
Very Long Instruction Word
Architecture and the ELI-512

Joseph A. Fisher
Yale University

ISCA 1983

25.11.2021

Presenter: Alexander Eichhorn

• Motivation

• Processors don’t make full use of independent instructions

• Idea

• Have a Very Long Instruction Word with multiple instructions in
one

• Build a compiler to schedule independent instruction in parallel
using Trace Scheduling, Loop Unrolling, Memory Bank Prediction

• Build a hardware prototype: ELI-512

• Results
• 10-30 speedup for ELI-512

Executive Summary

2

• Problems & Main Idea of VLIW
• VLIW Compiler

• Trace Scheduling
• Memory Anti-Aliasing
• Jump Mechanisms
• Memory Bank Prediction

• ELI-512
• Current Use
• Strengths & Weaknesses
• Discussion

Outline

3

• Speed

• Parallel execution

• Speedup from parallelism never more than 2 or 3

Problem

4

Superscalar

5

instructions
addi $t0, $zero, 3
addi $t0, $t0, -4
add $t1, $t1, $a0
addi $a0, $a0, 1

hardware

addi $t0, $zero, 3
1. cycle

add $t1, $t1, $a0

addi $t0, $t0, -4
2. cycle

addi $a0, $a0, 1

independent instructions scheduled to run in same cycle at runtime

VLIW
Very Long Instruction Word

6

previous instructions
addi $t0, $zero, 3
addi $t0, $t0, -4
add $t1, $t1, $a0
addi $a0, $a0, 1

VLIW compiled instructions

addi $t0, $zero, 3
1. instruction

add $t1, $t1, $a0

addi $t0, $t0, -4
2. instruction

addi $a0, $a0, 1

independent instructions scheduled to run in same cycle at compile time

VLIW
Very Long Instruction Word

7

lw $t3, 12($a0) mult $t5, $t6, $t6 addi $sp, $sp, -8

execution
unit

execution
unit

execution
unit

addi $t2, $t1, $t1 lw $t3, 4($a0) div $t4, $a1, $t1

sub $t6, $t5, $t4 move $a0, $s0 sw $t4, $s1, 0($sp)

lw $t3, 8($a0) mult $t5, $t4, $t4 addi $sp, $sp, -4

VLIW vs. Superscalar

8

Advantage

• Simpler hardware

Disadvantage

• Compiler needs to find independent instructions

• Code size increase in case there’s too much dependencies

Problem II: Compiler for VLIW
Simple Calculations

9

x = (a + b) * (a - c)

x0 = a + b

x1 = a - c

x = x0 * x1

x0 = a + b x1 = a - c

x = x0 * x1 NOP

Problem II: Compiler for VLIW
Jumps

10

slt ... mult ... or ... addi ...

or ... add ... lw ... beq ...

mult ... xor ... and ... div ...

add ... lw ... lw ... sw ...fetch

decode

execute

writeback

Problem II: Compiler for VLIW
Jumps

11

slt ... mult ... or ... addi ...

or ... add ... lw ... beq ...

add ... lw ... lw ... sw ...fetch

decode

execute

N slots

On misprediction of a branch, if we’re getting a 3 cycle penalty, we actually
have to flush 3N (here 12) instructions

• Problems & Main Idea of VLIW
• VLIW Compiler

• Trace Scheduling
• Memory Anti-Aliasing
• Jump Mechanisms
• Memory Bank Prediction

• ELI-512
• Current Use
• Strengths & Weaknesses
• Discussion

Outline

Trace Scheduling

• Trace Scheduling: A Technique for Global Microcode
Compaction
[J. Fisher, IEEE 1981]

• Divide code up into basic blocks

• Basic block is a block of code that has no jumps in except
at the beginning and no jumps out except at the end

Trace Scheduling
Compiler for VLIW

12

Basic block is a block of code that has no jumps in except
at the beginning and no jumps out except at the end

