
Prodigy: Improving the Memory Latency of Data-Indirect
Irregular Workloads Using Hardware-Software Co-Design

Nishil Talati*, Kyle May*†, Armand Behroozi*, Yichen Yang*, Kuba Kaszyk‡, Christos Vasiladiotis, Tarunesh
Verma*, Lu Li‡, Brandon Nguyen*, Jiwen Sun‡, John Magnus Morton‡, Agreen Ahmadi*, Todd Austin*, Michael

F P O'Boyle‡, Scott Mahlke*, Trevor Mudge*, Ronald Dreslinski*

*University of Michigan †University of Wisconsin, Madison ‡University of Edinburgh

HPCA 2021, Seoul, South Korea

Presented by Paul Scheffler

Executive Summary

20.04.2021 Prodigy – HPCA 2021 2

Problem
• Data-indirect irregular workloads are bottlenecked by the memory system
• Common prefetchers fail to accelerate indirect memory accesses
• Specialized prefetchers not general, performant, or timely enough

Goal • A general, effective, low-cost prefetcher for data-indirect workloads

Key Idea
• Most irregular access patterns are composed of two specific patterns:

single-valued and ranged indirection

Mechanism
• SW: encode indirect access patterns into Data Indirection Graph (DIG)
• HW: prefetcher traverses DIG at runtime

Results
• 2.6× speedup, 1.6× energy savings over no prefetch at negligible cost
• Notable speedup, savings over existing prefetchers

Overview

• Background & Motivation

• Programming Model

• Hardware Design

• Results

• Conclusion

• Strengths

• Weaknesses

• Thoughts

• Discussion

20.04.2021 Prodigy – HPCA 2021 3

PA P E R SU M M A R Y CRITIQUE & DISCUSSION

Background & Motivation

20.04.2021 Prodigy – HPCA 2021 4

Data-Indirect Irregular Workloads

• Sparse irregular algorithms ubiquitous

• ML, Scientific computing, graph analytics, …

• Usually involve indirect memory accesses

• Inefficient on CPUs

• No temporal or spatial locality or correlation

➢ Caching, common prefetchers ineffective

• Specialized prefetchers fall short

• Linked structures: limited to single pointers

• Irregular loads: only specific patterns and layouts

• Software prefetch: static, untimely

20.04.2021 Prodigy – HPCA 2021 5

for i in 0 .. N:

c[i] = b[a[i]]

2 5 1 4 2 3 …

i

b0 b1 b2 b3 b4 b5 …

a

b

A Compressed Data Format: CSR

• Idea: store only nonzeros of a sparse matrix

• A_rowptrs: indices delimiting rows

• A_colptrs: columns of nonzeros

• A_vals: nonzeros

➢ Row contents accessed by ranged indirection

• Various problems encoded as sparse matrices

• Common: represent graphs as
CSR adjacency matrices

• No edge weights: value array redundant

20.04.2021 Prodigy – HPCA 2021 6

A_rowptrs[] = {0, 2, 5, 6}

𝑨 =
0 0 7 9
3 0 4 1
0 0 7 0 A_colptrs[] = {2, 3, 0, 2, 3, 2}

A_vals[] = {7, 9, 3, 4, 1, 7}

2 4 0 3 6 1 4 6 2 4 5 2 6 1

0 2 5 8 10 11 13 14

0

1

2

3 4

0

1

2

3 4

0

vertex
offsets

edges

1

An Irregular Algorithm: Breadth-First Search (BFS)

• Traverse graph in order of distance to start node

• Base of other graph algorithms

• Data: CSR graph + two helper arrays:

