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ABSTRACT 
Modern DRAM suffers from a new problem called row 
hammering. The problem is expected to become more severe in 
future DRAMs mostly due to increased inter-row coupling at 
advanced technology. In order to address this problem, we 
present a probabilistically managed table (called PRoHIT) 
implemented on the DRAM chip. The table keeps track of victim 
row candidates in a probabilistic way and, in case of auto-refresh, 
the topmost entry is additionally refreshed thereby mitigating 
the row hammering problem. Our experiments with PARSEC 
benchmark and synthetic traces show that PRoHIT outperforms 
the state-of-the-art method, PARA, by 35.7% (PARSEC) in terms 
of the reduction ratio of row-hammer cases. Our proposed 
method also shows constantly superior performance to PARA for 
synthetic traces. 

CCS CONCEPTS 

• Hardware ➝ Dynamic memory; • Security and privacy ➝ 

Hardware attacks and countermeasures. 

KEYWORDS 
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1 INTRODUCTION 
In order to satisfy the continuous growth of capacity 
requirement of main memory, DRAM manufacturers have put a 
significant effort to increase the cell density of DRAM. While 
this approach has improved the cost-effectiveness of DRAM, it 
has rather degraded the reliability of DRAM due to the following 
two reasons. First, the amount of electric charges in a cell 
capacitor decreases as the density of cells increases, which 
makes the noise margin of DRAM cells narrower. In other words, 
DRAM cells become more vulnerable to various sources of data 
loss [1]. Second, electromagnetic coupling effect occurs in high-
density DRAM because inter-cell distance is getting smaller as 
the technology advances [2]. Due to this, a new DRAM reliability 
problem has recently been reported, in which, when a specific 
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row of DRAM is activated too frequently, the data stored in its 
adjacent rows may flip due to inter-cell interference. This 
problem is called row hammering [3] and there have been several 
methods to attack the system (e.g., obtaining the root privilege of 
the system) based on this phenomenon. 

In this paper, we propose a novel solution to mitigate the 
reliability implication of the row hammering problem. Our 
method is motivated by the limitation of state-of-the-art 
methods for preventing row hammering, called PARA [4]. The 
idea of PARA is to randomly select rows that can potentially 
experience inadvertent bit flips (which we call victim rows) and 
perform additional refresh of those rows.2 As will be shown later, 
however, it is relatively easy to find a memory access pattern 
that cause row hammering even under this method. Our key idea 
to alleviate this vulnerability is to keep track of the recent 
history of row activations while performing additional refreshes 
in a probabilistic manner. By making our scheme aware of access 
characteristics, it can better understand which rows will be 
potentially more vulnerable to row hammering (and thus need 
extra refresh), which enables a higher level of reliability without 
incurring too frequent extra refreshes. Our contribution can be 
summarized as follows: 

 We propose to leverage access history information along 
with the purely probabilistic method to better protect DRAM 
cells from row hammering-induced errors.  

 We show that probabilistic management of the access history 
table can make the solution stronger against various patterns 
of attacks based on row hammering. 

 We empirically demonstrate the effectiveness of our method 
with real-world benchmark programs as well as carefully 
engineered synthetic testbenches. 

This paper is organized as follows. Section 2 reviews related 
work. Section 3 gives our motivation. Section 4 describes the 
proposed method. Section 5 reports experimental results. Section 
6 concludes the paper. 

2 RELATED WORK 
Recently, there are active studies on the row hammering 
problem. Kim et al. showed that repeated cache flushes using 
clflush can incur a bit flip on the neighbor rows on DRAM [4]. 
Gruss et al. showed a method of incurring row hammer-induced  

                                                                 
2 Refreshing victim rows reduces the chance of row hammering to happen because 
it increases the amount of charges in the cells of the row (i.e., making the victim 
rows stronger). 
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Figure 1: The impact of using address history to mitigate 
row hammering problems. 