Basic block is a block of code that has no jumps in except
at the beginning and no jumps out except at the end

Trace Scheduling
Compiler for VLIW

13

A: addi …
mult …
or …
beq …, B
sub …

B: addi …
j C
or …
sub …

C: div …

1

2

3

4

1

2

3

4

Property of basic blocks

• No outside influence: registers/memory only changed by
instructions inside block

• Easy to find independent instructions inside basic block

• Rearrange independent instructions (traditionally)

• Schedule independent instructions in same cycle (VLIW)

Trace Scheduling
Compiler for VLIW

14

A: addi …
mult …
or …
beq …, B
sub …

B: addi …
j C
or …
sub …

C: div …

1

2

3

4

Trace Scheduling
Compiler for VLIW

15

p1 1 − p1
p21 − p2

p3

1 − p3

p41 − p4

Trace Scheduling
Compiler for VLIW

16

p1 1 − p1
p21 − p2

p3

1 − p3

p41 − p4

if p1, p3, p4 > 0.5

1) determine most likely trace
2) combine trace into one basic block &

reschedule code inside
3) add fix-up code to guarantee expected

state when jumping out/in
4) recurse on not yet optimized code

Trace Scheduling
Compiler for VLIW

17

1) determine most likely trace
2) combine trace into one basic block &

reschedule code inside
3) add fix-up code to guarantee expected

state when jumping out/in
4) recurse on not yet optimized code

Trace Scheduling
Compiler for VLIW

18

1) determine most likely trace
2) combine trace into one basic block &

reschedule code inside
3) add fix-up code to guarantee expected

state when jumping out/in
4) recurse on not yet optimized code

Trace Scheduling
Compiler for VLIW

19

1) determine most likely trace
2) combine trace into one basic block &

reschedule code inside
3) add fix-up code to guarantee expected

state when jumping out/in
4) recurse on not yet optimized code

Trace Scheduling
Compiler for VLIW

20

1) determine most likely trace
2) combine trace into one basic block &

reschedule code inside
3) add fix-up code to guarantee expected

state when jumping out/in
4) recurse on not yet optimized code

21

Trace Scheduling
Compiler for VLIW

Loops

• Supported by trace scheduling

• However: can be optimized using loop unrolling

• by compiler instead of programmer

L1L2L3Lk

Trace Scheduling
Compiler for VLIW

22

loop
body

Trace Scheduling
Compiler for VLIW

23

unrolled k times

L1

L2

L3

Lk

Trace Scheduling
Compiler for VLIW

24

unrolled k times ! combined into one block to optimize

L1

L2

L3

Lk

Trace Scheduling
Compiler for VLIW

25

L1

L2

L3

Lk

• Problems & Main Idea of VLIW
• VLIW Compiler

• Trace Scheduling
• Memory Anti-Aliasing
• Jump Mechanisms
• Memory Bank Prediction

• ELI-512
• Current Use
• Strengths & Weaknesses
• Discussion

Outline

Memory Anti-Aliasing

Memory Anti-Aliasing
Compiler for VLIW

26

Z = A + X

A = Y + W

can’t reschedule code lines

Memory Anti-Aliasing
Compiler for VLIW

27

Z = A[expr1] + X

A[expr2] = Y + W

• If A is an array, the compiler tries to solve the equation expr1 = expr2

• Assume expr1 and expr2 are integers

• Use diophantine equation solver

• no solution = expr1 and expr2 are not the same

! can be rescheduled

Memory Anti-Aliasing
Compiler for VLIW

28

for (i = k to n) {

Z = A[i*i] + X

A[i+1] = Y + W

...

