
A Case for Richer Cross-layer Abstractions:
Bridging the Semantic Gap with Expressive Memory

 Nandita Vijaykumar†§ Abhilasha Jain† Diptesh Majumdar† Kevin Hsieh† Gennady Pekhimenko‡

Eiman Ebrahimiℵ Nastaran Hajinazar∂ Phillip B. Gibbons† Onur Mutlu§†

†Carnegie Mellon University ‡University of Toronto ℵNVIDIA
∂Simon Fraser University §ETH Zürich

ISCA June 2018.

Presentation by Max Striebel

Seminar in Computer Architecture 2021 2

Executive Summary
Motivation
Memory is the most performance critical part of most systems / applications

Problem
There is a semantic gap between higher-level program semantic and ISA

Observation
There are a lot of memory optimizations that could be enabled by knowing how the memory is used

Key Idea
Tag memory regions with properties that describe how the memory is being used

Evaluation
1) 31% average performance improvement when used for prefetching and cache management on low

memory bandwidth system
2) 8.5% average performance improvement with intelligent DRAM placement

Conclusion
XMem provides a low overhead interface to bridge the semantic gap in order to enhance memory
optimizations

Seminar in Computer Architecture 2021 3

Outline

● Background
– Semantic gap
– Current Situation
– Caches
– Prefetcher

● Observation
● Key Idea
● Implementation
● Evaluation

Seminar in Computer Architecture 2021 4

Background Semantic gap

A lot of knowledge about memory usage is lost during
translation to machine code

● Programmer High level language→
– Access frequency
– Access pattern

● High level language Machine code→
– Data types
– Read-Write properties

Seminar in Computer Architecture 2021 5

Background Semantic gap Example

loop:
 add eax, [rdi]
 add rdi, 4
 cmp rdi, rdx
 jne loop
 ret

int sum(int *array, int length)
{
 int result = 0;
 for(size_t i = 0; i < length; ++i)
 result += array[i];
 return result;
}

Seminar in Computer Architecture 2021 6

Background Current situation

● ISA is almost exclusively concerned with correctness
– Flexible microarchitecture

● Memory hierarchy almost completely abstracted away
– Exceptions: OS, Prefetch instructions

● Caches, prefetching, branch predictions speculate about future

Seminar in Computer Architecture 2021 7

Background Current situation

● ISA is almost exclusively concerned with correctness
– Flexible microarchitecture

● Memory hierarchy almost completely abstracted away
– Exceptions: OS, Prefetch instructions

● Caches, prefetching, branch predictions speculate about future

Programmer has to know details about microarchitecture
in order to write optimal code

Seminar in Computer Architecture 2021 8

Background Current situation

● ISA is almost exclusively concerned with correctness
– Flexible microarchitecture

● Memory hierarchy almost completely abstracted away
– Exceptions: OS, Prefetch instructions

● Caches, prefetching, branch predictions speculate about future

Microarchitecture has to analyze behavior in real time

Seminar in Computer Architecture 2021 9

Background Caches

Fast but small memory on chip for caching recently and/or frequently
used data

● Reduces memory access latency significantly
● Has to have a strategy for what data to evict (i.e. replacement policy)
● Makes use of spatial and temporal locality
● Size of cache can have a huge impact on performance

– Cache trashing

Seminar in Computer Architecture 2021 10

Background Prefetcher

Tries to fetch memory before it is requested
in order to reduce access latency

1) Analyses memory access patterns

2) Tries to predict next accessed memory

3) Loads this predicted memory into caches

Seminar in Computer Architecture 2021 11

Outline

● Background
● Observation

– Prefetcher
● Key Idea
● Implementation
● Evaluation

Seminar in Computer Architecture 2021 12

Observation Prefetcher Example

Without prefetcher
Memory fetch

int sum(int *array, int length)
{
 int result = 0;
 for(size_t i = 0; i < length; ++i)
 result += array[i];
 return result;
}

