
Quantifying Server Memory Frequency Margin
and Using It to Improve Performance in HPC Systems

Authors: Da Zhang1, Gagandeep Panwar1, Jagadish B.Kotra2, Nathan DeBardeleben3,

Sean Blanchard3, Xun Jian1

1Virginia Tech 2AMD Research 3Los Alamos National Laboratory

ISCA, 2021

Presented by Fiona Pichler

02.12.2021 1

Executive Summary
 Problem: DRAM manufacturers set memory frequency extra low to ensure reliability

 This slows 99.999% of accesses down to benefit only 0.001% of accesses that need it

 Goal: Exploit memory frequency margin without loss of reliability for HPC systems

 Key Idea: Heterogeneously-accessed Dual Module Redundancy Hetero-DMR
 Exploit HPC systems’ abundant free memory to store copies of every data block

 Operate the copies unreliably fast to speed up common case access → use the safely operated
original blocks for recovery

 Evaluation Results: Real system and simulation analyses show
 Reduction of job execution time by 15%

 1.4x turn around time speed up

 6% less energy per instruction

2

Overview

 Motivation

 Background

 Key Idea

 Implementation

 Results

 Conclusion

 Strengths and Weaknesses

 Discussion

3

Motivation

 Definition: Frequency margin is the gap between manufacturers specified frequency

and the frequency at which memory still works correctly for most (>99.999%) accesses

 Manufacturers increase the reliability of their products by setting the frequency

specification low

 There is no prior work on frequency margins

4

Scale of This Study

5

Study Results

 Characterizing the memory frequency margin shows the potential of exploiting it

 Exploiting both memory frequency and latency margins provides 1.19x speedup on

average

 Aging, #ranks/module, chip density and manufacturing date have little impact on

frequency margin

 Exploiting latency has no effect on frequency margins

6

Overview

 Motivation

 Background

 Key Idea

 Implementation

 Results

 Conclusion

 Strengths and Weaknesses

 Discussion

7

Background

 Analysis of 3 billion memory measurements over 7 million machine-hours this paper
reaches the same conclusion

8

HPC systems have abundant free memory

Overview

 Motivation

 Background

 Key Idea

 Implementation

 Results

 Conclusion

 Strengths and Weaknesses

 Discussion

9

Key Idea

 Heterogeneously-accessed Dual Module Redundancy, Hetero-DMR

 Exploit memory frequency without loss of reliability

 Copy all data, so we have a set of original and a set of copied data in memory

 Exploit memory frequency only on copies

 In case of an error we still have the untouched original

10

Free Memory

Keeping the Original Data Safe (1/2)

Write mode:

1. Save copy in same channel on the same location in different ranks to keep overhead

low

2. Operate safely (normal frequency) for all data on writes

 Writes make only 15% of all memory accesses

 Lowering frequency when switching from read to write increases latency by 100x

 Switch 100x less from read to write -> increase write batch size by 100x

11

Keeping the Original Data Safe (2/2)

Read mode:

 Only read from Copies, except for error correction

General:

 Set original blocks to self-refresh

 No CPU can overclock self-refresh mode

12

Error Detection

 Use existing ECC, but only for detection

 ECC encode/decode lies in CPU -> we don’t need to make changes to memory

 Use Bamboo-ECC, an especially reliable and adaptive ECC technique

 detect all up to 8 byte errors

 8B+ errors can’t always be detected

 Use a threshold for the number of errors after which frequency is not exploited

anymore to keep the probability of 8B+ errors low

13

Error Correction

1. Slow memory access down and reliably read the original

 Only happens for < 0.001% of all accesses

2. Speed up memory access again

14

Memory Frequency Variability

Channel level

 Different modules can have different margins

 Choose channel with highest frequency to exploit the margin

Node level

 Different channels in a Node have different margins

 Node-level frequency margin = Lowest channel-level frequency margin

System level

 Margin aware job schedulers to not waste potential

15

Overview

 Motivation

 Background

 Key Idea

 Implementation

 Results

 Conclusion

 Strengths and Weaknesses

 Discussion

16

Implementation

 More than 1/2 free memory -> Hetero-DMR replicates every block and operates fast on
copies

 Less than 1/2 free memory -> Hetero-DMR operates at normal frequency

 To increase the write batch size by 100x, add 128KB 64-way victim writeback cache per
channel between LLC and channel’s write buffer

