
Branch Runahead:
An Alternative to Branch Prediction for

Impossible to Predict Branches

Stephen Pruett and Yale N. Patt
University of Texas at Austin

MICRO 2021

1

Seminar in Computer Architecture
Presenter: Haocong Luo

Executive Summary
■ Problem: History-based branch predictors (BP) are bottlenecked by

hard-to-predict (H2P) data-dependent branches.

■ Goal: Improve system performance by reducing branch mispredictions.

■ Key Idea: Pre-compute H2P data-dependent branches continuously.
- Dynamically detect light-weight dependence chains at run-time.
- New merge point predictor reduces the divergence from the main thread.
- Can be implemented either as a dedicated unit or part of the core.

■ Key Results:
- Reduces MPKI by 43.6% and increases IPC by 13.7% on average.
- 2.2% area overhead of a baseline out-of-order core.

2

Outline
■ Background

- Limitations of Existing Branch Prediction
- Alternative to Branch Prediction

■ Branch Runahead
- Dynamically Extracting Dependence Chains
- Handling Nested Branches
- Putting Things Together
- Optimizations: Chain Initialization Methods

■ Evaluation
- Methodology
- Results

■ Analysis
- Strengths & Weaknesses
- Discussion

3

Outline
■ Background

- Limitations of Existing Branch Prediction
- Alternative to Branch Prediction

■ Branch Runahead
- Dynamically Extracting Dependence Chains
- Handling Nested Branches
- Putting Things Together
- Optimizations: Chain Initialization Methods

■ Evaluation
- Methodology
- Results

■ Analysis
- Strengths & Weaknesses
- Discussion

4

Limitations of Existing Branch Prediction
■ History-based Branch Prediction (e.g. TAGE)

Predict if the current branch is taken or not by looking into its history.

■ Problem: Data-dependent branches are hard to predict (H2P).
The outcome of the branch depends on the data, not necessarily the history.

1 pos = position on GO board;
2 for (i = 0; i < 8; i ++)
3 sq = pos + neighbor_offset [i];
4 if (board [sq] == EMPTY)
5 ...

■ Improvements in branch prediction are becoming rare because these H2P
branches take up most of the remaining mispredictions.

5

Limitations of Existing Branch Prediction

6

Data dependent branches are the main bottleneck of branch prediction.

Outline
■ Background

- Limitations of Existing Branch Prediction
- Alternative to Branch Prediction

■ Branch Runahead
- Dynamically Extracting Dependence Chains
- Handling Nested Branches
- Putting Things Together
- Optimizations: Chain Initialization Methods

■ Evaluation
- Methodology
- Results

■ Analysis
- Strengths & Weaknesses
- Discussion

7

Alternative to Branch Prediction
■ Pre-computation

Filter the program and execute ahead of the main thread to load the data early.

■ Problems: Not efficient and/or effective enough.
- The filtered thread usually ends up executing most of the program.
- High hardware cost: Almost 2x core resources are needed.
- Light-weight runtime methods cannot guarantee timeliness.
- Requires changes in the ISA.

8

Existing pre-computation methods are not suitable as branch prediction alternatives.

Outline
■ Background

- Limitations of Existing Branch Prediction
- Alternative to Branch Prediction

■ Branch Runahead
- Dynamically Extracting Dependence Chains
- Handling Nested Branches
- Putting Things Together
- Optimizations: Chain Initialization Methods

■ Evaluation
- Methodology
- Results

■ Analysis
- Strengths & Weaknesses
- Discussion

9

Branch Runahead
■ Goal: Improve system performance by reducing branch mispredictions.

■ Key Idea: Pre-compute H2P data-dependent branches continuously.
- Dynamically detect light-weight dependence chains at run-time.

1 pos = position on GO board;
2 for (i = 0; i < 8; i ++)
3 sq = pos + neighbor_offset [i];
4 if (board [sq] == EMPTY)
5 ...

- Dependence chains are shipped to the Dependence Chain Engine (DCE).
- In the DCE, dependence chains are executed continuously as if in a loop.

10

Outline
■ Background

- Limitations of Existing Branch Prediction
- Alternative to Branch Prediction

■ Branch Runahead
- Dynamically Extracting Dependence Chains
- Handling Nested Branches
- Putting Things Together
- Optimizations: Chain Initialization Methods

■ Evaluation
- Methodology
- Results

■ Analysis
- Strengths & Weaknesses
- Discussion

11

Dynamically Extracting Dependence Chains
■ When: When a H2P branch is retired.

