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Executive Summary
Motivation
Memory is the most performance critical part of  most systems / applications

Problem
There is a semantic gap between higher-level program semantic and ISA

Observation
There are a lot of  memory optimizations that could be enabled by knowing how the memory is used

Key Idea
Tag memory regions with properties that describe how the memory is being used

Evaluation
1) 31% average performance improvement when used for prefetching and cache management on  low 

memory bandwidth system
2) 8.5% average performance improvement with intelligent DRAM placement

Conclusion
XMem provides a low overhead interface to bridge the semantic gap in order to enhance memory 
optimizations



 
Seminar in Computer Architecture 2021 3

Outline

● Background
– Semantic gap
– Current Situation
– Caches
– Prefetcher

● Observation
● Key Idea
● Implementation
● Evaluation
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Background Semantic gap

A lot of  knowledge about memory usage is lost during 
translation to machine code

● Programmer   High level language→
– Access frequency
– Access pattern

● High level language   Machine code→
– Data types
– Read-Write properties
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Background Semantic gap Example

loop:
        add     eax, [rdi]
        add     rdi, 4
        cmp     rdi, rdx
        jne     loop
        ret

int sum(int *array, int length)
{
    int result = 0;
    for(size_t i = 0; i < length; ++i)
        result += array[i];
    return result;
}
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Background Current situation

● ISA is almost exclusively concerned with correctness
– Flexible microarchitecture

● Memory hierarchy almost completely abstracted away
– Exceptions: OS, Prefetch instructions

● Caches, prefetching, branch predictions speculate about future
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Background Current situation

● ISA is almost exclusively concerned with correctness
– Flexible microarchitecture

● Memory hierarchy almost completely abstracted away
– Exceptions: OS, Prefetch instructions

● Caches, prefetching, branch predictions speculate about future

Programmer has to know details about microarchitecture 
in order to write optimal code
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Background Current situation

● ISA is almost exclusively concerned with correctness
– Flexible microarchitecture

● Memory hierarchy almost completely abstracted away
– Exceptions: OS, Prefetch instructions

● Caches, prefetching, branch predictions speculate about future

Microarchitecture has to analyze behavior in real time



 
Seminar in Computer Architecture 2021 9

Background Caches

Fast but small memory on chip for caching recently and/or frequently 
used data

● Reduces memory access latency significantly
● Has to have a strategy for what data to evict (i.e. replacement policy)
● Makes use of  spatial and temporal locality
● Size of  cache can have a huge impact on performance

– Cache trashing
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Background Prefetcher

Tries to fetch memory before it is requested 
in order to reduce access latency

1) Analyses memory access patterns

2) Tries to predict next accessed memory

3) Loads this predicted memory into caches
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Outline

● Background
● Observation

– Prefetcher
● Key Idea
● Implementation
● Evaluation
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Observation Prefetcher Example

Without prefetcher
Memory fetch

int sum(int *array, int length)
{
    int result = 0;
    for(size_t i = 0; i < length; ++i)
        result += array[i];
    return result;
}

Time

Memory fetch
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Observation Prefetcher Example

With prefetcher
Memory fetch

Time

Memory fetch

int sum(int *array, int length)
{
    int result = 0;
    for(size_t i = 0; i < length; ++i)
        result += array[i];
    return result;
}
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Observation Prefetcher Example

Optimal (knowledge about access pattern)
Memory fetch

Time

Memory fetch

int sum(int *array, int length)
{
    int result = 0;
    for(size_t i = 0; i < length; ++i)
        result += array[i];
    return result;
}
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● Provide the OS and Hardware with more 
detailed information about  intended memory 
usage

● Expressive Memory (XMem)
– Create atoms that describe Program 

Attributes
– Dynamically map and unmap memory 

regions
– Have hardware support for keeping track 

of  this mapping
● Create OS and Hardware optimizations that 

make use of  this information

Key idea

Atom ID

Program
Attributes

static

Mapping
dynamic

Enabled
dynamic
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Outline

● Background
● Observation
● Key Idea
● Implementation

– Key requirements
– Atom
– XmemLib
– System

● Evaluation
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Implementation Design goals

● No effect on functionality or correctness
– Simpler implementation because information can be 

conveyed/stored imprecisely
● Architecture agnostic

– Should improve performance on different platforms without 
knowledge about the specific microarchitecture

● General and extensible
– Should work for a wide range of  applications
– Should allow for future extensions

● Low overhead
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Implementation Atom

● Immutable Attributes
– Atoms are created statically and can not change during run time

● Homogeneity
– All data that maps to a specific atom has the same attributes
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Implementation Atom