• workQueue: found nodes to process next

• visited: bitmap of seen nodes to avoid recursion

20.04.2021 Prodigy – HPCA 2021 7

for node in workQueue:

for i in range(offsets[node:node+1]):

neigh = edges[i]

if not visited[neigh]:

workQueue.push(neigh)

visited[neigh] = 1

➢ 3 levels of indirection
CSR graph

0

1

2

3 4

0

1

2

3 4

0

2
1
4

0
2

10
11
13
14

2
4
0
3

1
4

2
4

2

1

0
1
1
0
1
0
1

2
1
4

0
2

10
11
13
14

2
4
0
3

1
4

2
4

2

1

0
1
1
0
1
0
1

Bottlenecks in Current Systems

20.04.2021 Prodigy – HPCA 2021 8

• Data-dependent loads: random patterns with low locality

➢ Caches, common prefetchers ineffective

• Load-dependent branches: direction hard to predict

➢ Expensive rollbacks

➢ Poor performance and efficiency

• >50% stalled on DRAM

• Significant branch stalls

➢ Need an effective, general prefetcher
for data-indirect access patterns

≈1

Programming Model

20.04.2021 Prodigy – HPCA 2021 9

Indirection Primitives

• Idea: two specific access patterns cover wide range of irregular workloads:

20.04.2021 Prodigy – HPCA 2021 10

3
0
1
2

30
4
32

3
4

Single-valued indirection:
one index → one value

• e.g. neighbors → visited map

for i in 0 .. a_size:

tmp += b[a[i]]

Ranged indirection:
two index bounds → range of values

• e.g. node→ neighbors

0
1
4
4

30
4
32

3
4

 for i in 0 .. a_size:

for j in a[i] .. a[i+1]:

tmp += b[j]

➢ Combine and chain to describe complex access patterns

• BFS: 1 ranged + 2 single-valued indirections

Data Indirection Graph (DIG)

• Encodes data structures and indirections between them

• Nodes: data structure (array) metadata

• Edges: indirections between nodes

• Three edge types

• w0: single-valued indirection

• w1: ranged indirection

• w2: trigger edge; initiates prefetch sequence

• Trigger edges store sequence initialization parameters

• Captured before runtime by programmer or compiler

• Included in binary

20.04.2021 Prodigy – HPCA 2021 11

2
1
4

0
2

10
11
13
14

2
4
0
3

1
4

2
4

2

1

0
1
1
0
1
0
1

2
1
4

0
2

10
11
13
14

2
4
0
3

1
4

2
4

2

1

0
1
1
0
1
0
1

work

offsetList

edgeList

visited

w

w

w

w

work

work

offsetList

w

 A
 w

 p t rap so rc

 rap r a rap p t rap
 wor o s
 o s t st alloc o s
 st alloc s
 v s t alloc o s
pop lat ata tr ct r s o s t st st v s t
r st r o wor o s
r st r o o s t st o s
r st r o st s
r st r o v s t o s
r st r rav wor o s t st w
r st r rav o s t st st w
r st r rav st v s t w
r st r r wor w
wor so rc

DIG Construction by Programmer

• Programmer adds API calls writing graph components to prefetcher memory:

20.04.2021 Prodigy – HPCA 2021 12

work

offsetList

edgeList

visited

w

w

w

w
Allocate
data structures

Irregular
Algorithm

Write DIG
to prefetcher

DIG Inference by Compiler

• Inserts same API calls at IR level

➢ Can be combined with manual annotation

• Single-read LLVM pass infers:

1. Nodes from allocator calls

2. Single-value edges from dependent
loads found by backtracking

3. Ranged edges from loads in loops
with adjacent bounds

4. Trigger edges on nodes with
no inbound edges

• Negligible overhead on compile time

• Data dependencies resolved by prefetcher

20.04.2021 Prodigy – HPCA 2021 13

int tmp;
int *a = malloc(a_size);
int *b = malloc(b_size);
int *c = malloc(c_size);

for (i=0; i<a_elems; ++i)
for (j=a[i]; j<a[i+1]; ++j)
tmp += c[b[j]];

a b

c

w0

w1w2

Hardware Design

20.04.2021 Prodigy – HPCA 2021 14

DIG Storage

• Prefetcher stores DIG in dedicated SRAM

• Three tables written by API calls

• Node table

• Edge table

• Edge index table

• Edge index table keeps source nodes of edges

• Used find outgoing edges for nodes

• Uses virtual addresses: set at compile time

20.04.2021 Prodigy – HPCA 2021 1

 dge Inde

Node I ase Address ata Size Trigger
 tr
 A als
 als
 als

 ound Address

work

 A

Src Node Addr
 A

 est Node Addr

 dge Type

work

offsetList

w

 A
 w

Prefetch Status Handling Registers (PFHR)