 
Figure 2: Overall Architecture of the proposed method. 

error by reducing the effective cache size and utilizing 
transparent huge pages [5]. Qiao and Seaborn showed that a row 
hammer-based attack for Linux kernel is possible by flipping bits 
on the page table entry and gaining kernel privilege [6]. Aweke 
et al. proposed a low-cost software-based protection mechanism 
against row hammering-based attacks [7]. In this method, the 
LLC cache misses are monitored and, if the miss count exceeds a 
threshold, DRAM access sampling is performed to detect attacks 
on a particular DRAM bank. In case of successive row 
activations on the same bank, victim rows are refreshed.  

In order to mitigate the row hammering problem, Kim et al. 
proposed probabilistic adjacent row activation (PARA) method 
[4, 8]. In PARA, the memory controller selects a row to perform 
additional refresh by picking, at a probability, neighbor rows of 
the currently accessed row. Kim et al. proposed a new 
architecture, counter-based row activation (CRA), for mitigating 
the row hammering problem. Using counters, CRA decides 
which row is accessed frequently. Then, CRA refreshes neighbor 
rows of the currently accessed one when the counter becomes 
larger than the threshold. However, the overhead of CRA is high 
because every row should have its own counter. In order to 
reduce this overhead, Seyedzadeh et al. proposed to utilize a 
counter-based tree and dynamically divide the internal 
management structure of DRAM banks to minimize additional 
refreshes [9]. 

3 MOTIVATION 
As briefly explained in Section 1, the row hammering problem 
happens due to the interaction between the row that is being 
activated (which we call aggressor row) and its neighboring row 
whose content experiences accidental bit flips (which we call 
victim row). Precisely, the row hammering problem is defined as 
follows: 

Row hammering problem: One or more bit errors on a 
victim row can occur when the total number of activations to the 

two neighboring aggressor rows in a single refresh period, which 
we call victim counter, exceeds a threshold (typically, 2,000). 

There can be several solutions to mitigate the row 
hammering problem. For example, Apple reduced the refresh 
period in their firmware [10]; however, an increased refresh rate 
not only incurs nontrivial performance and energy overheads 
but also may not be enough to sufficiently prevent row 
hammering problems [4]. Instead, today’s commercial DRAM 
products have their own ways to identify potential victim rows 
inside DRAM devices and issue additional refreshes to them. In 
such an approach, its effectiveness highly depends on how to 
find potential victim rows. For instance, in PARA [4], every time 
a row is activated, its neighboring rows are probabilistically 
selected as victim rows. One can also consider the access pattern 
by maintaining an LRU table that keeps track of victim rows of 
each row activation and using the row in the MRU slot as a 
potential victim row in the current period [11].  

Fig. 1 shows the number of row hammering occurrences (the 
lower, the better) measured by running applications from the  
PARSEC benchmark [12] on an architectural simulator.3 In Fig. 1, 
we compare two methods: PARA [4] and the aforementioned 
LRU-based method [11]. The baseline does not have any 
methods to mitigate the row hammering problem except the 
standard 64ms refreshes. Fig. 1 shows that PARA does not 
perform well on most of the benchmark programs. This is 
mainly because PARA selects the potential victim row in a 
probabilistic manner without considering the access history. 
Thus, PARA is vulnerable to applications having a mix of (a few) 
frequently activated rows and many relatively randomly 
activated ones, which is often the case in many memory-
intensive programs. In such access patterns, the LRU-based 
method performs better than PARA since it exploits access 
history, and thus, can select victim rows better. Therefore, we 
aim at devising an effective mechanism to select victim rows by 
considering the access patterns of applications as well as by 
applying probabilistic selections. 

4 PROPOSED METHOD 

4.1  Overall Architecture of Proposed Method 
Our architecture is based on refresh-based mitigation of row 
hammering (briefly explained in the previous section). In this 
approach, the DRAM device itself identifies potential victim 
rows and issues extra refreshes to them during the execution of 
auto-refresh commands (will be explained later). This approach 
has a benefit in that it is self-contained, i.e., no modifications to 
memory controllers or system software. 

