
Making DRAM Stronger Against Row Hammering

Mungyu Son
Department of EE

POSTECH
Republic of Korea

earthtoss@gmail.com

Hyunsun Park
Department of EE

POSTECH
Republic of Korea

lenasid0911@gmail.com

Junwhan Ahn
Department of ECE

Seoul National University
Republic of Korea

junwhan@snu.ac.kr

Sungjoo Yoo
Department of CSE

Seoul National University
Republic of Korea

sungjoo.yoo@gmail.com

ABSTRACT
Modern DRAM suffers from a new problem called row
hammering. The problem is expected to become more severe in
future DRAMs mostly due to increased inter-row coupling at
advanced technology. In order to address this problem, we
present a probabilistically managed table (called PRoHIT)
implemented on the DRAM chip. The table keeps track of victim
row candidates in a probabilistic way and, in case of auto-refresh,
the topmost entry is additionally refreshed thereby mitigating
the row hammering problem. Our experiments with PARSEC
benchmark and synthetic traces show that PRoHIT outperforms
the state-of-the-art method, PARA, by 35.7% (PARSEC) in terms
of the reduction ratio of row-hammer cases. Our proposed
method also shows constantly superior performance to PARA for
synthetic traces.

CCS CONCEPTS

• Hardware ➝ Dynamic memory; • Security and privacy ➝

Hardware attacks and countermeasures.

KEYWORDS
Row hammering, history-based, aggressor row, victim row,
DRAM

1 INTRODUCTION
In order to satisfy the continuous growth of capacity
requirement of main memory, DRAM manufacturers have put a
significant effort to increase the cell density of DRAM. While
this approach has improved the cost-effectiveness of DRAM, it
has rather degraded the reliability of DRAM due to the following
two reasons. First, the amount of electric charges in a cell
capacitor decreases as the density of cells increases, which
makes the noise margin of DRAM cells narrower. In other words,
DRAM cells become more vulnerable to various sources of data
loss [1]. Second, electromagnetic coupling effect occurs in high-
density DRAM because inter-cell distance is getting smaller as
the technology advances [2]. Due to this, a new DRAM reliability
problem has recently been reported, in which, when a specific

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for third-party components of this
work must be honored. For all other uses, contact the owner/author(s).
DAC’17, June 2017, Austin, TX, USA
© 2016 Copyright held by the owner/author(s). 978-1-4503-4927-7/17/06. . . $15.00
DOI: http://dx.doi.org/10.1145/3061639.3062281

row of DRAM is activated too frequently, the data stored in its
adjacent rows may flip due to inter-cell interference. This
problem is called row hammering [3] and there have been several
methods to attack the system (e.g., obtaining the root privilege of
the system) based on this phenomenon.

In this paper, we propose a novel solution to mitigate the
reliability implication of the row hammering problem. Our
method is motivated by the limitation of state-of-the-art
methods for preventing row hammering, called PARA [4]. The
idea of PARA is to randomly select rows that can potentially
experience inadvertent bit flips (which we call victim rows) and
perform additional refresh of those rows.2 As will be shown later,
however, it is relatively easy to find a memory access pattern
that cause row hammering even under this method. Our key idea
to alleviate this vulnerability is to keep track of the recent
history of row activations while performing additional refreshes
in a probabilistic manner. By making our scheme aware of access
characteristics, it can better understand which rows will be
potentially more vulnerable to row hammering (and thus need
extra refresh), which enables a higher level of reliability without
incurring too frequent extra refreshes. Our contribution can be
summarized as follows:

 We propose to leverage access history information along
with the purely probabilistic method to better protect DRAM
cells from row hammering-induced errors.

 We show that probabilistic management of the access history
table can make the solution stronger against various patterns
of attacks based on row hammering.

 We empirically demonstrate the effectiveness of our method
with real-world benchmark programs as well as carefully
engineered synthetic testbenches.

This paper is organized as follows. Section 2 reviews related
work. Section 3 gives our motivation. Section 4 describes the
proposed method. Section 5 reports experimental results. Section
6 concludes the paper.

