by less than the object size

❑ Reference now points within A object or adjacent object

Implications of a Bit Flip

◼ Other bits

❑ Program crashes

◼ Very high order bits

❑ Addresses point out of bounds (outside of the allocated heap)

◼ Very low order bits

❑ Addresses are not properly aligned

Implications of a Bit Flip

26

A header

A a1

A a2

B b

A a4

A a5

int i

A a7

x

…

Accessing the

A object

A header

A a1

A a2

B b

A a4

A a5

int i

A a7

x

…

Accessing the

b field

x + offset

Implications of a Bit Flip

27

B header

A a1

A a2

A a3

A a4

A a5

A a6

A a7

B header

A a1

A a2

A a3

A a4

A a5

A a6

A a7

x

x

x

b384 b384

Implications of a Bit Flip

◼ New address + offset almost always stores the address x

◼ q stores points to the A object but has type B

◼ r and q both store x but the references have different types
→ Achieved a type confusion

A r; B b384; B q;

r = b384.a6;

q = r.b;

Violating Type Safety

◼ Assume we have two references of different type
that point to the same object.

◼ Type A reference p & Type B reference q

◼ Write address into integer field

◼ Interpret integer as an address

29

System Level Integration

◼ This allows reading and writing of arbitrary addresses in the
address space of the trusted process

◼ Fill array with machine code and overwrite virtual method
table with address of array

◼ Overwrite the Security Manager

❑ Class that enforces security policies

30

Outline

◼ Background

◼ Exploit

◼ Security Analysis

◼ Evaluation of the Attack

◼ Potential Countermeasures

31

Security Analysis

32

Analysis

◼ Calculate probability of a single bit flip being exploitable

◼ Counting of “cousin” objects

❑ Objects whose addresses differ by a single bit

◼ Multiple bit flips can be exploited with a lower probability

❑ 6-bit error about one-fourth as likely to be exploitable

33

Outline

◼ Background

◼ Exploit

◼ Security Analysis

◼ Evaluation of the Attack

❑ Methodology

❑ Results

❑ Exploiting before crashing

❑ Safe bit flips

◼ Potential Countermeasures

34

Methodology

35

Methodology

◼ Two commercial JVMs from IBM and Sun on RedHat Linux

◼ Three different sets of experiments

❑ Privileged Java thread inside that uses Interface to a C
function that flips a bit in the processes address space

❑ Unmodified JVM with separate Linux process that flips random
bits in physical memory using /dev/mem

❑ Unmodified JVM and induced memory errors by heating to 100
degrees Celsius

36

Results

37

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Process Memory Physical Memory Heating

Attack Performance

IBMs Java TM2 SUNs Java TM2

Exploiting before Crashing & Safe Bit Flips

◼ Errors can crash the system

❑ While dereferencing or garbage collection

◼ Probability of exploiting the error before the system crashes
is about 71% according to measurements

◼ Safe bit flips

❑ Only exploit bit flips in the bits 10 – 27

❑ Bit flips in 2 – 9 are indistinguishable from flips in the extreme
high/low order bits

❑ This improves the exploit-before-crash ratio to 94%

38

Outline

◼ Background

◼ Exploit

◼ Security Analysis

◼ Evaluation of the Attack

◼ Potential Countermeasures

39

Potential Countermeasures

40

Countermeasures

◼ Error correcting memory

❑ Use error correction codes to detect and correct errors

❑ Memory overhead of 12.5% to detect 1-bit and 2-bit errors

◼ Parity checking

❑ Parity bit stores parity of number of set bits

◼ Software error logging

❑ Log occurring errors and adapt behavior

❑ Disable untrusted software

❑ Shut down

◼ Does not cover the whole datapath

41

Conclusion

◼ Observation

◼ Key Idea and Implementation

◼ Key Results

❑ Single bit errors in the program’s data space can be exploited to
execute arbitrary code with a probability of ~70%.

