
RAMBleed: Reading Bits in Memory
Without Accessing Them

First presented at: 41st Annual IEEE Symposium on Security & Privacy, May 2020
Authors: Andrew Kwong1, Daniel Genkin1, Daniel Gruss2, Yuval Yarom3

1University of Michigan, 2Graz University of Technology, 3University of Adelaide and Data61

Seminar in Computer Architecture (ETH 227-2211-00L)
Presented by: Steve Rhyner
16.12.2021

2

Executive Summary
Problem:
• DRAM density scaling worsens the effect of Rowhammer
• There are no studies about implications of Rowhammer on confidentiality
Goal:
• Present an attack that exploits the Rowhammer effect to breach confidentiality
Key Idea:
• Use Rowhammer for reading secret data without directly accessing the physical memory location
• Read side channel succeeds even when ECC memory detects and corrects every bit flip
Mechanism:
• RAMBleed attack: Hammering rows containing secret key leading to leakage of bits into attacker-

owned memory
• Techniques for massaging memory from user space into an exploitable state and using Frame Feng

Shui to deterministically place pages
Results:
• Successful end-to-end attack on OpenSSH 7.9 that extracts an RSA-2048 key from the root level SSH

daemon
• RAMBleed can be used as a read side channel breaching confidentiality

3

Outline
Background
Threat Model and Problem Statement
What is RAMBleed?
RAMBleed against OpenSSH
RAMBleed on ECC Memory
Results
Mitigations and Limitations
Strengths/Weaknesses

Discussion

Background

4

DRAM Organization

• Bits are stored in cells, which are composed of a capacitor and a
transistor
• True cells: charged capacitor corresponds to a ‘1’
• Anti cells: charged capacitor corresponds to a ‘0’

• The capacity of the capacitor represents the value of the bit
• Cells arranged in a grid of rows and columns are called a bank
• Each row is connected via a wordline
• Each column is connected via a bitline

Figure from https://people.inf.ethz.ch/omutlu/pub/Revisiting-RowHammer_isca20.pdf

• DRAM consists of cells,
banks, ranks, and DIMMs

5

DRAM Operation

• Access to a bank operates at a granularity of a row (standard is 8 KiB,
or 65536 cells)
•Memory controller raises the wordline for the row

à activate a row
•Memory controller issues a precharge to close the open row and

prepare the bank to activate a different row
• Sense amplifiers capture currents at each column, copy stored value

of the cell and refresh charge in the active row
• Row buffer stores values of the cells in the active row
• Refreshing rows periodically prevents data leakage
• Refresh interval typically 64ms for DDR3 and DDR4, and handled by

the memory controller

6

DRAM Addressing

• Complex function to map a physical address to the corresponding
physical location in memory
• Those mappings are proprietary and undocumented for Intel

processer, but they can be reverse engineered
• Function used in Haswell systems, the bank and the rank are

computed based on bits 13-21 of the physical address

7

Row Buffer Timing Side Channel

• If a read command is issued and the row is already open in the
row buffer
à row-hit

• If not, then them memory controller issues a precharge command,
activates a row and loads its contents into the row buffer
à row-miss

• A row-miss results in a measurable latency
• Timing difference used to identify virtual addresses whose

contents lie within the same bank

8

Rowhammer

• Trend of industry toward increasing DRAM cell density and
decreasing capacitor size
à Reliability issue known as Rowhammer

• Rowhammer is a fault attack

• Attacker uses a specific sequence of memory accesses that result
in bit flips, in locations other than those accessed

9

Techniques to Circumvent the Cache

• A central requirement for triggering Rowhammer bit flips is the
capability to make the memory controller open and close DRAM rows
rapidly

• Adversary needs to generate a sequence of memory accesses to
alternating DRAM rows that bypass the CPU cache

• Known attacks to circumvent the cache
• Manually Flush Cache Lines
• Cache Eviction
• Uncached DMA Memory
• Non-temporal instructions

Single-sided Rowhammer

Row 0

Row 1

Row 2

Row 3

Row 4

Repeatedly opening (activating) and closing (precharging)
a DRAM row causes Rowhammer bit flips in nearby cells

Row 2open
Row 1

Row 3

Row 2closed Row 2open
Row 1

Row 3

Row 0

Row 4

Victim Row

Victim Row

Victim Row

Victim Row

Aggressor RowRow 2open Row 2closed

DRAM Chip

Animation from https://people.inf.ethz.ch/omutlu/pub/Revisiting-RowHammer_isca20-talk.pptx 10

11

Double-sided Rowhammer

• Maximizes the number of
neighboring row activations, and
consequently the charge leakage
from the target row

• Locating addresses in the two
adjacent rows may be difficult
without knowing the physical
address and their mapping to
the row

expect flip

expect flip

expect flip

hammer

hammer

12

Outline
Background
Threat Model and Problem Statement
What is RAMBleed?
RAMBleed against OpenSSH
RAMBleed on ECC Memory
Results
Mitigations and Limitations
Strengths/Weaknesses

Discussion

13

Threat Model

The following assumptions are made:

• OS works correctly

•Machine is vulnerable to the Rowhammer attack

• The attacker is able to trigger the victim to perform allocations of
secret data

14

Problem Statement

• Is the threat posed by Rowhammer limited only to memory integrity and, in
particular, can the Rowhammer effect be exploited for breaching
confidentiality?