On top of this baseline architecture, we propose to find 
potential victim rows by adding a small table called Probabilistic 
Row-hammer HIstory Table (PRoHIT) on a DRAM chip and 
monitoring the access characteristics of applications. Fig. 2 
illustrates the overall architecture of the proposed mechanism. 
At every activation/refresh command (thick arrows in Fig. 2),  

                                                                 
3 In our experiments, we used an accelerated simulation mode (see Section 5 for 
more details) to evaluate the methods with real-world memory traces. 

0

15

30

45

60

#
 R

H
s

Baseline PARA-0.001 LRU

Refresh 
Control

Unit

BANK

PRoHIT

auto refresh cmd

activation

addr

victim row

+ addtional refresh (PARA)

+ addtional refresh

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on April 19,2021 at 14:03:11 UTC from IEEE Xplore.  Restrictions apply. 



 

 3 

 
Figure 3: PRoHIT organization and management. 

 
Figure 4: Example of PRoHIT operation. 

PRoHIT (shaded box in Fig. 2) is activated to keep track of the 
history of row hammering by probabilistically adding victim 
rows of the command (i.e., neighboring rows of the target row of 
the command) to the table. Based on this information, it chooses 
a victim row to perform additional refresh and sends a refresh 
command for this victim row to the refresh controller (which 
already exists in conventional DRAM devices). The salient aspect 
of the proposed method is that PRoHIT manages the activation 
history in a probabilistic manner. As will be demonstrated in our 
experiments, this probabilistic style of access history 
management is crucial for covering a wide range of access 
behavior with a small table (PRoHIT has a tight capacity 
constraint as it has to be integrated on DRAM dies). 

4.2  Probabilistic Row-Hammer History Table 
In this subsection, we explain the structure and operations of our 
mechanism based on PRoHIT. We first cover the basic 
operations of our mechanism without probabilistic functions in 
Section 4.2.1 (called static policy) and then describe its 
probabilistic version, which is our final solution, in Section 4.2.2. 

4.2.1  Basic PRoHIT Operations. Fig. 3 illustrates the basic 
structure and operations of PRoHIT. It consists of hot and cold 
tables. The hot table stores the addresses of victim rows 
attacked4 more than once, while the cold table keeps track of 
rows attacked only once. The basic operations of PRoHIT are as 
follows: 
 Insertion: On a new row activation to DRAM, we insert two 

entries, each of which corresponds to one of the two 
neighboring rows of the activated row, into the highest 
priority slots of the cold table (arrow labeled as ‘Insertion’ in 
Fig. 3). Existing cold table entries are demoted accordingly. 

 Eviction: When the cold table is full and a new entry is 
inserted into it, the entry at the lowest priority slot in the 
cold table is evicted (arrow annotated with ‘Eviction’ in Fig. 
3). 

                                                                 
4 We use the term ‘attack’ to represent that a victim row is affected by the 
activation of its aggressor row. 

 Table promotion: On a row activation whose target row 
already exists in the cold table, the corresponding cold table 
entry is promoted to the lowest priority slot of the hot table 
(arrow labeled as ‘Table promotion’ in Fig. 3). 

 Promotion: If the target row of a row activation hits in the 
hot table, the corresponding hot table entry is promoted to 
the next priority slot (arrow labeled as ‘Promotion’ in Fig. 3). 

 Additional refresh: On each auto-refresh command (issued 
by the memory controller every 7.8s period), if there is a 
valid entry at the highest priority slot of the hot table, we 
choose the corresponding row as a potential victim row and 
invalidate the hot table entry. This leaves the highest priority 
slot of the hot table empty, which is to avoid refreshing the 
same row again and again if it is not a victim row anymore. 
Then, the selected victim row is refreshed (arrow labeled as 
“Additional refresh” in Fig. 3) along with other rows that are 
to be refreshed by the auto-refresh command.5 