Time

Memory fetch

Seminar in Computer Architecture 2021 13

Observation Prefetcher Example

With prefetcher
Memory fetch

Time

Memory fetch

int sum(int *array, int length)
{
 int result = 0;
 for(size_t i = 0; i < length; ++i)
 result += array[i];
 return result;
}

Seminar in Computer Architecture 2021 14

Observation Prefetcher Example

Optimal (knowledge about access pattern)
Memory fetch

Time

Memory fetch

int sum(int *array, int length)
{
 int result = 0;
 for(size_t i = 0; i < length; ++i)
 result += array[i];
 return result;
}

Seminar in Computer Architecture 2021 15

● Provide the OS and Hardware with more
detailed information about intended memory
usage

● Expressive Memory (XMem)
– Create atoms that describe Program

Attributes
– Dynamically map and unmap memory

regions
– Have hardware support for keeping track

of this mapping
● Create OS and Hardware optimizations that

make use of this information

Key idea

Atom ID

Program
Attributes

static

Mapping
dynamic

Enabled
dynamic

Seminar in Computer Architecture 2021 16

Outline

● Background
● Observation
● Key Idea
● Implementation

– Key requirements
– Atom
– XmemLib
– System

● Evaluation

Seminar in Computer Architecture 2021 17

Implementation Design goals

● No effect on functionality or correctness
– Simpler implementation because information can be

conveyed/stored imprecisely
● Architecture agnostic

– Should improve performance on different platforms without
knowledge about the specific microarchitecture

● General and extensible
– Should work for a wide range of applications
– Should allow for future extensions

● Low overhead

Seminar in Computer Architecture 2021 18

Implementation Atom

● Immutable Attributes
– Atoms are created statically and can not change during run time

● Homogeneity
– All data that maps to a specific atom has the same attributes

Seminar in Computer Architecture 2021 19

Implementation Atom

● Many-to-One PA-Atom Mapping
– Each physical address can be associated with at most one atom
– Fixed sized granularity of PAs that have the same atom assigned

Seminar in Computer Architecture 2021 20

Implementation Atom

● Dynamic mapping
– Atoms can be mapped and unmapped dynamically to

any (non-contiguous) memory regions

Seminar in Computer Architecture 2021 21

Implementation Atom

● Dynamic activation
– Activate and deactivate atoms dynamically to effect all memory

regions that are assigned to one atom at once

Seminar in Computer Architecture 2021 22

Implementation Atom attributes
● Data Value Properties [compression]

– Data type (e.g., INT32, FLOAT32, CHAR)
– Data properties (e.g., sparse, approximable, pointer, index)

● Access Properties [prefetching]
– Regular, irregular, non-determent

● RWChar [data placement]
– Read-only, write-only, read-write

● Access Intensity [cache management]
– Access frequency relative to other data (0-255)

● Data Locality [cache management]
– Working set size, reuse relative to other data

Seminar in Computer Architecture 2021 23

Implementation XMemLib

● Library that provides interface between XMem and application
● CreateAtom return AtomID (0-255) that uniquely identifies an

atom (per process)
● Translates map and activation calls to direct machine instructions

AtomID CreateAtom(data_prop, access_pattern, reuse, rw_characteristics);
void AtomMap(atom_id, start_addr, size, map_or_unmap);
void AtomActivate(atom_id);
void AtomDeactivate(atom_id);

Seminar in Computer Architecture 2021 24

Implementation System

Seminar in Computer Architecture 2021 25

Implementation System

● Evaluate all CreateAtom call sites at compile time
● Create Atom Segment in object file

Seminar in Computer Architecture 2021 26

Implementation System

● During load time OS reads Atom Segment and creates Global
Attribute Table in memory

Seminar in Computer Architecture 2021 27

Implementation System

● OS invokes Attribute Translator during each context switch
● This supplies the relevant components with the needed attributes

– Can be tailored for each microarchitecture
– Version number provides backward and forward compatibility