• What are the security implications of corrected bit flips? Can an attacker use
Rowhammer to breach confidentiality even when ECC memory corrects all
flipped bits?

15

Outline
Background
Threat Model and Problem Statement
What is RAMBleed?
RAMBleed against OpenSSH
RAMBleed on ECC Memory
Results
Mitigations and Limitations
Strengths/Weaknesses

Discussion

16

RAMBleed

• Rowhammer has been considered a threat to data integrity only,
allowing an unprivileged attacker to modify data without accessing
it
• RAMBleed also has implications on data confidentiality allowing

an attacker to read the value of neighboring bits
•Memory massaging techniques necessary that aim to locate and

subsequently exploit flippable bits
• RAMBleed only requires the attacker to allocate and deallocate

memory and to measure instruction timings, allowing an attacker
to read secret data

Picture from https://rambleed.com

17

Data-Dependent Bit Flips

• Likelihood of a bit flip depends on the values of the bits
immediately above and below it
• Bits tend to flip to the same value of the bits in the adjacent rows
• Bits only flip when the bits both immediately above and below

them are in their discharged state
• Hammering with a striped pattern generates more flips than with a

uniform pattern
• For RAMBleed to work, it is crucial that bit flips are influenced only

by bits in the same column, and not by the neighboring bits within
the same row

18

Data Patterns
• For the attack we will need a specific data pattern to exploit this data dependency
• True Cells
• For cells where a one-valued bit is represented as the cell being charged, the 0-1-0

configuration is the most likely to flip, changing to an all zero configuration (0-0-0)
when rows of the first and the last zero-valued cells are hammered
• In this case, the surrounding zero-bits in the aggressor rows enable the bit flip in the

victim row
• Anti Cells
• For cells where a one-valued bit is represented by an uncharged cell, a 1-0-1

configuration is more likely to flip and change to an all one configuration (1-1-1) when
rows of the first and the last one-valued cells are hammered

• Notation
• 0-1-0 and 1-0-1 configurations are called “stripe” patterns
• 1-1-1 and 0-0-0 configurations are called “uniform” patterns

19

Exploiting Data-Dependent Bit Flips

Double-sided RAMBleed

Single-sided RAMBleed

20

Row Activation Page (A0)

Unused (R0) Sampling Page (A1)

Row Activation (A2) Secret (S)

Secret (S)

RAMBleed Attack

21

Row Activation Page (A0)

Unused (R0) Sampling Page (A1)

Row Activation (A2) Secret (S)

Secret (S)

1

0

0

RAMBleed Attack

22

Row Activation Page (A0)

Unused (R0) Sampling Page (A1)

Row Activation (A2) Secret (S)

Secret (S)

1

0

0

RAMBleed Attack

23

Row Activation Page (A0)

Unused (R0) Sampling Page (A1)

Row Activation (A2) Secret (S)

Secret (S)

1

0

0

RAMBleed Attack

24

Row Activation Page (A0)

Unused (R0) Sampling Page (A1)

Row Activation (A2) Secret (S)

Secret (S)

0

0

0

0

Flippable bit

Set X

Row Activation Page (A0)

Unused (R0) Sampling Page (A1)

Row Activation (A2) Secret (S)

Secret (S)

1

1

1

Set Y

Position j

Position i
RAMBleed Attack

25

Memory Scrambling

• Problem: Modern memory controllers employ memory scrambling,
which complicates building our read side channel
• This mechanism is designed to avoid circuit damage due to resonant

frequency as well as to serve as a mitigation to cold-boot attacks
•Memory scrambling applies a weak stream cipher to the data prior to

sending it to the DRAM
• The seed for the PRNG (pseudo-random number generator) depends

on the physical address of the data and on a random number
generated at boot time
• The PRNG is cryptographically weak

26

Bypassing Memory Scrambling

• Attacker can take advantage of the weaknesses of the PRNG

• The boot time random seed is identical for all rows

• The physical address bits included in the seed are such that several
adjacent rows can have the same bits in their addresses
àSame mask applied

• Applying the same mask across multiple rows means that adjacent bits
either remain unchanged or are all inverted
à Striped configurations remain striped after scrambling

27

Memory Templating

• After obtaining blocks of contiguous memory, we proceed to search them
for bits that can be flipped via Rowhammer