- H2P branches are tracked by a Hard Branch Table (HBT).
- Conditional branches are added to HBT when they retire.
- Each entry in the HBT has a saturating counter for mispredictions.

■ How: Backward dataflow walk from the Chain Extraction Buffer (CEB).
- When instructions retire, they are added to the CEB.
- When a mispredicted H2P branch is retired, starts the walk:

1. Initialize the live-in vector with the registers that the branch uses.
2. Add instructions whose dst. are in the live-in vector to the chain.
3. Update the live-in vector as the src. of the added instructions.
4. Stop until we hit a previous instance of the branch.

12

Dynamically Extracting Dependence Chains
■ How: Backward dataflow walk from the Chain Extraction Buffer (CEB).

13

BR0x7

ADD P3 <- P3, 40xA

LD P7 <- [P3]0xC

ADD P7 <- P7, P50xD

MOV P2 <- P70x1

LD P0 <- [P2]0x3

CMP P0, 20x5

PC Instruction

Live-in: {}

BR (H2P, MISS)0x7

...

...

Dynamically Extracting Dependence Chains
■ How: Backward dataflow walk from the Chain Extraction Buffer (CEB).

14

BR0x7

ADD P3 <- P3, 40xA

LD P7 <- [P3]0xC

ADD P7 <- P7, P50xD

MOV P2 <- P70x1

LD P0 <- [P2]0x3

CMP P0, 20x5

PC Instruction

Live-in: {P0}

BR (H2P, MISS)0x7

...

...

Dynamically Extracting Dependence Chains
■ How: Backward dataflow walk from the Chain Extraction Buffer (CEB).

15

BR0x7

ADD P3 <- P3, 40xA

LD P7 <- [P3]0xC

ADD P7 <- P7, P50xD

MOV P2 <- P70x1

LD P0 <- [P2]0x3

CMP P0, 20x5

PC Instruction

Live-in: {P0}

BR (H2P, MISS)0x7

...

...

Dynamically Extracting Dependence Chains
■ How: Backward dataflow walk from the Chain Extraction Buffer (CEB).

16

BR0x7

ADD P3 <- P3, 40xA

LD P7 <- [P3]0xC

ADD P7 <- P7, P50xD

MOV P2 <- P70x1

LD P0 <- [P2]0x3

CMP P0, 20x5

PC Instruction

Live-in: {P0}

BR (H2P, MISS)0x7

...

...

Dynamically Extracting Dependence Chains
■ How: Backward dataflow walk from the Chain Extraction Buffer (CEB).

17

BR0x7

ADD P3 <- P3, 40xA

LD P7 <- [P3]0xC

ADD P7 <- P7, P50xD

MOV P2 <- P70x1

LD P0 <- [P2]0x3

CMP P0, 20x5

PC Instruction

Live-in: {P2}

BR (H2P, MISS)0x7

...

...

Dynamically Extracting Dependence Chains
■ How: Backward dataflow walk from the Chain Extraction Buffer (CEB).

18

BR0x7

ADD P3 <- P3, 40xA

LD P7 <- [P3]0xC

ADD P7 <- P7, P50xD

MOV P2 <- P70x1

LD P0 <- [P2]0x3

CMP P0, 20x5

PC Instruction

Live-in: {P2}

BR (H2P, MISS)0x7

...

...

Dynamically Extracting Dependence Chains
■ How: Backward dataflow walk from the Chain Extraction Buffer (CEB).

19

BR0x7

ADD P3 <- P3, 40xA

LD P7 <- [P3]0xC

ADD P7 <- P7, P50xD

MOV P2 <- P70x1

LD P0 <- [P2]0x3

CMP P0, 20x5

PC Instruction

Live-in: {P7}

BR (H2P, MISS)0x7

...

...

Dynamically Extracting Dependence Chains
■ How: Backward dataflow walk from the Chain Extraction Buffer (CEB).

20

BR0x7

ADD P3 <- P3, 40xA

LD P7 <- [P3]0xC

ADD P7 <- P7, P50xD

MOV P2 <- P70x1

LD P0 <- [P2]0x3

CMP P0, 20x5

PC Instruction

Live-in: {P7, P5}

BR (H2P, MISS)0x7

...

...

Dynamically Extracting Dependence Chains
■ How: Backward dataflow walk from the Chain Extraction Buffer (CEB).