2 RELATED WORK
Recently, there are active studies on the row hammering
problem. Kim et al. showed that repeated cache flushes using
clflush can incur a bit flip on the neighbor rows on DRAM [4].
Gruss et al. showed a method of incurring row hammer-induced

2 Refreshing victim rows reduces the chance of row hammering to happen because
it increases the amount of charges in the cells of the row (i.e., making the victim
rows stronger).

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on April 19,2021 at 14:03:11 UTC from IEEE Xplore. Restrictions apply.

2

Figure 1: The impact of using address history to mitigate
row hammering problems.

Figure 2: Overall Architecture of the proposed method.

error by reducing the effective cache size and utilizing
transparent huge pages [5]. Qiao and Seaborn showed that a row
hammer-based attack for Linux kernel is possible by flipping bits
on the page table entry and gaining kernel privilege [6]. Aweke
et al. proposed a low-cost software-based protection mechanism
against row hammering-based attacks [7]. In this method, the
LLC cache misses are monitored and, if the miss count exceeds a
threshold, DRAM access sampling is performed to detect attacks
on a particular DRAM bank. In case of successive row
activations on the same bank, victim rows are refreshed.

In order to mitigate the row hammering problem, Kim et al.
proposed probabilistic adjacent row activation (PARA) method
[4, 8]. In PARA, the memory controller selects a row to perform
additional refresh by picking, at a probability, neighbor rows of
the currently accessed row. Kim et al. proposed a new
architecture, counter-based row activation (CRA), for mitigating
the row hammering problem. Using counters, CRA decides
which row is accessed frequently. Then, CRA refreshes neighbor
rows of the currently accessed one when the counter becomes
larger than the threshold. However, the overhead of CRA is high
because every row should have its own counter. In order to
reduce this overhead, Seyedzadeh et al. proposed to utilize a
counter-based tree and dynamically divide the internal
management structure of DRAM banks to minimize additional
refreshes [9].

3 MOTIVATION
As briefly explained in Section 1, the row hammering problem
happens due to the interaction between the row that is being
activated (which we call aggressor row) and its neighboring row
whose content experiences accidental bit flips (which we call
victim row). Precisely, the row hammering problem is defined as
follows:

Row hammering problem: One or more bit errors on a
victim row can occur when the total number of activations to the

two neighboring aggressor rows in a single refresh period, which
we call victim counter, exceeds a threshold (typically, 2,000).

There can be several solutions to mitigate the row
hammering problem. For example, Apple reduced the refresh
period in their firmware [10]; however, an increased refresh rate
not only incurs nontrivial performance and energy overheads
but also may not be enough to sufficiently prevent row
hammering problems [4]. Instead, today’s commercial DRAM
products have their own ways to identify potential victim rows
inside DRAM devices and issue additional refreshes to them. In
such an approach, its effectiveness highly depends on how to
find potential victim rows. For instance, in PARA [4], every time
a row is activated, its neighboring rows are probabilistically
selected as victim rows. One can also consider the access pattern
by maintaining an LRU table that keeps track of victim rows of
each row activation and using the row in the MRU slot as a
potential victim row in the current period [11].

Fig. 1 shows the number of row hammering occurrences (the
lower, the better) measured by running applications from the
PARSEC benchmark [12] on an architectural simulator.3 In Fig. 1,
we compare two methods: PARA [4] and the aforementioned
LRU-based method [11]. The baseline does not have any
methods to mitigate the row hammering problem except the
standard 64ms refreshes. Fig. 1 shows that PARA does not
perform well on most of the benchmark programs. This is
mainly because PARA selects the potential victim row in a
probabilistic manner without considering the access history.
Thus, PARA is vulnerable to applications having a mix of (a few)
frequently activated rows and many relatively randomly
activated ones, which is often the case in many memory-
intensive programs. In such access patterns, the LRU-based
method performs better than PARA since it exploits access
history, and thus, can select victim rows better. Therefore, we
aim at devising an effective mechanism to select victim rows by
considering the access patterns of applications as well as by
applying probabilistic selections.