• Templating phase
• Use massaging technique to obtain 2 MiB blocks of physically contiguous memory
• Locate addresses that belong to the same bank
• Perform double-sided hammering with both 1-0-1 and 0-1-0 striped configurations
• Record the locations of these flips for later use with RAMBleed

28

Outline
Background
Threat Model and Problem Statement
What is RAMBleed?
RAMBleed against OpenSSH
RAMBleed on ECC Memory
Results
Mitigations and Limitations
Strengths/Weaknesses

Discussion

29

First Steps towards a Real-World Attack

• Measure the rate and accuracy of RAMBleed’s ability to extract bits across process
boundaries and address spaces
• We assume ideal conditions and predictable victim behavior
• Evaluate RAMBleed against an OpenSSH 7.9 server, extracting the server’s secret

RSA signing keys
• The Victim Process
• A server that runs a decryption routine every time the attacker makes a

request, thereby using its secret key
• The Attacker Process
• Initiate a TCP connection with the victim
• Coerce victim to place page into desired memory layout
• Attacker hammers surrounding rows

30

Attacking OpenSSH

31

Outline
Background
Threat Model and Problem Statement
What is RAMBleed?
RAMBleed against OpenSSH
RAMBleed on ECC Memory
Results
Mitigations and Limitations
Strengths/Weaknesses

Discussion

32

Reminder on ECC Memory
• Correction Mechanism
• So called check bits are stored along with data bits
• These bits offer the redundancy that enables detection and correction of

errors
• Typical sizes for data and check bits are 64 and 8 bits, respectively

• Detecting Bit Flips
• This synchronous error correction results in a timing side channel that

allows an attacker to determine if a single-bit error has occurred

33

RAMBleed on ECC Memory

• Templating
• Very similar as with the non-ECC attack

• Reading Bits
• After profiling memory, memory massaging and Frame Feng Shui

techniques used to achieve the double-sided RAMBleed
configuration
• In contrast to the non-ECC RAMBleed case the timing side channel is

used to detect long read latencies

34

Outline
Background
Threat Model and Problem Statement
What is RAMBleed?
RAMBleed against OpenSSH
RAMBleed on ECC Memory
Results
Mitigations and Limitations
Strengths/Weaknesses

Discussion

35

Experimental Setup

• Hardware
• HP Prodesk 600 desktop running Ubuntu 18.04
• Intel i5-4570 CPU
• Two Axiom DDR3 4 GiB 1333 MHz non-ECC DIMMs
• In a single-channel configuration

36

Memory Placement against OpenSSH

• The memory placement against OpenSSH succeeds with 83% probability
• Probability of OpenSSH placing pages containing private key material

• Along with the potential for RAMBleed to misread bits, gives us an overall
accuracy of 82% when reading the OpenSSH host key
• Applying Heninger-Shacham algorithm requires 68% recovery of the private

key material with an 82% accuracy
à 4.2K distinct bits of the private key is sufficient to extract the complete key!

37

Experimental Results

• On our system we observe the more general case where the bit flips are
probabilistic with respect to the surrounding bits
• Time required to template memory (with a striped 0-1-0 pattern) and find

the needed flips is entirely dependent upon how easily the underlying
DIMMs yield bit flips
• Detected 41 flips per minute
• Reading Secret Bits
• Experimental code can read out the victim’s secret at a rate of 3-4 bits per second

38

Overall Attack Performance
• Memory templating
• 41 flips per minute, leading to a running time of 34 hours to locate 84K bit flips
• Empirically found that 84K bit flips is the threshold for locating 4.2K usable, unique,

flippable bits
• Removing useless bits
• Not all 84K bitflips are useful

1. Given OpenSSH memory layout and the location of the key elements in their
respective pages à only !

"#
of the bits useful à 15750 bit flips

2. Repetitions, i.e. two or more bit flips might actually correspond to the same bit
of the secret key à we are left with 4.2K bit flips in distinct locations that are
useful for key extraction

• Key recovery
• Using Heninger-Shacham algorithm, we recover the entire RSA private key in about

3 minutes on a consumer laptop (Dell XPS 15 featuring an Intel i7-6700 3.4GHz CPU
and 32GiB of RAM) à 0.31 bits per second

39

Experimental Setup: RAMBleed on ECC Memory

• Hardware
• Supermicro X10SLL-F motherboard (BIOS version 3.0a)
• Equipped with an Intel Xeon E3-1270 v3 CPU
• Using a pair of Kingston 8GB 1333 MHz ECC DIMMs

40

Experimental Results: RAMBleed on ECC Memory

• In this setup we can successfully read bits via RAMBleed against
ECC memory with a 73% accuracy at a reading rate of 0.64 bits per
second

• The drop in accuracy stems from different sets of DIMMs used in
their setup

41

Outline
Background
Threat Model and Problem Statement
What is RAMBleed?
RAMBleed against OpenSSH
RAMBleed on ECC Memory
Results
Mitigations and Limitations
Strengths/Weaknesses

Discussion

42

Difficulties dealing with RAMBleed?