21

BR0x7

ADD P3 <- P3, 40xA

LD P7 <- [P3]0xC

ADD P7 <- P7, P50xD

MOV P2 <- P70x1

LD P0 <- [P2]0x3

CMP P0, 20x5

PC Instruction

Live-in: {P3, P5}

BR (H2P, MISS)0x7

...

...

Dynamically Extracting Dependence Chains
■ Prediction: Chains start executing in the DCE once the live-ins are ready.

- The computed outcome will then overwrite branch prediction results.
- The chain executes continuously until a misprediction happens.
- Execution resumes after synchronizing the live-ins with the main thread.

■ Problem: Frequent synchronization hurts performance, esp. nested branches.
- What if the extracted chain contains other branches?
- Prevents the chains to be executed ahead enough of the main thread.

3 sq = pos + neighbor_offset [i];
4 if (board [sq] == EMPTY) // Branch A
5 if(not board [sq].self_atari()) // Branch B

22

Outline
■ Background

- Limitations of Existing Branch Prediction
- Alternative to Branch Prediction

■ Branch Runahead
- Dynamically Extracting Dependence Chains
- Handling Nested Branches
- Putting Things Together
- Optimizations: Chain Initialization Methods

■ Evaluation
- Methodology
- Results

■ Analysis
- Strengths & Weaknesses
- Discussion

23

Handling Nested Branches
■ Problem: Frequent synchronization hurts performance, esp. nested branches.

- Guard: Branches that determines if other branches are executed or not.

1 pos = position on GO board;
2 for (i = 0; i < 8; i ++)
3 sq = pos + neighbor_offset [i];
4 if (board [sq] == EMPTY) // Branch A
5 if(not board [sq].self_atari()) // Branch B
6 ...

- Affector: Branches that affect the source data of other branches.

1 x = 0;
2 if (foo()) // Branch A
3 x = 1;
4 if (x == 1) // Branch B
5 ...

24

■ Most branches are affected by guard/affector branches.
■ Goal: Track the dependency between chains to execute them more accurately.
■ Key Idea: Dynamically detect the merge point and break down the chains.

25

The fraction of branches with affectors or guards

Handling Nested Branches

■ Merge Point of a branch:
The instruction where the control converges regardless of its outcome.

■ Key Observation: Many wrong path instructions could be fetched and
allocated before a misprediction is detected, including the merge point.

■ Key Idea: Find the first instruction that is both in the wrong and correct path.

■ Wrong Path Buffer (WPB): Stores the PCs of the wrong path instructions.
- When the ROB is flushed due to misprediction, WPB is filled.
- After recovery, retired correct instructions use their PCs to index the WPB.
- A merge point is find if there is a hit.

26

Handling Nested Branches

■ Detecting Guard Branches
- A branch guards any branches between itself and the merge point.
- Any branch encountered during merge point prediction is guarded by the

merge-point-predicting branch.

■ Detecting Affector (Affectee) Branches
- Need to look for registers written between itself and the merge point.
- Use forward dataflow walk to find branches that sources those registers.

■ Tagging the Dependence Chains
- Chain detection now terminates at the first guard/affector branch.
- Tag the chain with that branch and the outcome (if it is a guard).
- Heavily biased guard/affector branches are ignored.

27

Handling Nested Branches

Outline
■ Background

- Limitations of Existing Branch Prediction
- Alternative to Branch Prediction

■ Branch Runahead
- Dynamically Extracting Dependence Chains
- Handling Nested Branches
- Putting Things Together
- Optimizations: Chain Initialization Methods