Fig. 4 exemplifies the operations of PRoHIT under a scenario 
where two activations with addresses 0x0011 and 0x0025 arrive 
at the table at T1 and T2, respectively. The leftmost table shows 
the initial state of this example. When row 0x0011 is activated at 
T1, we insert two victim rows of the target row (i.e., row 0x0010 
and row 0x0012) to the table. Since row 0x0010 hits in the hot 
table, the entry is promoted to the highest priority slot of the hot 
table; row 0x0012 does not have any corresponding entries, and 
thus, we insert a cold table entry for row 0x0012 after demoting 
each cold table entry (which evicts the entry for row 0x0004). At 
this stage, the state of PRoHIT is shown in the table in the 
middle. Similarly, when row 0x0025 is activated at T2, we 
insert/promote two entries for the neighboring rows, i.e., row 
0x0024 and row 0x0026. As row 0x0024 has a corresponding cold 
table entry, it is promoted to the lowest priority position of the 
hot table; row 0x0026 does not have any matching entries, and 
thus, is inserted into the cold table. This leads to a PRoHIT state 
shown in the rightmost table in Fig. 4.  

Our mechanism issues additional refreshes for victim rows 
based on the information stored in PRoHIT. In this example, if an 
auto-refresh command arrives between time T1 and T2, we 
perform an additional refresh for the victim row 0x0010. After 
performing the additional auto-refresh, the corresponding entry 
is evicted from the table as shown in Fig. 4. 

4.2.2 Probabilistic Table Management. The basic mechanism 
without probabilistic functions (which we call static policy) 
explained in the previous subsection has a significant drawback 
in addressing the row hammering problem in that it cannot track 
the access information if the working set size is larger than the 
size of PRoHIT. Thus, considering that the size of PRoHIT is 
limited due to the area constraint of on-DRAM logic, the static 
policy cannot handle row hammering patterns having a wide 
range of addresses. The most intuitive scenario of this is a 
streaming access pattern; assuming that the cold table has four  

 

                                                                 
5 Typically, an auto-refresh command refreshes 8 to 16 rows depending on the 
capacity of the DRAM chip. According to the information from a DRAM 
manufacturer, the additional refresh for a victim row can be performed in parallel 
with the existing refreshes for 8 or 16 rows without increasing the auto-refresh 
latency tRFC. 
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Table 1: Architectural Parameters 

 

Table 2: PARSEC Benchmark 

 

Table 3: Synthetic Pattern 

 
entries and row 1 to 5 are repeatedly accessed in a sequential 
manner, this access pattern thrashes the cold table, and thus, 
table promotion never happens (i.e., the hot table is always 
empty). In other words, the static policy does not trigger any  
additional refreshes under this thrashing pattern, which makes 
the system vulnerable to row hammering. 

Therefore, we propose a probabilistic table management as a 
solution to widening the address coverage of our scheme. Based 
on the static policy explained in the previous subsection, we 
modify the insertion, promotion, and eviction operations as 
follows: 
 Probabilistic insertion: On each new row activation, we 

determine whether its victim rows are inserted into the table 
or not at a probability 𝑝𝑖 (0.1 works well in our experiments). 

 Probabilistic eviction: In case of eviction from the cold 
table, we randomly select one of the cold entries. Assuming 
that eviction probability is 𝑝𝑒 (set to 1 in the experiments), 
the entry with the lowest priority is evicted with the 
probability of (1 − 𝑝𝑒) + 𝑝𝑒/(# 𝑐𝑜𝑙𝑑 𝑒𝑛𝑡𝑟𝑖𝑒𝑠) and the other 
entries are evicted with the probability of pe/

(# 𝑐𝑜𝑙𝑑 𝑒𝑛𝑡𝑟𝑖𝑒𝑠). 
 Probabilistic table promotion: In case of a hit to an entry 

of cold table, we promote it to the position of one of hot table 
stochastically. Assuming that table promotion probability is 
𝑝𝑡 (0.2 in the experiments), the promoted entry moves to the 

position of the lowest priority of hot table with the 
probability of (1 − 𝑝𝑡) + 𝑝𝑡/(# ℎ𝑜𝑡 𝑒𝑛𝑡𝑟𝑖𝑒𝑠) and moves to 
the other positions with the probability of 𝑝𝑡/

(# ℎ𝑜𝑡 𝑒𝑛𝑡𝑟𝑖𝑒𝑠). 