◼ Takeaways

❑ Virtual machines that employ type checking can be vulnerable to
attacks that exploit memory errors

❑ Chosen program attacks alter the assumptions under which
protection mechanisms should be designed

❑ Hardware error-detection and correction with software logging of
errors is the best defense

42

Critique

43

Strengths

◼ Novel idea

❑ It was the first paper that used memory errors to take over a
system

◼ Relevance to this day

❑ Type confusion attacks are used to this day

❑ Exploitation of memory errors escalated in relevance after the
discovery RowHammer1 (2014)

◼ It inspired a lot of research

◼ Strong verification

❑ They created a proof of concept

◼ Affects a high number of systems

44

1Kim et al. Flipping Bits in Memory Without Accessing Them: An Experimental Study of DRAM Disturbance

Errors. ISCA 2014

Strengths & Weaknesses

◼ Very utopian threat model

❑ Chosen program attack

❑ Physical access

◼ No satisfactory protection mechanism

◼ Experimental results

❑ Results only for one machine

❑ Small sample size on heating experiment

◼ Writing is unstructured

45

Ideas & Takeaways

◼ Do error correction in the processor to solve the total
datapath problem

◼ Dynamic type checking for dereferencing

◼ Address Space Layout Randomization1

❑ Randomly arranges the address space positions of key data of a
process including base of the executable and the positions of the
stack, heap and libraries.

◼ Mark pages as non executable/read only

461PaX ASLR (Address Space Layout Randomization). 2003

Questions

47

Discussion

48

Is it possible to enable dynamic

type checking with low

performance overhead?

49

Related Research

◼ Anderson et al. Checked Load: Architectural support for JavaScript
type-checking on mobile processors. IEEE HPCA 2011.

❑ Low-complexity architectural extension that replaces software-
based dynamic type checking.

❑ Automatic type checks for memory operations.

◼ Dot et al. Removing checks in dynamically typed languages through
efficient profiling. IEEE CGO 2017

❑ HW/SW hybrid mechanism that allows removal of checks in
optimized code.

50

Are the current countermeasures

insufficient and can you think of

different protection mechanisms?

51

Ideas

◼ Do error correction in the processor to solve the total
datapath problem

◼ Dynamic type checking for dereferencing

◼ Address Space Layout Randomization1

❑ Randomly arranges the address space positions of key data of a
process including base of the executable and the positions of the
stack, heap and libraries.

◼ Mark pages as non executable/read only

521PaX ASLR (Address Space Layout Randomization). 2003

Can you think of any other

attacks that could be performed

in the same threat model?

53

Related Research

◼ Halderman et al. Lest We Remember: Cold Boot Attacks on Encryption
Keys. USENIX Security Symposium 2008.

❑ DRAM retains their content seconds to minutes after power is lost.

❑ Perform a memory dump by cold booting a lightweight OS from a
removable disk.

❑ Circumvents full disk encryption.

◼ Gruss et al. Rowhammer.js: A remote Software-Induced Fault Attack
in JavaScript. DIMVA 2016.

❑ Fully automated attack to trigger faults on remote hardware.

❑ Allows to trigger Rowhammer in highly restricted and even
scripting environments by defeating complex cache replacement
policies.

54

Should attacks like this be

handled on a physical security

level?

55

Are there other ways to exploit

memory errors?

56

Related Research

◼ Google Project Zero. Exploiting the DRAM rowhammer bug to gain
kernel privileges. 2015.
❑ Achieving read-write access to one of its own page tables, and hence to all of

physical memory.

◼ V. van der Veen et al. Drammer: Deterministic Rowhammer Attacks
on Mobile Platforms. ACM SIGSAC 2016.
❑ Shows that deterministic Rowhammer attacks are feasible on common mobile

platforms.

❑ Allows attackers to take control over the mobile device by hiding it in a malicious
app that requires no permission.

57