Seminar in Computer Architecture 2021 28

Implementation System

● Atom Address Map (AAM) maps each PA to an Atom
– Proposed resolution of 8 cache lines (512 bytes)
– Stored in memory

● Atom Lookaside Buffer (ALB) to cache AAM entries
– 256-entry cover 98.9% of requests

Seminar in Computer Architecture 2021 29

Implementation System

● Atom Status Table (AST) stores active status for each Atom
– For 256 possible AtomIDs only needs 32 bytes

Seminar in Computer Architecture 2021 30

Implementation System

● Atom Management Unit (AMU) handles atom lookup requests
– Directly for hardware lookups
– Indirectly through the MMU for OS requests

Seminar in Computer Architecture 2021 31

Outline

● Background
● Observation
● Key Idea
● Implementation
● Evaluation

– Changes to HW/SW Stack
– Overhead
– Setup
– Result

Seminar in Computer Architecture 2021 32

Evaluation Changes to HW/SW Stack

● Program / Library
● Compiler
● Linker / Object file specification
● OS

– Program load
– Context switch
– (Memory layout)

● ISA
● Microarchitecture / (Memory controller)

Seminar in Computer Architecture 2021 33

Evaluation Overhead

● Memory storage overhead
– Global Attribute Table (GAT)

- 2.8KB per application assuming 256 atoms
– Atom Address Map (AAM)

- 0.2% physical memory assuming 512 byte granularity
- Can be reduced by increasing granularity or reducing the number of atoms

● Hardware area overhead
– Attribute Translator and Attribute Management Unit (AMU)

- around 0.03% on modern chips

Seminar in Computer Architecture 2021 34

Evaluation Overhead

● Memory storage overhead
– Global Attribute Table (GAT)

- 2.8KB per application assuming 256 atoms
– Atom Address Map (AAM)

- 0.2% physical memory assuming 512 byte granularity
- Can be reduced by increasing granularity or reducing the number of atoms

● Hardware area overhead
– Attribute Translator and Attribute Management Unit (AMU)

- around 0.03% on modern chips

Small memory overhead of 0.2% that can be reduced further

Seminar in Computer Architecture 2021 35

Evaluation Overhead

● Instruction overhead
– Map/unmap and activate/deactivate instructions

- 0.014% on average
- 0.2% at most

● Context switch overhead
– Extra register for storing address of Global Attribute Table

- ≤1 nano seconds
– Attribute Lookaside Buffer (ALB) flushing and invoking the

Attribute Translator
- ~700 nano seconds

Seminar in Computer Architecture 2021 36

Evaluation Overhead

● Instruction overhead
– Map/unmap and activate/deactivate instructions

- 0.014% on average
- 0.2% at most

● Context switch overhead
– Extra register for storing address of Global Attribute Table

- ≤1 nano seconds
– Attribute Lookaside Buffer (ALB) flushing and invoking the

Attribute Translator
- ~700 nano seconds

Small but noticable context switch overhead of around 15%

Seminar in Computer Architecture 2021 37

Evaluation Setup

● Expressing key working sets
– By mapping to atom with high reuse value

● Optimization algorithm
– Greedy insertion and prefetching logic for deciding what data to

pin and prefetch based on reuse value
● Support in cache controllers

– 25% of the cache is reserved for default insertion policy
● Support in prefetchers

– Uses Private Attribute Table (PAT) to keep track of access
pattern (stride) and address ranges of pinned atoms

Seminar in Computer Architecture 2021 38

Evaluation Setup

● Expressing key working sets
– By mapping to atom with high reuse value

● Optimization algorithm
– Greedy insertion and prefetching logic for deciding what data to

pin and prefetch based on reuse value
● Support in cache controllers

– 25% of the cache is reserved for default insertion policy
● Support in prefetchers

– Uses Private Attribute Table (PAT) to keep track of access
pattern (stride) and address ranges of pinned atoms

Seminar in Computer Architecture 2021 39

Evaluation Setup

● Evaluated different programs from the Polybench suit
– Linear algebra, graph calculations

