Using Memory Errors to Attack
a Virtual Machine

Sudhakar Govindavajhala
Andrew W. Appel

IEEE Security and Privacy
2003

Executive Summary

Executive Summary

= Observation
= Key Idea and Implementation
= Key Results
= Takeaways

Executive Summary

Observation

o Type-checking systems are safe under the assumption that the
computer faithfully executes its specified instructions.

o This premise is false in the presence of hardware faults.

Key Idea and Implementation

o Write a program that uses memory errors to overtake the system by
conducting a type confusion attack.

o Manipulate data placement to maximize the probability of a memory
error resulting in a type confusion.

Key Results

o Single bit errors in the program’s data space can be exploited to
execute arbitrary code with a probability of ~70%.

Takeaways

o Virtual machines that employ type checking can be vulnerable to
attacks that exploit memory errors

Outline

Outline

Background

Exploit

Security Analysis
Evaluation of the Attack
Potential Countermeasures

Outline

= Background
o Isolation
o Type checking
o Java applets and Java Cards
o Memory Errors

s Exploit

m Security Analysis

= Evaluation of the Attack

m Potential Countermeasures

Background

Isolation

Separate trusted components from untrusted ones
o Example: Virtual memory
o Each process operates in its own virtual address space

Type-checking for sound type systems
o Employed in virtual machines
o Sound type system:

Rejects all incorrect programs

Every evaluation of an expression is guaranteed to match the
expression’s static type

Type Checking

What is type checking?

a Verifying and enforcing constraints of types
o Static vs. dynamic type checking

Ensure type-safety

o Do not allow operations/conversions that violate the rules of the
system

Why type checking?

o Allows closer coupling between trusted and untrusted
components

o Object-oriented shared memory interfaces
o No need for message passing / remote procedure calls
o Same address space for trusted and untrusted programs

10

Type Checking in JVM

At compile time (static)

o Simulates program execution to determine if types are correct
o After code is verified, it is trusted

o Done by the bytecode verifier

At runtime (dynamic)

o No checks for type safety

o Exceptions:

Casts
Array stores

Key assumption
o Read value is the same as when it was written

o Time-of-check-to-time-of-use — the program changes after it
was checked but before it was executed

11

Java Applets & Java Cards

Applets

= Program with few privileges
o No network access
o No access to the file system

= Executed in the JVM
a Treated as untrusted

Java Cards

= Smart Cards

= Allow execution of Java Applets
= Store secret information (e.g. cryptographic keys, PIN)

12

Memory Errors

What are memory errors?

o Incorrect recall or complete loss of information in the memory
system

Soft memory errors

o Single event upsets (SEU) — change of state in a single bit
o Transient — only lasts a short time

o Caused by some kind of disturbance (e.g., RowHammer)
Hard memory errors

o Permanent

a Error in the circuit (e.g. process defect)

Frequency of memory errors

o Once in several months (2003)

o About 10 a day per DIMM per Year!

1Bianca Schroeder et al., DRAM Errors in the Wild: A Large-Scale Field Study. SIGMETRICS 2009.

13

Causes of Memory Errors

= Alpha particles
o Don't penetrate matter well
= Beta rays
o Interact too strong with plastic and metal packaging
= X-rays
o Not enough energy
o Not very portable
= High-energy protons and neutrons
o Need a particle accelerator
= Infrared

o Electronic components become unreliable at high
temperatures

14

Related Research

D. Boneh et al., On the Importance of Checking Cryptographic
Protocols for Faults. EUROCRYPT 1997.

o Used random hardware faults to recover secrets in cryptographic
protocols.

Anderson R., Kuhn M. Low Cost Attacks on Tamper Resistant
Devices. Security Protocols Workshop 1997.
o Studies attack technigues on smartcards and other security

processors by inducing errors at specific locations at specific points
In time.

15

Outline

s Background
= Exploit
o Threat Model
o Type Confusion Attack
o Attack Program
o System Level Integration

m Security Analysis
s Evaluation of the Attack
s Potential Countermeasures

16

Exploit

Threat Model

Target is a virtual machine that uses type checking as its
protection mechanism

Ability to provide a verified (type checked) program, which
is loaded into memory and executed

Physical Access to the machine

No control over data memory of the program

18

Type Confusion Attack

Circumvent the type-safety

o Obtain references of different type that point to the same
object

Read or write to arbitrary location in the programs address
space
o Allows execution of arbitrary code

19

Attack Program

Definition of two object types
o Object size has to be a power of two
o Assuming a 32-bit machine