4 PROPOSED METHOD

4.1 Overall Architecture of Proposed Method
Our architecture is based on refresh-based mitigation of row
hammering (briefly explained in the previous section). In this
approach, the DRAM device itself identifies potential victim
rows and issues extra refreshes to them during the execution of
auto-refresh commands (will be explained later). This approach
has a benefit in that it is self-contained, i.e., no modifications to
memory controllers or system software.

On top of this baseline architecture, we propose to find
potential victim rows by adding a small table called Probabilistic
Row-hammer HIstory Table (PRoHIT) on a DRAM chip and
monitoring the access characteristics of applications. Fig. 2
illustrates the overall architecture of the proposed mechanism.
At every activation/refresh command (thick arrows in Fig. 2),

3 In our experiments, we used an accelerated simulation mode (see Section 5 for
more details) to evaluate the methods with real-world memory traces.

0

15

30

45

60

#
 R

H
s

Baseline PARA-0.001 LRU

Refresh
Control

Unit

BANK

PRoHIT

auto refresh cmd

activation

addr

victim row

+ addtional refresh (PARA)

+ addtional refresh

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on April 19,2021 at 14:03:11 UTC from IEEE Xplore. Restrictions apply.

 3

Figure 3: PRoHIT organization and management.

Figure 4: Example of PRoHIT operation.

PRoHIT (shaded box in Fig. 2) is activated to keep track of the
history of row hammering by probabilistically adding victim
rows of the command (i.e., neighboring rows of the target row of
the command) to the table. Based on this information, it chooses
a victim row to perform additional refresh and sends a refresh
command for this victim row to the refresh controller (which
already exists in conventional DRAM devices). The salient aspect
of the proposed method is that PRoHIT manages the activation
history in a probabilistic manner. As will be demonstrated in our
experiments, this probabilistic style of access history
management is crucial for covering a wide range of access
behavior with a small table (PRoHIT has a tight capacity
constraint as it has to be integrated on DRAM dies).

4.2 Probabilistic Row-Hammer History Table
In this subsection, we explain the structure and operations of our
mechanism based on PRoHIT. We first cover the basic
operations of our mechanism without probabilistic functions in
Section 4.2.1 (called static policy) and then describe its
probabilistic version, which is our final solution, in Section 4.2.2.

4.2.1 Basic PRoHIT Operations. Fig. 3 illustrates the basic
structure and operations of PRoHIT. It consists of hot and cold
tables. The hot table stores the addresses of victim rows
attacked4 more than once, while the cold table keeps track of
rows attacked only once. The basic operations of PRoHIT are as
follows:
 Insertion: On a new row activation to DRAM, we insert two

entries, each of which corresponds to one of the two
neighboring rows of the activated row, into the highest
priority slots of the cold table (arrow labeled as ‘Insertion’ in
Fig. 3). Existing cold table entries are demoted accordingly.

 Eviction: When the cold table is full and a new entry is
inserted into it, the entry at the lowest priority slot in the
cold table is evicted (arrow annotated with ‘Eviction’ in Fig.
3).

4 We use the term ‘attack’ to represent that a victim row is affected by the
activation of its aggressor row.

 Table promotion: On a row activation whose target row
already exists in the cold table, the corresponding cold table
entry is promoted to the lowest priority slot of the hot table
(arrow labeled as ‘Table promotion’ in Fig. 3).

 Promotion: If the target row of a row activation hits in the
hot table, the corresponding hot table entry is promoted to
the next priority slot (arrow labeled as ‘Promotion’ in Fig. 3).

 Additional refresh: On each auto-refresh command (issued
by the memory controller every 7.8s period), if there is a
valid entry at the highest priority slot of the hot table, we
choose the corresponding row as a potential victim row and
invalidate the hot table entry. This leaves the highest priority
slot of the hot table empty, which is to avoid refreshing the
same row again and again if it is not a victim row anymore.
Then, the selected victim row is refreshed (arrow labeled as
“Additional refresh” in Fig. 3) along with other rows that are
to be refreshed by the auto-refresh command.5