● Many-to-One PA-Atom Mapping
– Each physical address can be associated with at most one atom
– Fixed sized granularity of  PAs that have the same atom assigned
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Implementation Atom

● Dynamic mapping
– Atoms can be mapped and unmapped dynamically to 

any (non-contiguous) memory regions
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Implementation Atom

● Dynamic activation
– Activate and deactivate atoms dynamically to effect all memory 

regions that are assigned to one atom at once
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Implementation Atom attributes
● Data Value Properties [compression]

– Data type (e.g., INT32, FLOAT32, CHAR)
– Data properties (e.g., sparse, approximable, pointer, index)

● Access Properties [prefetching]
– Regular, irregular, non-determent 

● RWChar [data placement]
– Read-only, write-only, read-write

● Access Intensity [cache management]
– Access frequency relative to other data (0-255)

● Data Locality [cache management]
– Working set size, reuse relative to other data
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Implementation XMemLib

● Library that provides interface between XMem and application
● CreateAtom return AtomID (0-255) that uniquely identifies an 

atom (per process)
● Translates map and activation calls to direct machine instructions  

AtomID CreateAtom(data_prop, access_pattern, reuse, rw_characteristics);
void   AtomMap(atom_id, start_addr, size, map_or_unmap);
void   AtomActivate(atom_id);
void   AtomDeactivate(atom_id);
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Implementation System
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Implementation System

● Evaluate all CreateAtom call sites at compile time
● Create Atom Segment in object file
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Implementation System

● During load time OS reads Atom Segment and creates Global 
Attribute Table in memory
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Implementation System

● OS invokes Attribute Translator during each context switch
● This supplies the relevant components with the needed attributes

– Can be tailored for each microarchitecture
– Version number provides backward and forward compatibility 
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Implementation System

● Atom Address Map (AAM) maps each PA to an Atom
– Proposed resolution of  8 cache lines (512 bytes)
– Stored in memory

● Atom Lookaside Buffer (ALB) to cache AAM entries
– 256-entry cover 98.9% of  requests 
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Implementation System

● Atom Status Table (AST) stores active status for each Atom
– For 256 possible AtomIDs only needs 32 bytes 
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Implementation System

● Atom Management Unit (AMU) handles atom lookup requests
– Directly for hardware lookups
– Indirectly through the MMU for OS requests 
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Outline

● Background
● Observation
● Key Idea
● Implementation
● Evaluation

– Changes to HW/SW Stack
– Overhead
– Setup
– Result
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Evaluation Changes to HW/SW Stack

● Program / Library
● Compiler
● Linker / Object file specification
● OS

– Program load
– Context switch
– (Memory layout)

● ISA
● Microarchitecture / (Memory controller)
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Evaluation Overhead

● Memory storage overhead
– Global Attribute Table (GAT) 

- 2.8KB per application assuming 256 atoms
– Atom Address Map (AAM) 

- 0.2% physical memory assuming 512 byte granularity
- Can be reduced by increasing granularity or reducing the number of  atoms 

● Hardware area overhead
– Attribute Translator and Attribute Management Unit (AMU)

- around 0.03% on modern chips



 
Seminar in Computer Architecture 2021 34

Evaluation Overhead

● Memory storage overhead
– Global Attribute Table (GAT) 

- 2.8KB per application assuming 256 atoms
– Atom Address Map (AAM) 

- 0.2% physical memory assuming 512 byte granularity
- Can be reduced by increasing granularity or reducing the number of  atoms 

● Hardware area overhead
– Attribute Translator and Attribute Management Unit (AMU)

- around 0.03% on modern chips

Small memory overhead of 0.2% that can be reduced further
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Evaluation Overhead

● Instruction overhead
– Map/unmap and activate/deactivate instructions

- 0.014% on average
- 0.2% at most

● Context switch overhead
– Extra register for storing address of  Global Attribute Table 

- ≤1 nano seconds
– Attribute Lookaside Buffer (ALB) flushing and invoking the 

Attribute Translator
- ~700 nano seconds



 
Seminar in Computer Architecture 2021 36

Evaluation Overhead

● Instruction overhead
– Map/unmap and activate/deactivate instructions

- 0.014% on average
- 0.2% at most

● Context switch overhead
– Extra register for storing address of  Global Attribute Table 

- ≤1 nano seconds
– Attribute Lookaside Buffer (ALB) flushing and invoking the 

Attribute Translator
- ~700 nano seconds

Small but noticable context switch overhead of around 15% 
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Evaluation Setup