The aforementioned probabilistic table management is from 
our design space exploration of probability parameters and 
combinations of insertion/promotion positions. The intuition 
behind our probabilistic policy is that rows with frequent 
activations are likely to be captured by the table anyway even if 
some of them do not access the table. In the next section, we will 
demonstrate that our probabilistic approach scales well and 
covers complex memory access patterns with large memory 
footprint. 

5 EXPERIMENTS 

5.1  Experimental Setup 
In order to evaluate our proposed method, we developed an 

architectural model of PRoHIT and performed trace-based 
simulation. We used two sources of memory access traces: 
PARSEC 3.0 [12] and synthetic traces. In this subsection, we 
describe how we generated memory traces in each case. 

5.1.1 PARSEC Benchmark. We used a Pin-based memory 
architecture simulator, McSimA+ [13], to generate DRAM access 
traces from PARSEC 3.0 benchmarks [12]. Table 1 shows the 
overall architecture configuration. Since the row hammering 
problem occurs when the workload is memory-intensive, we 
used a small L2 cache size (512KB). We ran one billion 
instructions for each of 11 applications in PARSEC benchmark. 
In order to make the traces highly memory-intensive, we scaled 
the time axis of the traces by 60 times so that a memory access 
occurs every 200 nanoseconds on average, which we call 
acceleration mode.6 

Table 2 shows per-DRAM bank statistics on the number of 
read/write requests and the frequency of row hammering 
problems (‘# RHs’ in the table) under the acceleration mode. We 
evaluate the thresholds for row hamming to 1000, 2000, and 3000 
(in the paper, the result is at threshold 2000). In other words, if 
an aggressor row is activated more than 2,000 times without any 
refresh to its victim rows, we consider that the victim rows 
experience bit flips caused by row hammering. As shown in 
Table 2, swaptions does not have row hammering errors even 
under acceleration mode. Thus, we excluded swaptions and used 
the remaining 10 benchmarks in our experiments. 

5.1.2 Synthetic Pattern Trace. We used synthetic traces in 
order to emulate various attack scenarios based on row 
hammering [5-7]. Table 3 shows five patterns of synthetic traces 
used in our experiments. We obtained them based on previous 
work on memory attack scenarios [14]. Pattern 1 represents 
random accesses where accesses are randomly distributed to all 
rows. Pattern 2 repeats a series of sequential accesses to  

                                                                 
6  The acceleration mode represents an extreme case of memory-intensive 
workloads. In reality, similar situations could happen when the clock frequency is 
higher than ours and tens of CPU cores run the same application in rate mode. We 
think that the acceleration mode is useful to evaluate various solutions to row 
hammering in a more realistic setting compared to using synthetic access patterns 
(Section 5.1.2). 

Component Details

CPU Core Out-of-Order x86 core, 3.4GHz

L1 Cache 4-way 8KB/8KB I/D cache, 64B cache line, LRU policy

L2 Cache 16-way 512KB, 64B cache line, LRU policy

Main memory
2GB, DDR3-1066, 1 channel, 8 banks, 2KB-row, 
FR-FCFS, closed row policy

Benchmark # Reads # Writes # RHs 

blackscholes 2,993,189 470,943 119

bodytrack 2,457,973 1,462,695 100

canneal 103,533,468 12,282,997 3

facesim 23,235,059 14,666,004 59

ferret 31,753,294 6,743,948 19

fluidanimate 12,113,859 6,598,052 3

freqmine 6,448,474 2,908,900 7

raytrace 10,148,326 5,045,450 4

streamcluster 147,513,400 798,229 35

swaptions 17,423 2,196 0

x264 17,288,758 2,831,358 71

Pattern Description Example

Pattern 1 Random rows 3, 10, 9, 150, 65, ... 