Fig. 4 exemplifies the operations of PRoHIT under a scenario
where two activations with addresses 0x0011 and 0x0025 arrive
at the table at T1 and T2, respectively. The leftmost table shows
the initial state of this example. When row 0x0011 is activated at
T1, we insert two victim rows of the target row (i.e., row 0x0010
and row 0x0012) to the table. Since row 0x0010 hits in the hot
table, the entry is promoted to the highest priority slot of the hot
table; row 0x0012 does not have any corresponding entries, and
thus, we insert a cold table entry for row 0x0012 after demoting
each cold table entry (which evicts the entry for row 0x0004). At
this stage, the state of PRoHIT is shown in the table in the
middle. Similarly, when row 0x0025 is activated at T2, we
insert/promote two entries for the neighboring rows, i.e., row
0x0024 and row 0x0026. As row 0x0024 has a corresponding cold
table entry, it is promoted to the lowest priority position of the
hot table; row 0x0026 does not have any matching entries, and
thus, is inserted into the cold table. This leads to a PRoHIT state
shown in the rightmost table in Fig. 4.

Our mechanism issues additional refreshes for victim rows
based on the information stored in PRoHIT. In this example, if an
auto-refresh command arrives between time T1 and T2, we
perform an additional refresh for the victim row 0x0010. After
performing the additional auto-refresh, the corresponding entry
is evicted from the table as shown in Fig. 4.

4.2.2 Probabilistic Table Management. The basic mechanism
without probabilistic functions (which we call static policy)
explained in the previous subsection has a significant drawback
in addressing the row hammering problem in that it cannot track
the access information if the working set size is larger than the
size of PRoHIT. Thus, considering that the size of PRoHIT is
limited due to the area constraint of on-DRAM logic, the static
policy cannot handle row hammering patterns having a wide
range of addresses. The most intuitive scenario of this is a
streaming access pattern; assuming that the cold table has four

5 Typically, an auto-refresh command refreshes 8 to 16 rows depending on the
capacity of the DRAM chip. According to the information from a DRAM
manufacturer, the additional refresh for a victim row can be performed in parallel
with the existing refreshes for 8 or 16 rows without increasing the auto-refresh
latency tRFC.

0x0001

0x0010

0x00ab

0x0024

0x001c

0x00ff

0x0004

Table promotion
Insertion

Eviction

Additional refreshPromotion

Cold
HotHigh priority

Low priority

0x0001

0x0010

0x00ab

0x0024

0x001c

0x00ff

0x0004

0x0010

0x0001

0x00ab

0x0012

0x0024

0x001c

0x00ff

Cold

entry = 4

Hot

entry = 3

0x0011
Aggressor
address

0x0025

0x0001

0x0024

0x0026

0x00ab

0x0012

0x001c

T1 T2 time

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on April 19,2021 at 14:03:11 UTC from IEEE Xplore. Restrictions apply.

4

Table 1: Architectural Parameters

Table 2: PARSEC Benchmark

Table 3: Synthetic Pattern

entries and row 1 to 5 are repeatedly accessed in a sequential
manner, this access pattern thrashes the cold table, and thus,
table promotion never happens (i.e., the hot table is always
empty). In other words, the static policy does not trigger any
additional refreshes under this thrashing pattern, which makes
the system vulnerable to row hammering.

Therefore, we propose a probabilistic table management as a
solution to widening the address coverage of our scheme. Based
on the static policy explained in the previous subsection, we
modify the insertion, promotion, and eviction operations as
follows:
 Probabilistic insertion: On each new row activation, we

determine whether its victim rows are inserted into the table
or not at a probability 𝑝𝑖 (0.1 works well in our experiments).

 Probabilistic eviction: In case of eviction from the cold
table, we randomly select one of the cold entries. Assuming
that eviction probability is 𝑝𝑒 (set to 1 in the experiments),
the entry with the lowest priority is evicted with the
probability of (1 − 𝑝𝑒) + 𝑝𝑒/(# 𝑐𝑜𝑙𝑑 𝑒𝑛𝑡𝑟𝑖𝑒𝑠) and the other
entries are evicted with the probability of pe/

(# 𝑐𝑜𝑙𝑑 𝑒𝑛𝑡𝑟𝑖𝑒𝑠).
 Probabilistic table promotion: In case of a hit to an entry

of cold table, we promote it to the position of one of hot table
stochastically. Assuming that table promotion probability is
𝑝𝑡 (0.2 in the experiments), the promoted entry moves to the

position of the lowest priority of hot table with the
probability of (1 − 𝑝𝑡) + 𝑝𝑡/(# ℎ𝑜𝑡 𝑒𝑛𝑡𝑟𝑖𝑒𝑠) and moves to
the other positions with the probability of 𝑝𝑡/

(# ℎ𝑜𝑡 𝑒𝑛𝑡𝑟𝑖𝑒𝑠).