● Modeling and simulation using zsim and DRAMSim2
● Baseline uses high-performance cache replacement policy and a multi-

stride prefetcher at L3

1) Test versions of the test programs that use different sized tiles
– Expect to see drop in performance for suboptimal sizes (cache

trashing)

2) Test under different memory bandwidth speeds
– Expect to see a drop in performance the lower the bandwidth

Seminar in Computer Architecture 2021 40

Results Tile Sizes

 ➊Small tiles reduce reuse and result in an avg of 28.7% slowdown
 ➋Cache trashing can lead to severe slowdowns (64.8 % avg up to 7.6x)
 ➌XMem reduces cache trashing to 26.9% avg up to 4.6x

Seminar in Computer Architecture 2021 41

Results Memory bandwidth

● XMem-Pref similar to software based prefetching
● XMem can reduce memory traffic through data pinning and thus achieves

higher speedups compared to Xmem-Pref in low bandwidth situations

Seminar in Computer Architecture 2021 42

Executive Summary
Motivation
Memory is the most performance critical part of most systems / applications

Problem
There is a semantic gap between higher-level program semantic and ISA

Observation
There are a lot of memory optimizations that could be enabled by knowing how the memory is used

Key Idea
Tag memory regions with properties that describe how the memory is being used

Evaluation
1) 31% average performance improvement when used for prefetching and cache management on low

memory bandwidth system
2) 8.5% average performance improvement with intelligent DRAM placement

Conclusion
XMem provides a low overhead interface to bridge the semantic gap in order to enhance memory
optimizations

Seminar in Computer Architecture 2021 43

Questions?

Seminar in Computer Architecture 2021 44

Strengths

● Tackles a major performance bottleneck in a novel way
● Enables multiple optimizations
● Allows for portable performance optimizations
● Minimal or even negative chip area overhead
● Has many clever details

– PA-Atom mapping so that only one global AAM is required
– Versioning and Attribute Translator to enable forward and

backwards compatibility

Seminar in Computer Architecture 2021 45

Weaknesses

● A lot of components a cross the hierarchy have to be changed
● The create function in XMemLib gets evaluated at compile time

– Unexpected function behavior
– Requires compiler changes

● Allows for dynamic PA-Atom mapping, but some optimizations like
DRAM placement require static mapping

● Source code / raw data are not publicly available

Seminar in Computer Architecture 2021 46

Ideas

● Create and submit GAT at run time by the library
– Enables more dynamic usages

- e.g. automatic testing of different atoms configurations
– Library can be a pure library without changing the compiler
– No changes to the object file specification
– Only minimal OS support needed (context switch)

● Add atom attributes that indicates if memory region changes it’s
atom dynamically
– Can be used by malloc and OS to make more informed decision

on how to allocate memory

Seminar in Computer Architecture 2021 47

Discussion starters

How likely is it that this gets adopted?
– Where should we start? (chicken and egg problem)
– What incentives do the different decision makers have for

adopting this?

Seminar in Computer Architecture 2021 48

Discussion starters

How likely is it that this gets adopted?
– Where should we start? (chicken and egg problem)
– What incentives do the different decision makers have for

adopting this?

How would this influence the way software gets written/optimized?
– How could programming languages support this feature?
– What types of programs would benefit the most?

Seminar in Computer Architecture 2021 49

Discussion starters

How likely is it that this gets adopted?
– Where should we start? (chicken and egg problem)
– What incentives do the different decision makers have for

adopting this?

How would this influence the way software gets written/optimized?
– How could programming languages support this feature?
– What types of programs would benefit the most?

Do we need new kinds of diagnostics?

Seminar in Computer Architecture 2021 50

Discussion starters

How likely is it that this gets adopted?
– Where should we start? (chicken and egg problem)
– What incentives do the different decision makers have for

adopting this?

How would this influence the way software gets written/optimized?
– How could programming languages support this feature?
– What types of programs would benefit the most?

Do we need new kinds of diagnostics?

Ideas for improving on the presented ideas