Pattern 2
Repeated arbitrary selected N 
rows

(x1, x2 ..., xN)*

Pattern 3
Repeated arbitrary selected N 
rows + random rows

x1, 3, 10, x2, ..., xN, ...

Pattern 4 Neighbor rows
(x1–1, x1+1, ..., xN–1, 
xN+1)*

Pattern 5
Neighbor rows 
+ random rows

x1–1, 3, x1+1, ..., 15, 
xN–1, 7, ..., xN+1, ...

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on April 19,2021 at 14:03:11 UTC from IEEE Xplore.  Restrictions apply. 
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Figure 5: Comparison of row hammering reduction ratio 
(PARSEC benchmark). 

 
Figure 6: Victim counter (blackscholes). 

arbitrary N aggressor rows (from x1 to xN). Pattern 3 mixes 
Patterns 1 and 2. Pattern 4 repeats a sequence that accesses 
neighbor rows (from x1-1, x1+1 to xN-1, xN+1) of all victim rows. 
Pattern 5 is a combination of Patterns 1 and 4. We set N, the 
number of attack addresses, to eight in our experiments. In each 
pattern, accesses are generated at a minimum time distance of 
tRC (row cycle time of DRAM). 

5.2  Experimental Result 
In this section, we compare the effectiveness of the following 
four techniques on mitigating the row hammering problem: 
 Baseline represents the conventional DRAM design that does 

not have any additional solutions to mitigate the row 
hammering problem; however, periodic auto-refresh 
commands are helpful to alleviate row hammering-induced 
errors. 

 PARA-X represents PARA [4] with X as the probability of 
refreshing neighboring rows. 

 SRoHIT is our static table management scheme (i.e., without 
probabilistic functions, 𝑝𝑖  = 1, 𝑝𝑒  = 0, and 𝑝𝑡  = 0). The 
hot/cold table has three/four entries, respectively. 

 PRoHIT is our probabilistic table management method 
explained in Section 4.2.2. It has the same number of hot/cold 
table entries as SRoHIT. This is our final solution. 

Fig. 5 compares row hammering reduction ratio, which 
represents what percentage of row hammering problems are 
eliminated by each technique. PRoHIT shows the reduction ratio 
of ‘1’ in all the cases since it removes all row hammering 
problems in each application (i.e., reduction ratio of 1). SRoHIT 
cannot mitigate the row hammering problem in some 
benchmarks (e.g., raytrace) because it has difficulty in detecting 
victim rows when the working set size is larger than the table 
size. PARA is effective in only three benchmarks (blackscholes,  

 
Figure 7: Synthetic pattern result. 

 
Figure 8: Table size vs. row hammering immunity (Pattern 
2). 

bodytrack, and facesim). Thus, PARA gives the reduction ratio of 
74.7%, which is 35.7% less than PRoHIT. The reason why PRoHIT 
is much more effective than the other schemes is that it is aware 
of memory access patterns and it can handle memory accesses 
with larger working set sizes due to its probabilistic nature. 

Fig. 6 shows how many times each victim row is attacked 
before it is refreshed by either auto-refresh or additional refresh 
issued by each scheme (which we call victim counter). Note that 
after a row is refreshed, its victim counter is reset; thus, the 
victim counter needs to be lower than the row hammering 
threshold (i.e., 2,000) to prevent row hammering problems. As 
the figure shows, both PARA and SRoHIT have cases where the 
victim counter exceeds the threshold, whereas PRoHIT keeps the 
counter below the threshold in all cases. In particular, PARA 
suffers the most in this application because it lacks in detecting 
the case of a few frequently activated rows mixed with random 
accesses, which is often the case in real-world applications. 
SRoHIT has two cases that the victim counter exceeds 2,000, 
which is caused by its inability to handle streaming accesses 
with large working set sizes. 