● Expressing key working sets
– By mapping to atom with high reuse value

● Optimization algorithm
– Greedy insertion and prefetching logic for deciding what data to 

pin and prefetch based on reuse value
● Support in cache controllers

– 25% of  the cache is reserved for default insertion policy
● Support in prefetchers

– Uses Private Attribute Table (PAT) to keep track of  access 
pattern (stride) and address ranges of  pinned atoms
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Evaluation Setup

● Expressing key working sets
– By mapping to atom with high reuse value

● Optimization algorithm
– Greedy insertion and prefetching logic for deciding what data to 

pin and prefetch based on reuse value
● Support in cache controllers

– 25% of  the cache is reserved for default insertion policy
● Support in prefetchers

– Uses Private Attribute Table (PAT) to keep track of  access 
pattern (stride) and address ranges of  pinned atoms
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Evaluation Setup

● Evaluated different programs from the Polybench suit
– Linear algebra, graph calculations

● Modeling and simulation using zsim and DRAMSim2
● Baseline uses high-performance cache replacement policy and a multi-

stride prefetcher at L3

1) Test versions of  the test programs that use different sized tiles
– Expect to see drop in performance for suboptimal sizes (cache 

trashing)

2) Test under different memory bandwidth speeds
– Expect to see a drop in performance the lower the bandwidth
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Results Tile Sizes

  ➊Small tiles reduce reuse and result in an avg of  28.7% slowdown
  ➋Cache trashing can lead to severe slowdowns (64.8 % avg up to 7.6x)
  ➌XMem reduces cache trashing to 26.9% avg up to 4.6x
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Results Memory bandwidth

● XMem-Pref  similar to software based prefetching
● XMem can reduce memory traffic through data pinning and thus achieves 

higher speedups compared to Xmem-Pref  in low bandwidth situations
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Executive Summary
Motivation
Memory is the most performance critical part of  most systems / applications

Problem
There is a semantic gap between higher-level program semantic and ISA

Observation
There are a lot of  memory optimizations that could be enabled by knowing how the memory is used

Key Idea
Tag memory regions with properties that describe how the memory is being used

Evaluation
1) 31% average performance improvement when used for prefetching and cache management on  low 

memory bandwidth system
2) 8.5% average performance improvement with intelligent DRAM placement

Conclusion
XMem provides a low overhead interface to bridge the semantic gap in order to enhance memory 
optimizations



 
Seminar in Computer Architecture 2021 43

Questions?
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Strengths

● Tackles a major performance bottleneck in a novel way
● Enables multiple optimizations
● Allows for portable performance optimizations
● Minimal or even negative chip area overhead
● Has many clever details

– PA-Atom mapping so that only one global AAM is required
– Versioning and Attribute Translator to enable forward and 

backwards compatibility
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Weaknesses

● A lot of  components a cross the hierarchy have to be changed
● The create function in XMemLib gets evaluated at compile time

– Unexpected function behavior
– Requires compiler changes

● Allows for dynamic PA-Atom mapping, but some optimizations like 
DRAM placement require static mapping

● Source code / raw data are not publicly available 
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Ideas

● Create and submit GAT at run time by the library
– Enables more dynamic usages 

- e.g. automatic testing of  different atoms configurations
– Library can be a pure library without changing the compiler
– No changes to the object file specification
– Only minimal OS support needed (context switch)

● Add atom attributes that indicates if  memory region changes it’s 
atom dynamically
– Can be used by malloc and OS to make more informed decision 

on how to allocate memory
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Discussion starters

How likely is it that this gets adopted?
– Where should we start? (chicken and egg problem)
– What incentives do the different decision makers have for 

adopting this?
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Discussion starters

How likely is it that this gets adopted?
– Where should we start? (chicken and egg problem)
– What incentives do the different decision makers have for 

adopting this?

How would this influence the way software gets written/optimized?
– How could programming languages support this feature?
– What types of  programs would benefit the most?
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Discussion starters

How likely is it that this gets adopted?
– Where should we start? (chicken and egg problem)
– What incentives do the different decision makers have for 

adopting this?

How would this influence the way software gets written/optimized?
– How could programming languages support this feature?
– What types of  programs would benefit the most?

Do we need new kinds of  diagnostics?
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Discussion starters

How likely is it that this gets adopted?
– Where should we start? (chicken and egg problem)
– What incentives do the different decision makers have for 

adopting this?

How would this influence the way software gets written/optimized?
– How could programming languages support this feature?
– What types of  programs would benefit the most?

Do we need new kinds of  diagnostics?

Ideas for improving on the presented ideas