• Need to track multiple outstanding prefetches

• Prefetch sequences can span 4+ structures

• Blocking may waste opportunities

• Track prefetches in PFHR File

• Like MSHRs in non-blocking caches

• Allocated on prefetch sequence trigger

• Updated or freed on prefetch cache fills

20.04.2021 Prodigy – HPCA 2021 1

Node I
Prefetch

Trigger Addr

 utstanding
Prefetch Addr

 A

 ffset
 itmap

 ree

 als
tr
 als
 als

VA of element
that triggered

sequence

PA of outstanding
cache line

data structure to
which requested
data belongs

Outstanding bytes
in cache line

Prefetch: Sequence Initialization

• Launched on core load on trigger node

• Window of sequences launched at once

• Trigger edge encodes initialization parameters

• [j,k]: Lookahead distance and bound

• Direction: ascending or descending addresses

• Heuristic: decrease j as prefetch depth increases

• Feedback loop: drop sequence when core
requests trigger element

➢ Timely: prefetch always ahead of core

➢ Efficient: maximizes latency hiding

20.04.2021 Prodigy – HPCA 2021 17

Prefetch bounds
 j

Prefetch depth N

Indirection type

Node I
Prefetch

Trigger Addr

 utstanding
Prefetch Addr

 A

 ffset
 itmap

 ree

 als
tr
 als
 als

PFHRs

Core L1D

Prodigy

Memory
System

init

Prefetch: Sequence Advance

• On cache refill: check, update PFHRs

➢ If response to prefetch: read DIG

1. Look up source node of prefetch

2. Find outgoing edge(s) through index table

3. Compute ne t prefetch address (if any)

4. Allocate new PFHR and request

• Sequence ends once source node traversed

• New sequences initiated when core demands
data in trigger nodes

20.04.2021 Prodigy – HPCA 2021 18

PFHRs

Outst addr

Node ID

Nodes
Node ID

Edges

Edge idcs

addr
gen

System Integration

• One private instance per core

• Prefetches into L1D cache

• Reuses D-TLB for address translation

• Snoops cache bus to observe refills

• No additional ports on cache

• Supports contiguous partitioning of
trigger node data among cores (e.g. OMP)