• To leak information cross process and cross address space,
RAMBleed only requires that the attacker can read and hammer
her own private memory
• This does not involve any access or modification to the target’s

data, code or address space
• RAMBleed can bypass message authentication codes (MAC) to

protect the target’s data
• Techniques designed to protect cryptographic systems against fault

attacks are limited to protecting integrity

43

Insufficient Hardware Mitigations

• PARA (probabilistic adjacent row activation)
à Not widely adopted
à Only provides a probabilistic security guarantee

• Increasing Refresh Interval
à Doubling DRAM refresh rate by halving the refresh interval from 64ms
to 32ms
à Impractical on mobile systems due to the increased power demand
à Bit flips even under this setting possible

• Using Error Correcting Codes (ECC)
à Hardware error correction implementation produces sufficient side
channel information for mounting RAMBleed
à Significantly slows RAMBleed
à Does not offer complete protection

44

Sufficient Mitigations

• Memory encryption
à Protects against RAMBleed

• Flushing keys from memory
à For systems that use sensitive data for a short amount of time, zeroing out the data
immediately after use would significantly reduce the risk from RAMBleed
à RAMBleed cannot read bits of keys that do not remain in memory for at least one
refresh interval
à Countermeasure effective for protecting short-lived data
à Cannot be used for data that needs to reside in memory for longer durations

• Probabilistic Memory Allocator
àFrame Feng Shui technique relies on the deterministic behavior of the page frame
cache to place the victim’s pages in specific locations
àIntroducing a sufficient amount of non-determinism into the allocation algorithm will
prevent the attacker from placing secrets into vulnerable locations

45

Limitations

• RAMBleed requires the victim process to allocate memory for its secret in a
predictable manner
• Attack against OpenSSH 7.9 required the daemon to allocate the key

multiple times
• Attack presented on a system using DDR3 DRAM, but DDR4 memory retains

the property that Rowhammer-induced bit flips are data-dependent
• RAMBleed’s rate of reading memory is modest

à Around 3-4 bits per second
à Enough time for protection mechanisms to remove short-lived secret

data from the target’s memory

46

Outline
Background
Threat Model and Problem Statement
What is RAMBleed?
RAMBleed against OpenSSH
RAMBleed on ECC Memory
Results
Mitigations and Limitations
Strengths/Weaknesses

Discussion

47

Strengths

• The design of RAMBleed is fundamentally different from previous
Rowhammer-based attacks
• RAMBleed poses a threat to data confidentiality and therefore

Rowhammer is not limited to being a threat to memory integrity
• Severity of RAMBleed is presented in a real-world setting to extract

RSA-keys in OpenSSH 7.9
• The paper shows how to circumvent some assumptions (e.g., ECC

memory)
• Memory massaging technique and Frame Feng Shui to achieve desired

memory layout

48

Weaknesses

• A lot of assumptions are made throughout the whole paper

• The evaluation of the ideas are not extensive enough

• Often redundant information

• Attacks and results presented in the paper are not well structured

• Background on DRAM and Rowhammer is not well presented

49

Questions?

50

Outline
Background
Threat Model and Problem Statement
What is RAMBleed?
RAMBleed against OpenSSH
RAMBleed on ECC Memory
Results
Mitigations and Limitations
Strengths/Weaknesses

Discussion

51

Discussion

• Why is the random seed used by the weak PRNG identical for all rows? Why
a weak PRNG? Would it be infeasible to introduce more randomization?

• How difficult would it be to place the pages in memory while the OS handles
a lot of different processes?

• Why don’t we have a “secure space/row” in DRAM where we have sensitive
data, which is not prone to Rowhammer?

52

Discussion

• Why is it allowed to trigger or allocate data in the same row as sensitive
data?

• Why are complex function to map a physical address to the correct physical
location in memory proprietary, since they can be easily reverse engineered?

53

Discussion

• Ideas on how to prevent RAMBleed?

• Ideas on how to improve RAMBleed?

54

References

• Paper Revisiting Rowhammer:
https://people.inf.ethz.ch/omutlu/pub/Revisiting-RowHammer_isca20.pdf
• Paper Flipping Bits in Memory Without Accessing Them:

https://people.inf.ethz.ch/omutlu/pub/dram-row-hammer_isca14.pdf
• Talk by Andrew Kwong, 41st Annual IEEE Symposium on Security & Privacy,

May 2020
• and all the other references in the RAMBleed paper

https://people.inf.ethz.ch/omutlu/pub/Revisiting-RowHammer_isca20.pdf
https://people.inf.ethz.ch/omutlu/pub/dram-row-hammer_isca14.pdf