A acts as the pointer object
B acts as the filler object

class A { class B {
A al; A al;
A az2; A az2;
B b; A a3;
A a4; A a4;
A ab; A ab;
int 1i; A a6;
A a’7; A a’;
}i b i

20

Memory Layout

Allocate one object of type A

o b field points to an arbitrary object
of type B

Allocate as many objects as possible
of type B

a All fields al to a7 point to the single

object of type A

class A class B {
A al; A al;
A az; A az;
B b; A a3;
A a4; A a4d;
A a5; A ab;
int 1i; A a6;
A av7; A av;
Vi }i

o=}
=

o
(=
o

]

1)
|

A rArdrarars

J

ev}
=

,
=]
(=9
gl]

J

)

b rdrardrdir g

>
=

OB EL L

_J

CREdEd el

>

N

E e g e

NN N \NNANWLS TTTTT

Detecting a Bit Flip

Wait for a bit flip to happen

Detection of a bit flip

o Iterate over all allocated objects of type B

a Check if all references still points to the object of type A
o Repeat until this is not the case anymore

Assume the object of type A is at address x in memory
a All references in objects of type B store the address x

o If a bit flip happens that reference stores an address that
differs from x

22

Implications ot a Bit Flip

= Bitflip in bits 10 to 27
o Reference address changes by more than the object size
o Reference now points to header of B object

— -

Implications ot a Bit Flip

= Bits2-9
o Reference address changes by less than the object size
o Reference now points within A object or adjacent object

- -

Implications ot a Bit Flip

Other bits
a Program crashes

Very high order bits
o Addresses point out of bounds (outside of the allocated heap)

Very low order bits
o Addresses are not properly aligned

Implications ot a Bit Flip

Accessing the Accessing the
A object b field
X —»| Aheader X » A header
Aal Aal
A a2 A a2
Bb X + offset » BD
A a4 A a4
A a5 A a5
inti inti
A a7 A a7

Implications ot a Bit Flip

b384

B header

A

B header

B header

Aal

A a2

A a3

Aa4

L

A header

A a5

A ab

A a7

UL

5

'S

o

B header

b384

B header

Aal

A a2

A a3

A a4

A a5

A ab

A a7

A | e | | g | e | g |

—
—_—

NN NNANWLS JTTT

+ offset

: I

object of
class B

object of
class B

x@®22

X

R

iEdrd b Ardts

X + offset

object of
class A

. I

object of
class B

+ offset

B header

SNBEBEBEEEE

B header

LSl dEd s

A header

X—

]

5
=

>

B header

LT

\&&&M&Q&MJJJ/// T

27

Implications ot a Bit Flip

New address + offset almost always stores the address x

Ar; B b384; B q;
r = b384.a6;
g =r.b;

g stores points to the A object but has type B

rand g both store x but the references have different types
- Achieved a type confusion

Violating Type Satety

= Assume we have two references of different type

that point to the same object.

= Type A reference p & Type B reference g

= Write address into integer field
= Interpret integer as an address

A p;

B qg;

int offset = 6 * 4;

vold write (int address, int wvalue)
p.1 = address - offset ;
g.a6.i1i = value ;

}

{

int i;

29

System Level Integration

This allows reading and writing of arbitrary addresses in the
address space of the trusted process

Fill array with machine code and overwrite virtual method
table with address of array

Overwrite the Security Manager
o Class that enforces security policies

30

Outline

Background

Exploit

Security Analysis
Evaluation of the Attack
Potential Countermeasures

31

Security Analysis

Analysis

Calculate probability of a single bit flip being exploitable

Counting of “cousin” objects
o Objects whose addresses differ by a single bit

Multiple bit flips can be exploited with a lower probability
o 6-bit error about one-fourth as likely to be exploitable

33

Outline

s Background
s Exploit
m Security Analysis
= Evaluation of the Attack
o Methodology
o Results
o Exploiting before crashing
o Safe bit flips

m Potential Countermeasures

34

Methodology

Methodology

= Two commercial JVMs from IBM and Sun on RedHat Linux
= Three different sets of experiments

o Privileged Java thread inside that uses Interface to a C
function that flips a bit in the processes address space

o Unmodified JVM with separate Linux process that flips random
bits in physical memory using /dev/mem

o Unmodified JVM and induced memory errors by heating to 100
degrees Celsius

36

Results

Attack Performance

Process Memory Physical Memory

M IBMs Java TM2 ®SUNSs Java TM2

Heating

37

Exploiting before Crashing & Safe Bit Flips

Errors can crash the system
o While dereferencing or garbage collection

Probability of exploiting the error before the system crashes
is about 71% according to measurements