}

• Solve equation:

• There exist non-integer solutions:

• But no integer solutions exist

! A[i*i] and A[i+1] never access the same element

i2 = i + 1

1
2

± 5
2

Example

• Problems & Main Idea of VLIW
• VLIW Compiler

• Trace Scheduling
• Memory Anti-Aliasing
• Jump Mechanisms
• Memory Bank Prediction

• ELI-512
• Current Use
• Strengths & Weaknesses
• Discussion

Outline

Jump Mechanisms

Jump Mechanisms
Compiler for VLIW

29

beq $t0, $t1, A beq $t2, $t3, B beq $t4, $t5, C beq $t6, $t7, D

j A j B beq $t4, $t5, C beq $t6, $t7, D

! leads to ambiguity when executed

30

Jump Mechanisms
Compiler for VLIW

Possibilities

• Only allow 1 jump/branch instruction per cycle

• Multiple branch instructions with priority rules

31

Jump Mechanisms
Compiler for VLIW

Solution

• per cycle:

• n independent tests

• n+1 location to jump to

• Earlier tests have priority

COND (test1 label1)

 (test2 label2)

. . .

 (testn labeln)

 (TRUE label-fall-through)

if (test1) goto label1

if (test2) goto label2

. . .

if (testn) goto labeln

goto label-fall-through

C-style implementation

32

Jump Mechanisms
Compiler for VLIW

Encoding Size

• Placing n+1 full address candidates in instruction

• Uses a lot of instruction bits

• Conform to certain regularities

Jump Mechanisms
Compiler for VLIW

33

Test Field Condition Potential Jump Address

0 test1 00 [NEXT INSTRUCTION ADDRESS]

1 test2 01 [NEXT INSTRUCTION ADDRESS]

2 test3 10 [NEXT INSTRUCTION ADDRESS]

3 TRUE 11 [NEXT INSTRUCTION ADDRESS]

n = 3
NEXT INSTRUCTION ADDRESS: specified in each instruction

Jump Mechanisms
Compiler for VLIW

34

Test Field Condition Potential Jump Address

0 test1 00 00000011

1 test2 01 00000011

2 test3 10 00000011

3 TRUE 11 00000011

n = 3
NEXT INSTRUCTION ADDRESS: 00000011

Jump Mechanisms
Compiler for VLIW

35

Test Field Condition Potential Jump Address

0 test1 00 00000011

1 TRUE 01 00000011

2 - 10 00000011

3 TRUE 11 00000011

single branch with test1 can be encoded like this:

Jump Mechanisms
Compiler for VLIW

36

Test Field Condition Potential Jump Address

0 FALSE 00 11010111

1 FALSE 01 11010111

2 TRUE 10 11010111

3 TRUE 11 11010111

or jump to 10 11010111:

• Problems & Main Idea of VLIW
• VLIW Compiler

• Trace Scheduling
• Memory Anti-Aliasing
• Jump Mechanisms
• Memory Bank Prediction

• ELI-512
• Current Use
• Strengths & Weaknesses
• Discussion

Outline

Memory Bank Prediction

37

Memory Bank Prediction
Compiler for VLIW

Problem

• Multiple memory references in same cycle

• Requires global arbitration system

! latency increase

• Possible memory bank conflict

! freezes entire processor

38

Memory Bank Prediction
Compiler for VLIW

Solution

• Static code

• Scalars always have known locations

• Array values can be predicted by the same system that does anti-
aliasing

• Loops

• Often unrolling by a multiple of number of banks allows to predict
banks

! Subscript of the array might have data-dependent starting point

39

Memory Bank Prediction
Compiler for VLIW

Solution for data-dependent starting point: adding a pre-loop
for i = k to n {
 arr[i] += 1
}

i = k
if (i >= n) goto FALLTHROUGH
arr[i] += 1
i++
if (i >= n) goto FALLTHROUGH
arr[i] += 1
i++

. . .
if (i < n) goto LOOP

LOOP:

FALLTHROUGH:

loop unrolling

i = k
if (i mod #BANKS == 0) goto LOOP
arr[i] += 1
i++
if (i > n) goto FALLTHROUGH
goto PRELOOP

if (i >= n) goto FALLTHROUGH
arr[i] += 1
i++
if (i >= n) goto FALLTHROUGH
arr[i] += 1
i++