The aforementioned probabilistic table management is from
our design space exploration of probability parameters and
combinations of insertion/promotion positions. The intuition
behind our probabilistic policy is that rows with frequent
activations are likely to be captured by the table anyway even if
some of them do not access the table. In the next section, we will
demonstrate that our probabilistic approach scales well and
covers complex memory access patterns with large memory
footprint.

5 EXPERIMENTS

5.1 Experimental Setup
In order to evaluate our proposed method, we developed an

architectural model of PRoHIT and performed trace-based
simulation. We used two sources of memory access traces:
PARSEC 3.0 [12] and synthetic traces. In this subsection, we
describe how we generated memory traces in each case.

5.1.1 PARSEC Benchmark. We used a Pin-based memory
architecture simulator, McSimA+ [13], to generate DRAM access
traces from PARSEC 3.0 benchmarks [12]. Table 1 shows the
overall architecture configuration. Since the row hammering
problem occurs when the workload is memory-intensive, we
used a small L2 cache size (512KB). We ran one billion
instructions for each of 11 applications in PARSEC benchmark.
In order to make the traces highly memory-intensive, we scaled
the time axis of the traces by 60 times so that a memory access
occurs every 200 nanoseconds on average, which we call
acceleration mode.6

Table 2 shows per-DRAM bank statistics on the number of
read/write requests and the frequency of row hammering
problems (‘# RHs’ in the table) under the acceleration mode. We
evaluate the thresholds for row hamming to 1000, 2000, and 3000
(in the paper, the result is at threshold 2000). In other words, if
an aggressor row is activated more than 2,000 times without any
refresh to its victim rows, we consider that the victim rows
experience bit flips caused by row hammering. As shown in
Table 2, swaptions does not have row hammering errors even
under acceleration mode. Thus, we excluded swaptions and used
the remaining 10 benchmarks in our experiments.

5.1.2 Synthetic Pattern Trace. We used synthetic traces in
order to emulate various attack scenarios based on row
hammering [5-7]. Table 3 shows five patterns of synthetic traces
used in our experiments. We obtained them based on previous
work on memory attack scenarios [14]. Pattern 1 represents
random accesses where accesses are randomly distributed to all
rows. Pattern 2 repeats a series of sequential accesses to

6 The acceleration mode represents an extreme case of memory-intensive
workloads. In reality, similar situations could happen when the clock frequency is
higher than ours and tens of CPU cores run the same application in rate mode. We
think that the acceleration mode is useful to evaluate various solutions to row
hammering in a more realistic setting compared to using synthetic access patterns
(Section 5.1.2).

Component Details

CPU Core Out-of-Order x86 core, 3.4GHz

L1 Cache 4-way 8KB/8KB I/D cache, 64B cache line, LRU policy

L2 Cache 16-way 512KB, 64B cache line, LRU policy

Main memory
2GB, DDR3-1066, 1 channel, 8 banks, 2KB-row,
FR-FCFS, closed row policy

Benchmark # Reads # Writes # RHs

blackscholes 2,993,189 470,943 119

bodytrack 2,457,973 1,462,695 100

canneal 103,533,468 12,282,997 3

facesim 23,235,059 14,666,004 59

ferret 31,753,294 6,743,948 19

fluidanimate 12,113,859 6,598,052 3

freqmine 6,448,474 2,908,900 7

raytrace 10,148,326 5,045,450 4

streamcluster 147,513,400 798,229 35

swaptions 17,423 2,196 0

x264 17,288,758 2,831,358 71

Pattern Description Example

Pattern 1 Random rows 3, 10, 9, 150, 65, ...