Safe bit flips
o Only exploit bit flips in the bits 10 — 27

o Bit flips in 2 — 9 are indistinguishable from flips in the extreme
high/low order bits

o This improves the exploit-before-crash ratio to 94%

38

Outline

Background

Exploit

Security Analysis
Evaluation of the Attack
Potential Countermeasures

39

Potential Countermeasures

40

Countermeasures

Error correcting memory
o Use error correction codes to detect and correct errors
o Memory overhead of 12.5% to detect 1-bit and 2-bit errors

Parity checking
o Parity bit stores parity of number of set bits

Software error logging

o Log occurring errors and adapt behavior
o Disable untrusted software

o Shut down

Does not cover the whole datapath

41

Conclusion

Observation
Key Idea and Implementation
Key Results

o Single bit errors in the program’s data space can be exploited to
execute arbitrary code with a probability of ~70%.

Takeaways

o Virtual machines that employ type checking can be vulnerable to
attacks that exploit memory errors

o Chosen program attacks alter the assumptions under which
protection mechanisms should be designed

o Hardware error-detection and correction with software logging of
errors is the best defense

42

Critique

43

Strengths

Novel idea

o It was the first paper that used memory errors to take over a
system

Relevance to this day
o Type confusion attacks are used to this day

o Exploitation of memory errors escalated in relevance after the
discovery RowHammer! (2014)

It inspired a lot of research

Strong verification
o They created a proof of concept

Affects a high number of systems

1Kim et al. Flipping Bits in Memory Without Accessing Them: An Experimental Study of DRAM Disturbance
Errors. ISCA 2014 44

Strengths & Weaknesses

= Very utopian threat model
o Chosen program attack
o Physical access

= No satisfactory protection mechanism

= Experimental results
o Results only for one machine
o Small sample size on heating experiment

= Writing is unstructured

45

Ideas & Takeaways

= Do error correction in the processor to solve the total
datapath problem

= Dynamic type checking for dereferencing

= Address Space Layout Randomization!

o Randomly arranges the address space positions of key data of a
process including base of the executable and the positions of the
stack, heap and libraries.

= Mark pages as non executable/read only

IPaX ASLR (Address Space Layout Randomization). 2003

46

Questions

Discussion

48

Is 1t possible to enable dynamic
type checking with low

nerformance overhead?

Related Research

Anderson et al. Checked Load.: Architectural support for JavaScript
type-checking on mobile processors. IEEE HPCA 2011.

o Low-complexity architectural extension that replaces software-
based dynamic type checking.

o Automatic type checks for memory operations.

Dot et al. Removing checks in dynamically typed languages through
efficient profiling. IEEE CGO 2017

o HW/SW hybrid mechanism that allows removal of checks in
optimized code.

50

Are the current countermeasures
insutficient and can you think of
different protection mechanisms?

51

Ideas

Do error correction in the processor to solve the total
datapath problem

Dynamic type checking for dereferencing

Address Space Layout Randomization!

o Randomly arranges the address space positions of key data of a
process including base of the executable and the positions of the
stack, heap and libraries.

Mark pages as non executable/read only

IPaX ASLR (Address Space Layout Randomization). 2003

52

Can you think of any other
attacks that could be performed
in the same threat model?

Related Research

Halderman et al. Lest We Remember: Cold Boot Attacks on Encryption
Keys. USENIX Security Symposium 2008.

o DRAM retains their content seconds to minutes after power is lost.

o Perform a memory dump by cold booting a lightweight OS from a
removable disk.

o Circumvents full disk encryption.

Gruss et al. Rowhammer.js: A remote Software-Induced Fault Attack
in JavaScript. DIMVA 2016.

o Fully automated attack to trigger faults on remote hardware.

o Allows to trigger Rowhammer in highly restricted and even
scripting environments by defeating complex cache replacement
policies.

54

Should attacks like this be

handled on a physical security

level?

Are there other ways to exploit
MEMmMOory errors?

56

Related Research

Google Project Zero. Exploiting the DRAM rowhammer bug to gain
kernel privileges. 2015.

o Achieving read-write access to one of its own page tables, and hence to all of
physical memory.

V. van der Veen et al. Drammer: Deterministic Rowhammer Attacks
on Mobile Platforms. ACM SIGSAC 2016.

0 Shows that deterministic Rowhammer attacks are feasible on common mobile
platforms.

o Allows attackers to take control over the mobile device by hiding it in a malicious
app that requires no permission.

57