. . .
if (i < n) goto LOOP

LOOP:

FALLTHROUGH:

PRELOOP:

add pre-loop

• Problems & Main Idea of VLIW
• VLIW Compiler

• Trace Scheduling
• Memory Anti-Aliasing
• Jump Mechanisms
• Memory Bank Prediction

• ELI-512
• Current Use
• Strengths & Weaknesses
• Discussion

Outline

40

ELI-512

• ELI = Enormously Longword Instructions

• 512 bit instruction word

• 16 clusters with an ALU and some storage

• 8 M-clusters and 8 F-clusters

41

ELI-512

M-clusters

• Integer ALU

• Multiport integer register bank

• Local memory module

! directly accessed when bank
is known

F-clusters

• Floating point ALU

• Multiport floating register bank

• Additionally 2 access ports to address memory globally
(bank unknown) ! slower

ELI-512

42

M0 F1
M2

F3
M

4M
12

F1
3

M14
F15

M8
F9

M10

F11 F5

M6

F7

ELI-512

43

M0 F1
M2

F3
M

4M
12

F1
3

M14
F15

M8
F9

M10

F11 F5
M6

F7

More about how the compiler has to
optimize for these connections:

Parallel Processing: A Smart Compiler
and a Dumb Machine
[J. Fisher et al., 1984]

44

ELI-512

Each instruction cycle:

• 16 ALU operations (8 restricted to 32-bit integer)

• 8 pipelined memory references

• 1 multiway conditional jump

• Problems & Main Idea of VLIW
• VLIW Compiler

• Trace Scheduling
• Memory Anti-Aliasing
• Jump Mechanisms
• Memory Bank Prediction

• ELI-512
• Current Use
• Strengths & Weaknesses
• Discussion

Outline

45

Current Technologies for Concurrency
VLIW

Multicore

• Programmer has to manage concurrency

• No “micro-concurrency”

• e.g. x = (a + b) * (a - c) can’t be efficiently calculated in
parallel

• Much more efficient for completely independent programs

46

Current Technologies for Concurrency
VLIW

SIMD

• Programmer or compiler can manage concurrency

• Optional in CPU

• Obviously only usable for same instruction

47

Commercial Use
VLIW

• Intel Itanium Architecture (IA-64) on EPIC design concept (1990)

• Windows XP ported to IA-64

• but mainly focussed on server market

• discontinued 2010

• AMD GPU: Radeon HD 2900 with VLIW5 (2007)

• Radeon HD 6900 with VLIW4

• discontinued 2011

48

Commercial Use
VLIW

• Xilinx Versal Chip (2019)

• AI engine with 6-way VLIW instructions

• 2x scalar operations

• 2x memory loads

• 1x vector multiplication

• 1x memory store

• Problems & Main Idea of VLIW
• VLIW Compiler

• Trace Scheduling
• Memory Anti-Aliasing
• Jump Mechanisms
• Memory Bank Prediction

• ELI-512
• Current Use
• Strengths & Weaknesses
• Discussion

Outline

49

Strengths

• No work for programmer to achieve concurrency

• No hardware scheduling

• A lot of solutions for different problems

• Compiler optimization can be used outside VLIW

50

Weaknesses
• Compiler is computer specific: instruction per cycle, latency of

instructions, memory bank

• recompilation for every change

• If one operation stalls, the whole processor stalls

• Inefficient variable latency operations

• e.g. memory access with cache

• Code size increase

• No clear results / background of specified speedups not really clear

• ELI-512 not discussed in detail

51

Discussion

Why was VLIW never really commercially
successful?

52

Discussion

For which today’s applications might VLIW be
useful?

or which emerging technologies?

53

Discussion

Adding an extra VLIW core to multicore
processors today.

Good idea? Challenges?