 Memory modules with permanent but ECC correctable faults are only used to store
originals

 Margins are profiled at boot time and periodically re-profiled

 for this a mechanism from another paper is used

17

Longeterm Effects of Hetero-DMR

Hetero-DMR should not increase aging

 No increased operation-voltage

 No increased DIMM temperature

 DRAM-cells have practically infinite endurance

 This was just argued, not tested

18

Overview

 Motivation

 Background

 Key Idea

 Implementation

 Results

 Conclusion

 Strengths and Weaknesses

 Discussion

19

Methodology (1/2)

 Simulation of a single-node system with Hetero-DMR with Gem5

 Ramulator as the memory subsystem

 Simulate the CPU used for the frequency margin tests

 2 Memory hierarchies

20

Methodology (2/2)

 Hetero–DMR: with 0.8GT/s and 0.6GT/s node-level frequency margins

 Hetero-DMR +FMR:

 FMR: Free-memory-aware Memory Replication → copy memory and access the one

currently in the faster state

 when memory utilization is <25% make two copies and apply Hetero-DMR for the with FMR

found faster copy for memory

 when memory utilization is >25% operate as only Hetero-DMR without any FMR influence

 The Results are normalized to the Commercial Baseline, which means operating

without Hetero-DMR or FMR

21

Hetero-DMR Simulation Speedup

22

• There’s almost no difference between the 2 hierarchies

• We get the best performance from Hetero-DMR + FMR

Hetero-DMR Simulation Energy per Instruction

23

Hetero-DMR improves Energy Per Instruction by improving performance

Hetero-DMR on Real System vs. Simulation

24

Simulating Hetero-DMR performance is very similar to real-system
Hetero-DMR performance

Results

 Commodity RDIMMs can operate on average 27% faster without errors for 99.999%+ of

memory accesses

 Hetero-DMR reduces job execution time by 15% on average

 This means 1.17x average speedup

 1.4x turnaround-time-level speedup

 6% improved EPI on average

 With Hetero-DMR a System is faster while using less energy

25

Overview

 Motivation

 Background

 Key Idea

 Implementation

 Results

 Conclusion

 Strengths and Weaknesses

 Discussion

26

Conclusion
 Problem: DRAM manufacturers set memory frequency extra low to ensure reliability

 This slows 99.999% of accesses down to benefit only 0.001% of accesses that need it

 Goal: Exploit memory frequency margin without loss of reliability for HPC systems

 Key Idea: Heterogeneously-accessed Dual Module Redundancy, Hetero-DMR
 Exploit HPC systems’ abundant free memory to store copies of every data block

 Operate the copies unreliably fast to speed up common case access → use the safely operated
original blocks for recovery

 Evaluation Results: Real system and simulation analyses show
 Reduction of job execution time by 15%

 1.4x turn around time speed up

 6% less energy per instruction

27

Questions?

28

Strengths Weaknesses
 First study on memory frequency

margin
 First study on memory margins for

servers

 Large scale study

 Future hardware considered

 Faster & less energy consumption

 Needs free memory
 Extra cache needed for Hetero-

DMR

 No long-term study

 Weak CPU for study
 Cloud memory specs are not

public
 They emphasize being the first to

do a study on memory frequency
margin too much

29

Discussion

 Can we use Hetero-DMR for general systems?

 Add extra memory?

 Use this 2 sets of data idea to exploit other margins? Voltage?

 Is 1.17x speed up worth it?

30

Thank you

31

	Quantifying Server Memory Frequency Margin �and Using It to Improve Performance in HPC Systems
	Executive Summary
	Overview
	Motivation
	Scale of This Study
	Study Results
	Overview
	Background
	Overview
	Key Idea
	Keeping the Original Data Safe (1/2)
	Keeping the Original Data Safe (2/2)
	Error Detection	
	Error Correction
	Memory Frequency Variability
	Overview
	Implementation
	Longeterm Effects of Hetero-DMR
	Overview
	Methodology (1/2)
	Methodology (2/2)
	Hetero-DMR Simulation Speedup	
	Hetero-DMR Simulation Energy per Instruction	
	Hetero-DMR on Real System vs. Simulation
	Results
	Overview
	Conclusion
	Questions?
	Strengths Weaknesses
	Discussion
	Thank you

