
Quantifying Server Memory Frequency Margin
and Using It to Improve Performance in HPC Systems

Authors: Da Zhang1, Gagandeep Panwar1, Jagadish B.Kotra2, Nathan DeBardeleben3,

Sean Blanchard3, Xun Jian1

1Virginia Tech 2AMD Research 3Los Alamos National Laboratory

ISCA, 2021

Presented by Fiona Pichler

02.12.2021 1

Executive Summary
 Problem: DRAM manufacturers set memory frequency extra low to ensure reliability

 This slows 99.999% of accesses down to benefit only 0.001% of accesses that need it

 Goal: Exploit memory frequency margin without loss of reliability for HPC systems

 Key Idea: Heterogeneously-accessed Dual Module Redundancy Hetero-DMR
 Exploit HPC systems’ abundant free memory to store copies of every data block

 Operate the copies unreliably fast to speed up common case access → use the safely operated
original blocks for recovery

 Evaluation Results: Real system and simulation analyses show
 Reduction of job execution time by 15%

 1.4x turn around time speed up

 6% less energy per instruction

2

Overview

 Motivation

 Background

 Key Idea

 Implementation

 Results

 Conclusion

 Strengths and Weaknesses

 Discussion

3

Motivation

 Definition: Frequency margin is the gap between manufacturers specified frequency

and the frequency at which memory still works correctly for most (>99.999%) accesses

 Manufacturers increase the reliability of their products by setting the frequency

specification low

 There is no prior work on frequency margins

4

Scale of This Study

5

Study Results

 Characterizing the memory frequency margin shows the potential of exploiting it

 Exploiting both memory frequency and latency margins provides 1.19x speedup on

average

 Aging, #ranks/module, chip density and manufacturing date have little impact on

frequency margin

 Exploiting latency has no effect on frequency margins

6

Overview

 Motivation

 Background

 Key Idea

 Implementation

 Results

 Conclusion

 Strengths and Weaknesses

 Discussion

7

Background

 Analysis of 3 billion memory measurements over 7 million machine-hours this paper
reaches the same conclusion

8

HPC systems have abundant free memory

Overview

 Motivation

 Background

 Key Idea

 Implementation

 Results

 Conclusion

 Strengths and Weaknesses

 Discussion

9

Key Idea

 Heterogeneously-accessed Dual Module Redundancy, Hetero-DMR

 Exploit memory frequency without loss of reliability

 Copy all data, so we have a set of original and a set of copied data in memory

 Exploit memory frequency only on copies

 In case of an error we still have the untouched original

10

Free Memory

Keeping the Original Data Safe (1/2)

Write mode:

1. Save copy in same channel on the same location in different ranks to keep overhead

low

2. Operate safely (normal frequency) for all data on writes

 Writes make only 15% of all memory accesses

 Lowering frequency when switching from read to write increases latency by 100x

 Switch 100x less from read to write -> increase write batch size by 100x

11

Keeping the Original Data Safe (2/2)

Read mode:

 Only read from Copies, except for error correction

General:

 Set original blocks to self-refresh

 No CPU can overclock self-refresh mode

12

Error Detection

 Use existing ECC, but only for detection

 ECC encode/decode lies in CPU -> we don’t need to make changes to memory

 Use Bamboo-ECC, an especially reliable and adaptive ECC technique

 detect all up to 8 byte errors

 8B+ errors can’t always be detected

 Use a threshold for the number of errors after which frequency is not exploited

anymore to keep the probability of 8B+ errors low

13

Error Correction

1. Slow memory access down and reliably read the original

 Only happens for < 0.001% of all accesses

2. Speed up memory access again

14

Memory Frequency Variability

Channel level

 Different modules can have different margins

 Choose channel with highest frequency to exploit the margin

Node level

 Different channels in a Node have different margins

 Node-level frequency margin = Lowest channel-level frequency margin

System level

 Margin aware job schedulers to not waste potential

15

Overview

 Motivation

 Background

 Key Idea

 Implementation

 Results

 Conclusion

 Strengths and Weaknesses

 Discussion

16

Implementation

 More than 1/2 free memory -> Hetero-DMR replicates every block and operates fast on
copies

 Less than 1/2 free memory -> Hetero-DMR operates at normal frequency

 To increase the write batch size by 100x, add 128KB 64-way victim writeback cache per
channel between LLC and channel’s write buffer