• Some open problems

• Coherency contentions at partition edges

• Costly context switches in multiple threads

• No prefetch throttling yet

20.04.2021 Prodigy – HPCA 2021 19

Core 0

L1D

Prodigy

TLB

L2

…

…

Core N-1

2
1
4

0
2

10
11
13
14

2
4
0
3

1
4

0
1
1
0
1
0
1

2
1
4

0
2

10
11
13
14

2
4
0
3

1
4

0
1
1
0
1
0
1

…

…

Core 0

Core 1

Results

20.04.2021 Prodigy – HPCA 2021 20

Evaluation Setup and Workloads

• Simulation configuration

• Sniper x sim: 8 o cores built-in energy model

• 3 K/ 56K/ M caches, CACTI access times

• DRAM: cyc. access, controller queuing

• Optimum for evaluated problems: 6 P HRs

• Algorithms: from benchmark suits

• GAP S: graph algorithms like BFS, PR, …

• HPCG: SpMV, Symm. Gauss-Seidel soother

• NAS: conj. gradient, integer sort

• Data: real-world graphs + suit generators

20.04.2021 Prodigy – HPCA 2021 21

Prefetch Potential and Usefulness

• No prefetch: measure LLC misses DIG covers

• Upper bound on DRAM stall reduction

➢ avg 96% IG coverage

• Notable variability in accuracy: 33 – %

➢ avg 63% of prefetches demanded

• Hits predominantly in L1D

• Most misses attributed to timeliness

➢ Avg. 85% of prefetchable LLC misses
converted into hits

➢ Ranged indirection essential:
avg 55% of prefetches

20.04.2021 Prodigy – HPCA 2021 22

Performance vs No Prefetch Baseline

• Baseline: DRAM stalls dominate: 84%

• DRAM stalls down by avg 80%

• Slight increase in cache stalls: more traffic

• Branch stalls down by avg 65%

• Most notable in workloads with
branch-dependent loads

➢ Speedup of 2.6× overall

• Format-robust: speedups on CSR+CSC
workloads similar to CSR-only tasks

20.04.2021 Prodigy – HPCA 2021 23

No stall DRAM Cache

Branch Dependency Other

Performance vs Existing Prefetchers

➢ Indirection SW PF on PageRank: . 8× vs × speedup

➢ Common HW PF (GHB-based G/DC): .6× speedup

• Specialized HW PFs: could not reproduce results
→ compare best reported and measured

➢Ainsworth & Jones: . × or .5×

• Less timely, less general: only BFS-like patterns

➢DROPLET: . × or .6×

• Only single-valued indirection, limited triggering

➢ IMP: .5× or .3×

• Only 2 levels of single-valued indirection

20.04.2021 Prodigy – HPCA 2021 24

Measured by authors (A&J, DROPLET only support graph loads)

Reported in prior work

Energy and Overhead

• Energy reduced in all categories: avg 1.6×

• Faster → less static energy

• Less instructions, accesses, mispredictions

• HW Overhead: mainly storage (DIG, PFHRs)

• ~ 0.8 KB or 0.004% of CPU die

• 1.4 – 40× less than other solutions

• SW Overhead: negligible

• Tiny binary size increase (API calls)

• ~1 s added compile time

20.04.2021 Prodigy – HPCA 2021 25

Conclusion

20.04.2021 Prodigy – HPCA 2021 26

Conclusion

• Prodigy is a HW/SW codesign to prefetch
data-indirect irregular workloads

• IG encodes data structure layout and traversal

• Composes single-valued and ranged indirection

• Added ahead-of-time by programmer or compiler

• Low-cost HW prefetcher combines static
DIG with dynamic runtime information

➢ .6× speedup over baseline

➢ .6 × energy savings

➢ Negligible HW, SW overheads

20.04.2021 Prodigy – HPCA 2021 2

2
1
4

0
2

10
11
13
14

2
4
0
3

1
4

2
4

2

1

0
1
1
0
1
0
1

2
1
4

0
2

10
11
13
14

2
4
0
3

1
4

2
4

2

1

0
1
1
0
1
0
1

work

offsetList

edgeList

visited

w

w

w

w

Strengths and Weaknesses

20.04.2021 Prodigy – HPCA 2021 28

Problems Identified by Authors

• Suboptimal multithreading for threads sharing core

• DIG, PFHRs must be swapped

• No prefetch throttling mechanism (yet)

• May further mitigate cache pollution

• Some algorithms need additional data in indirection

• May cause cache thrashing in these cases

• DIG, PFHR parameters optimized for shown wor loads

20.04.2021 Prodigy – HPCA 2021 29

Strengths

• Well-organized and well-explained paper

• Entire HW/SW stack exemplified using one problem (BFS)

• General, yet performant and goal-oriented solution

• Extensive, well explained software integration

• End user API and LLVM passes for DIG construction

• Complete, reproducible description of both

• Mindful use of hardware resources

• Careful allocation of both memory and logic

20.04.2021 Prodigy – HPCA 2021 30

Weaknesses

• Limited Novelty: similar indirection, workload prefetch approaches in prior work [1-4..]

• Hardware description vague at best → not useful beyond high-level simulation

• How does the prefetch “FSM” work?

• How is position in intermediate nodes kept track of?

• (How) can we defer traversal on multi-edge nodes? What if we run out of PFHRs?