Pattern 2
Repeated arbitrary selected N
rows

(x1, x2 ..., xN)*

Pattern 3
Repeated arbitrary selected N
rows + random rows

x1, 3, 10, x2, ..., xN, ...

Pattern 4 Neighbor rows
(x1–1, x1+1, ..., xN–1,
xN+1)*

Pattern 5
Neighbor rows
+ random rows

x1–1, 3, x1+1, ..., 15,
xN–1, 7, ..., xN+1, ...

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on April 19,2021 at 14:03:11 UTC from IEEE Xplore. Restrictions apply.

 5

Figure 5: Comparison of row hammering reduction ratio
(PARSEC benchmark).

Figure 6: Victim counter (blackscholes).

arbitrary N aggressor rows (from x1 to xN). Pattern 3 mixes
Patterns 1 and 2. Pattern 4 repeats a sequence that accesses
neighbor rows (from x1-1, x1+1 to xN-1, xN+1) of all victim rows.
Pattern 5 is a combination of Patterns 1 and 4. We set N, the
number of attack addresses, to eight in our experiments. In each
pattern, accesses are generated at a minimum time distance of
tRC (row cycle time of DRAM).

5.2 Experimental Result
In this section, we compare the effectiveness of the following
four techniques on mitigating the row hammering problem:
 Baseline represents the conventional DRAM design that does

not have any additional solutions to mitigate the row
hammering problem; however, periodic auto-refresh
commands are helpful to alleviate row hammering-induced
errors.

 PARA-X represents PARA [4] with X as the probability of
refreshing neighboring rows.

 SRoHIT is our static table management scheme (i.e., without
probabilistic functions, 𝑝𝑖 = 1, 𝑝𝑒 = 0, and 𝑝𝑡 = 0). The
hot/cold table has three/four entries, respectively.

 PRoHIT is our probabilistic table management method
explained in Section 4.2.2. It has the same number of hot/cold
table entries as SRoHIT. This is our final solution.

Fig. 5 compares row hammering reduction ratio, which
represents what percentage of row hammering problems are
eliminated by each technique. PRoHIT shows the reduction ratio
of ‘1’ in all the cases since it removes all row hammering
problems in each application (i.e., reduction ratio of 1). SRoHIT
cannot mitigate the row hammering problem in some
benchmarks (e.g., raytrace) because it has difficulty in detecting
victim rows when the working set size is larger than the table
size. PARA is effective in only three benchmarks (blackscholes,

Figure 7: Synthetic pattern result.

Figure 8: Table size vs. row hammering immunity (Pattern
2).

bodytrack, and facesim). Thus, PARA gives the reduction ratio of
74.7%, which is 35.7% less than PRoHIT. The reason why PRoHIT
is much more effective than the other schemes is that it is aware
of memory access patterns and it can handle memory accesses
with larger working set sizes due to its probabilistic nature.

Fig. 6 shows how many times each victim row is attacked
before it is refreshed by either auto-refresh or additional refresh
issued by each scheme (which we call victim counter). Note that
after a row is refreshed, its victim counter is reset; thus, the
victim counter needs to be lower than the row hammering
threshold (i.e., 2,000) to prevent row hammering problems. As
the figure shows, both PARA and SRoHIT have cases where the
victim counter exceeds the threshold, whereas PRoHIT keeps the
counter below the threshold in all cases. In particular, PARA
suffers the most in this application because it lacks in detecting
the case of a few frequently activated rows mixed with random
accesses, which is often the case in real-world applications.
SRoHIT has two cases that the victim counter exceeds 2,000,
which is caused by its inability to handle streaming accesses
with large working set sizes.

Fig. 7 compares the row hammering reduction ratio with four
synthetic patterns. The baseline does not reduce the frequency of
row hammering at all in Patterns 2, 3, and 4 and PARA gives
small reduction ratios in Patterns 3 and 5. On the other hand,
PRoHIT eliminates all row hammering cases in all patterns. This
is because PRoHIT uses the access history to find victim rows,
which allows us to better detect frequently activated rows
compared with the purely probabilistic method, PARA. Fig. 7
also shows the importance of the probabilistic nature of our
scheme. In particular, SRoHIT shows even worse results than
PARA in Patterns 2 and 4 because the working set size (N=8, see
Section 5.1.2) is larger than the table size (seven entries, see the
beginning of this subsection).