Fig. 7 compares the row hammering reduction ratio with four 
synthetic patterns. The baseline does not reduce the frequency of 
row hammering at all in Patterns 2, 3, and 4 and PARA gives 
small reduction ratios in Patterns 3 and 5. On the other hand, 
PRoHIT eliminates all row hammering cases in all patterns. This 
is because PRoHIT uses the access history to find victim rows, 
which allows us to better detect frequently activated rows 
compared with the purely probabilistic method, PARA. Fig. 7 
also shows the importance of the probabilistic nature of our 
scheme. In particular, SRoHIT shows even worse results than 
PARA in Patterns 2 and 4 because the working set size (N=8, see 
Section 5.1.2) is larger than the table size (seven entries, see the 
beginning of this subsection). 

Fig. 8 shows the relationship between the table size of  
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Figure 9: PRoHIT vs. PARA (Pattern 3). 

PRoHIT and the maximum number of aggressor rows that 
PRoHIT can handle with zero row hammering incidents (legend 
labeled as ‘PRoHIT’). For instance, when the table size is 10, 
PRoHIT can eliminate row hammering problems from an access 
pattern with up to 38 aggressor rows. As the figure shows, 
PRoHIT with larger tables can handle more aggressor rows 
without row hammering problems. 

Fig. 8 also shows the effects of enabling the probabilistic 
version of each table management operation. For example, 
‘insertion-0.1’ represents SRoHIT combined with probabilistic 
insertion (insertion probability of 0.1). As the figure shows, 
probabilistic insertion is especially effective when the table is 
small. 

Fig. 9 compares the victim counter (y-axis) across access 
traces (x-axis) in Pattern 3 (N = 1, # aggressor row accesses = 
1.0M), PRoHIT completely eliminates row hammering problems 
because it can easily find frequently accessed rows when there 
are only a few of such rows. In case of PARA, the frequency of 
row hammering problems can be reduced by increasing the 
sampling probability (e.g., PARA-0.005 vs PARA-0.01). However, 
PARA-0.01 not only incurs more additional refreshes than 
PRoHIT (5013 vs. 4280) but also still has a row hammering 
problem (indicated by an arrow). The reason why PARA is less 
effective than PRoHIT is that PARA has difficulty in 
distinguishing a few frequently accessed rows from random 
accesses due to its unawareness of access patterns. 

5.3  Implementation Overhead 
In order to model the power consumption and area overhead of 
extra hardware structures on a DRAM chip, we implemented an 
RTL design of PRoHIT and synthesized it using Synopsis Design 
Compiler. Then, we converted the synthesized design into a 
SPICE netlist with 22nm PTM [15] to measure the average power 
consumption. For random number generation during 
probabilistic operations, we used a 6-bit pseudorandom number 
generator. According to our modeling results, PRoHIT incurs a 
very small area overhead (1795 NAND gates/bank) and a small 
energy overhead (0.75mW/bank) to the DRAM device. The 
critical path of table access in PRoHIT is the sum of the time of 
probabilistic input selection and entry update. At a 65nm high-
performance process technology, PRoHIT’s critical path delay is 
2.53ns at 0.9V, 125°C (worst-case condition). It is not larger than 
a typical tRRD (row-to-row activation delay) of DDR4, about 3ns. 
Therefore, our mechanism can be implemented on top of 
commercial DRAM devices in a practical manner. 

6 CONCLUSION 
DRAM scaling introduces a new type of bit error problems called 
row hammering, where a victim row can lose its data when its 
neighbor row(s) is heavily activated during a period shorter than 
the typical refresh period (i.e., 64ms). The row hammering 
problem is caused by high row-to-row interference in high-
density DRAM chips, which is expected to be exacerbated as the 
technology node advances. In order to address this challenge, we 
proposed a method of probabilistically managing a small table 
inside a DRAM chip to precisely and robustly identify victim 
rows across different access patterns. Through our experiments 
based on PARSEC benchmarks and synthetic traces, we showed 
that the proposed method can better reduce the frequency of 
row hammering problems with fewer additional refreshes 
compared with the state-of-the-art method, PARA, in both real-
world and synthetic traces. Our solution can be practically 
implemented with very small area/power overhead to DRAM 
chips with no modifications to memory controllers or system 
software. 
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