• valuation methodology has serious flaws

• SRAMs are not content-addressable: needs standard cell memory

• HW area estimate seems very off: “FSM” clearly dominates 00B of SRAM SCM

• Existing works should be reproducible, no evidence for result hypotheses

• Timing in core domain critical, but not considered

➢ (Likely) poor prefetch W: many steps to request single line

20.04.2021 Prodigy – HPCA 2021 31

[1] S. Ainsworth and T. M. Jones: “Graph Prefetching Using Data Structure Knowledge”, ICS 201 .
[2] V. Dadu, J. Weng, S. Liu, and T. Nowatzki: “Towards General Purpose Acceleration by
Exploiting Common Data-Dependence Forms”, MICRO ’ 2.
[3] S. Kumar, A. Shriraman, V. Srinivasan, D. Lin, and J. Phillips: “S RL: hardware accelerator for
collecting software data structures”, PACT 2014
[4] A. Roth and G. S. Sohi: “Effective jump-pointer prefetching for linked data structures”,
SIGARCH Comput. Archit. News 27, 2 (May 1999), 111–121.

Thoughts and Ideas

20.04.2021 Prodigy – HPCA 2021 32

Implement in RTL and Silicon

• Vague HW, timing info likely due to
heavy abstraction → go deeper

• Implement at Register-transfer Level

• Cycle-accurate simulation

• 100% reproducible and implementable
hardware description

• Implement in recent silicon technology

• 100% accurate timing and area figures

• Proven physical feasibility (P&R)

➢Use implementation results to optimize HW

➢Use high-level simulation with proven
characteristics for performance evaluation

20.04.2021 Prodigy – HPCA 2021 33

A heterogeneous manycore platform
test chip implemented in GF22FDX [1]

[1] F. Zaruba, F. Schuiki and L. Benini, "Manticore: A 4096-Core RISC-V

Chiplet Architecture for Ultraefficient Floating-Point Computing," in IEEE Micro,
vol. 41, no. 2, pp. 36-42, 1 March-April 2021, doi: 10.1109/MM.2020.3045564.

Couple to Core for Better Performance

• Absolute IPC still poor

• Much of no-stall likely bookkeeping

• Core duplicates all address calculation steps
done by Prodigy, but in SW → slow

• Compiler is fully aware of Prodigy

• Prefetch sequence (DIG) known ahead-of-time

➢ Implement direct data streams into core

• Prodigy directly provides prefetched data

• Add ISA instruction to pop / push streams

➢ Compiler coordinates core and Prodigy to
eliminate bookkeeping / stalls and maximize IPC

➢ Increases performance while saving energy

20.04.2021 Prodigy – HPCA 2021 34

No stall Stall

… …

worstbest

Generalize Indirection Function

• Some algorithms need different
indirect address transforms

• May need additional data

• Plenty of potential to extend Prodigy “FSM”

• Won’t have much impact at this scale

➢Generalize indirection functionality

• Analyze workloads to see which might pay off

• Implement address transforms in HW

➢ Better prefetch coverage

➢ Higher performance

20.04.2021 Prodigy – HPCA 2021 35

t a

 = +

 _ptr

for t in a[i]..a[i+1]:

x_ptr = b + t

x = *x_ptr

x_ptr = indir(b, t, l1_data)

Discussion

20.04.2021 Prodigy – HPCA 2021 3

How could other components (DRAM schedulers, coalescers,
cache eviction, …) benefit from known demand sequences?

20.04.2021 Prodigy – HPCA 2021 37

Can we leverage ahead-of-time analysis to prefetch other access
patterns? What about arbitrary regular patterns?

20.04.2021 Prodigy – HPCA 2021 3

We can technically reprogram Prodigy at any time during runtime.
When would this make sense? What can we gain from it?

20.04.2021 Prodigy – HPCA 2021 39

How can we adapt Prodigy to better integrate with multiple
threads per core and the OS?

20.04.2021 Prodigy – HPCA 2021 40

How does Prodigy affect timing channel attacks? Does it
increase or decrease attack surface and bandwidth, and why?

20.04.2021 Prodigy – HPCA 2021 41