Fig. 8 shows the relationship between the table size of

0

0.2

0.4

0.6

0.8

1

R
e
d
u
ct

io
n
 r
a
ti
o

Baseline PARA-0.001 SRoHIT PRoHIT

0

2000

4000

6000

8000

10000

0 450000 900000 1350000L
a
st

 v
a
lu

e
 o

f
v
ic

ti
m

 c
o
u
n
te

r

activations

PARA-0.001 SRoHIT PRoHIT

0

0.2

0.4

0.6

0.8

1

pattern 2 pattern 3 pattern 4 pattern 5

R
e
d
u
ct

io
n
 r

a
ti
o

Baseline PARA-0.001 SRoHIT PRoHIT

0

10

20

30

40

50

60

0 5 10 15 20 25 30

#
 a

g
g
re

ss
o
r

ro
w

s

table entries

insertion-0.1 table-promotion-0.2 eviction-1 PRoHIT

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on April 19,2021 at 14:03:11 UTC from IEEE Xplore. Restrictions apply.

6

Figure 9: PRoHIT vs. PARA (Pattern 3).

PRoHIT and the maximum number of aggressor rows that
PRoHIT can handle with zero row hammering incidents (legend
labeled as ‘PRoHIT’). For instance, when the table size is 10,
PRoHIT can eliminate row hammering problems from an access
pattern with up to 38 aggressor rows. As the figure shows,
PRoHIT with larger tables can handle more aggressor rows
without row hammering problems.

Fig. 8 also shows the effects of enabling the probabilistic
version of each table management operation. For example,
‘insertion-0.1’ represents SRoHIT combined with probabilistic
insertion (insertion probability of 0.1). As the figure shows,
probabilistic insertion is especially effective when the table is
small.

Fig. 9 compares the victim counter (y-axis) across access
traces (x-axis) in Pattern 3 (N = 1, # aggressor row accesses =
1.0M), PRoHIT completely eliminates row hammering problems
because it can easily find frequently accessed rows when there
are only a few of such rows. In case of PARA, the frequency of
row hammering problems can be reduced by increasing the
sampling probability (e.g., PARA-0.005 vs PARA-0.01). However,
PARA-0.01 not only incurs more additional refreshes than
PRoHIT (5013 vs. 4280) but also still has a row hammering
problem (indicated by an arrow). The reason why PARA is less
effective than PRoHIT is that PARA has difficulty in
distinguishing a few frequently accessed rows from random
accesses due to its unawareness of access patterns.

5.3 Implementation Overhead
In order to model the power consumption and area overhead of
extra hardware structures on a DRAM chip, we implemented an
RTL design of PRoHIT and synthesized it using Synopsis Design
Compiler. Then, we converted the synthesized design into a
SPICE netlist with 22nm PTM [15] to measure the average power
consumption. For random number generation during
probabilistic operations, we used a 6-bit pseudorandom number
generator. According to our modeling results, PRoHIT incurs a
very small area overhead (1795 NAND gates/bank) and a small
energy overhead (0.75mW/bank) to the DRAM device. The
critical path of table access in PRoHIT is the sum of the time of
probabilistic input selection and entry update. At a 65nm high-
performance process technology, PRoHIT’s critical path delay is
2.53ns at 0.9V, 125°C (worst-case condition). It is not larger than
a typical tRRD (row-to-row activation delay) of DDR4, about 3ns.
Therefore, our mechanism can be implemented on top of
commercial DRAM devices in a practical manner.

6 CONCLUSION
DRAM scaling introduces a new type of bit error problems called
row hammering, where a victim row can lose its data when its
neighbor row(s) is heavily activated during a period shorter than
the typical refresh period (i.e., 64ms). The row hammering
problem is caused by high row-to-row interference in high-
density DRAM chips, which is expected to be exacerbated as the
technology node advances. In order to address this challenge, we
proposed a method of probabilistically managing a small table
inside a DRAM chip to precisely and robustly identify victim
rows across different access patterns. Through our experiments
based on PARSEC benchmarks and synthetic traces, we showed
that the proposed method can better reduce the frequency of
row hammering problems with fewer additional refreshes
compared with the state-of-the-art method, PARA, in both real-
world and synthetic traces. Our solution can be practically
implemented with very small area/power overhead to DRAM
chips with no modifications to memory controllers or system
software.