 Memory modules with permanent but ECC correctable faults are only used to store
originals

 Margins are profiled at boot time and periodically re-profiled

 for this a mechanism from another paper is used

17

Longeterm Effects of Hetero-DMR

Hetero-DMR should not increase aging

 No increased operation-voltage

 No increased DIMM temperature

 DRAM-cells have practically infinite endurance

 This was just argued, not tested

18

Overview

 Motivation

 Background

 Key Idea

 Implementation

 Results

 Conclusion

 Strengths and Weaknesses

 Discussion

19

Methodology (1/2)

 Simulation of a single-node system with Hetero-DMR with Gem5

 Ramulator as the memory subsystem

 Simulate the CPU used for the frequency margin tests

 2 Memory hierarchies

20

Methodology (2/2)

 Hetero–DMR: with 0.8GT/s and 0.6GT/s node-level frequency margins

 Hetero-DMR +FMR:

 FMR: Free-memory-aware Memory Replication → copy memory and access the one

currently in the faster state

 when memory utilization is <25% make two copies and apply Hetero-DMR for the with FMR

found faster copy for memory

 when memory utilization is >25% operate as only Hetero-DMR without any FMR influence

 The Results are normalized to the Commercial Baseline, which means operating

without Hetero-DMR or FMR

21

Hetero-DMR Simulation Speedup

22

• There’s almost no difference between the 2 hierarchies

• We get the best performance from Hetero-DMR + FMR

Hetero-DMR Simulation Energy per Instruction

23

Hetero-DMR improves Energy Per Instruction by improving performance

Hetero-DMR on Real System vs. Simulation

24

Simulating Hetero-DMR performance is very similar to real-system
Hetero-DMR performance

Results

 Commodity RDIMMs can operate on average 27% faster without errors for 99.999%+ of

memory accesses

 Hetero-DMR reduces job execution time by 15% on average

 This means 1.17x average speedup

 1.4x turnaround-time-level speedup

 6% improved EPI on average

 With Hetero-DMR a System is faster while using less energy

25

Overview

 Motivation

 Background

 Key Idea

 Implementation

 Results

 Conclusion

 Strengths and Weaknesses

 Discussion

26

Conclusion
 Problem: DRAM manufacturers set memory frequency extra low to ensure reliability

 This slows 99.999% of accesses down to benefit only 0.001% of accesses that need it

 Goal: Exploit memory frequency margin without loss of reliability for HPC systems

 Key Idea: Heterogeneously-accessed Dual Module Redundancy, Hetero-DMR
 Exploit HPC systems’ abundant free memory to store copies of every data block

 Operate the copies unreliably fast to speed up common case access → use the safely operated
original blocks for recovery

 Evaluation Results: Real system and simulation analyses show
 Reduction of job execution time by 15%

 1.4x turn around time speed up

 6% less energy per instruction

27

Questions?

28

Strengths Weaknesses
 First study on memory frequency

margin
 First study on memory margins for

servers

 Large scale study

 Future hardware considered

 Faster & less energy consumption

 Needs free memory
 Extra cache needed for Hetero-

DMR

 No long-term study

 Weak CPU for study
 Cloud memory specs are not

public
 They emphasize being the first to

do a study on memory frequency
margin too much

29

Discussion

 Can we use Hetero-DMR for general systems?

 Add extra memory?

 Use this 2 sets of data idea to exploit other margins? Voltage?

 Is 1.17x speed up worth it?

30

Thank you

31

	Quantifying Server Memory Frequency Margin �and Using It to Improve Performance in HPC Systems
	Executive Summary
	Overview
	Motivation
	Scale of This Study
	Study Results
	Overview
	Background
	Overview
	Key Idea
	Keeping the Original Data Safe (1/2)
	Keeping the Original Data Safe (2/2)
	Error Detection	
	Error Correction
	Memory Frequency Variability
	Overview
	Implementation
	Longeterm Effects of Hetero-DMR
	Overview
	Methodology (1/2)
	Methodology (2/2)
	Hetero-DMR Simulation Speedup	
	Hetero-DMR Simulation Energy per Instruction	
	Hetero-DMR on Real System vs. Simulation
	Results
	Overview
	Conclusion
	Questions?
	Strengths Weaknesses
	Discussion
	Thank you