ACKNOWLEDGMENTS
This work was supported by National Research Foundation of
Korea (NRF-2016M3A7B4909604).

REFERENCES
[1] S. Y. Cha, “DRAM and future commodity memories,” VLSI Technology Short

Course, 2011.
[2] O. Mutlu, “Memory scaling: A systems architecture perspective,” in

Proceedings of the International Memory Workshop, May. 2013.
[3] M. Micheletti, “Tuning DDR4 for power and performance,” presented at

MemCon, 2013.
[4] Y. Kim, R. Daly, J. Kim, C. Fallin, J. H. Lee, D. Lee, C. Wilkerson, K. Lai, and O.

Mutlu, “Flipping bits in memory without accessing them: An experimental
study of DRAM disturbance errors,” in Proceedings of the International
Symposium on Computer Architecture, Jun. 2014.

[5] D. Gruss, C. Maurice, and S. Mangard, “Rowhammer.js: A remote software-
induced fault attack in JavaScript,” arXiv preprint arXiv:1507.06955, Mar.
2016.

[6] R. Qiao and M. Seaborn, “A new approach for rowhammer attacks,” in
Proceedings of the International Symposium on Hardware Oriented Security and
Trust, May 2016.

[7] Z. B. Aweke, S. F. Yitbarek, R. Qiao, R. Das, M. Hicks, Y. Oren, and T. Austin,
“ANVIL: Software-based protection against next-generation rowhammer
attacks,” in Proceedings of the International Conference on Architectural Support
for Programming Languages and Operating Systems, Mar. 2016.

[8] D.-H. Kim, P. J. Nair, and M. K. Qureshi, “Architectural support for mitigating
row hammering in DRAM memories,” IEEE Computer Architecture Letters, vol.
14, no. 1, pp. 9-12, Jan.-Jun. 2015.

[9] S. M. Seyedzadeh, A. K. Jones, and R. Melhem, “Counter-based tree structure
for row hammering mitigation in DRAM,” IEEE Computer Architecture Letters,
preprint.

[10] About the security content of Mac EFI Security Update 2015-001, Apple,
https://support.apple.com/en-us/HT204934.

[11] S. Park, D. Jung, J. Kang, J. Kim, and J. Lee, “CFLRU: A replacement algorithm
for flash memory,” in Proceedings of the International Conference on Compilers,
Architecture and Synthesis for Embedded Systems, Oct. 2006.

[12] C. Bienia, “Benchmarking modern multiprocessors,” Ph.D. Thesis, Princeton
University, Jan. 2011.

[13] J. H. Ahn, S. Li, S. O, and N. P. Jouppi, “McSimA+: A manycore simulator with
application-level+ simulation and detailed microarchitecture modeling,” in
Proceedings of the International Symposium on Performance Analysis of Systems
and Software, Apr. 2013.

[14] M. K. Qureshi, A. Seznec, L. A. Lastras, and M. Franceschini, “Practical and
secure PCM systems by online detection of malicious write streams,” in
Proceedings of the International Symposium on High Performance Computer
Architecture, Feb. 2011.

[15] 22nm PTM model, http://ptm.asu.edu/. Accessed: 2016-11-18.

0

2000

4000

6000

8000

1280000 1285000 1290000 1295000 1300000La
st

 v
a
lu

e
 o

f
vi

ct
im

 c
o
u
n
te

r

activations

PARA-0.001 PARA-0.005 PARA-0.01 PRoHIT

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on April 19,2021 at 14:03:11 UTC from IEEE Xplore. Restrictions apply.

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: move up by 18.00 points
 Normalise (advanced option): 'original'

 32

 D:20160112132206
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 675
 322
 Fixed
 Up
 18.0000
 0.0000

 Both
 AllDoc

 PDDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 0
 1

 1

 HistoryList_V1
 qi2base