■ Evaluation
- Methodology
- Results

■ Analysis
- Strengths & Weaknesses
- Discussion

28

Branch Runahead
■ Workflow

1. Dependence chains are extracted into
DCC as H2P branches retire.

2. Upon misprediction, the branch PC and
the outcome are used to initiate chains.

3. Chains execute continuously, and the
outcomes are used to initiate more chains
whose tag match.

4. The outcomes are inserted into the
prediction queue that could overwrite
predictions from TAGE-SC-L.

5. Exit runahead if no outcomes hit in DCC.

29

Branch Runahead
■ Workflow

1. Dependence chains are extracted into
DCC as H2P branches retire.

2. Upon misprediction, the branch PC and
the outcome are used to initiate chains.

3. Chains execute continuously, and the
outcomes are used to initiate more chains
whose tag match.

4. The outcomes are inserted into the
prediction queue that could overwrite
predictions from TAGE-SC-L.

5. Exit runahead if no outcomes hit in DCC.

30

Simple OoO Core

Branch Runahead
■ Workflow

1. Dependence chains are extracted into
DCC as H2P branches retire.

2. Upon misprediction, the branch PC and
the outcome are used to initiate chains.

3. Chains execute continuously, and the
outcomes are used to initiate more chains
whose tag match.

4. The outcomes are inserted into the
prediction queue that could overwrite
predictions from TAGE-SC-L.

5. Exit runahead if no outcomes hit in DCC.

31

Branch Runahead
■ Workflow

1. Dependence chains are extracted into
DCC as H2P branches retire.

2. Upon misprediction, the branch PC and
the outcome are used to initiate chains.

3. Chains execute continuously, and the
outcomes are used to initiate more chains
whose tag match.

4. The outcomes are inserted into the
prediction queue that could overwrite
predictions from TAGE-SC-L.

5. Exit runahead if no outcomes hit in DCC.

32

Branch Runahead
■ Workflow

1. Dependence chains are extracted into
DCC as H2P branches retire.

2. Upon misprediction, the branch PC and
the outcome are used to initiate chains.

3. Chains execute continuously, and the
outcomes are used to initiate more
chains whose tag match.

4. The outcomes are inserted into the
prediction queue that could overwrite
predictions from TAGE-SC-L.

5. Exit runahead if no outcomes hit in DCC.

33

Branch Runahead
■ Workflow

1. Dependence chains are extracted into
DCC as H2P branches retire.

2. Upon misprediction, the branch PC and
the outcome are used to initiate chains.

3. Chains execute continuously, and the
outcomes are used to initiate more chains
whose tag match.

4. The outcomes are inserted into the
prediction queue that could overwrite
predictions from TAGE-SC-L.

5. Exit runahead if no outcomes hit in DCC.

34

Branch Runahead
■ Workflow

1. Dependence chains are extracted into
DCC as H2P branches retire.

2. Upon misprediction, the branch PC and
the outcome are used to initiate chains.

3. Chains execute continuously, and the
outcomes are used to initiate more
chains whose tag match.

4. The outcomes are inserted into the
prediction queue that could overwrite
predictions from TAGE-SC-L.

5. Exit runahead if no outcomes hit in DCC.

35

Outline
■ Background

- Limitations of Existing Branch Prediction
- Alternative to Branch Prediction

■ Branch Runahead
- Dynamically Extracting Dependence Chains
- Handling Nested Branches
- Putting Things Together
- Optimizations: Chain Initialization Methods

■ Evaluation
- Methodology
- Results

■ Analysis
- Strengths & Weaknesses
- Discussion

36

Optimizations: Chain Initialization Methods

37

The aggressiveness of dependent chain initialization is critical to performance.

■ Non-speculative Initiation
- A chain must finish execution before initializing the next dependent chain.

■ Independent-early Initiation
- Chains with a wildcard (don’t care) outcome tag can be initialized when

the triggering branch starts executing.

■ Predictive Initiation
- Predicting the results of the dependent chain.
- Allows chains with non-wildcard outcome tag to be issued early.
- Flush if the prediction turns out to be wrong.

Outline
■ Background

- Limitations of Existing Branch Prediction
- Alternative to Branch Prediction

■ Branch Runahead
- Dynamically Extracting Dependence Chains
- Handling Nested Branches
- Optimizations: Chain Initialization Methods

■ Evaluation
- Methodology
- Results

■ Analysis
- Strengths & Weaknesses
- Discussion

38

Evaluation
■ Methodology

- Scarab + Ramulator + McPAT
- 64KB TAGE-SC-L as baseline
- Stream Prefetcher: 64 Streams, Distance 16, into LLC
- SPEC CPU2017 Integer Speed, SPEC CPU2006 Integer, and GAP

■ Branch Runahead Configurations
- Core-Only (Shares the RS, ALU, and RF with the core): 9KB
- DCE-Mini: 17KB
- DCE-Big: Unlimited

■ Metrics:
- Instructions Per Cycle (IPC)
- Mispredictions Per Kilo Instruction (MPKI)

39

Outline
■ Background

- Limitations of Existing Branch Prediction
- Alternative to Branch Prediction

■ Branch Runahead
- Dynamically Extracting Dependence Chains
- Handling Nested Branches
- Putting Things Together
- Optimizations: Chain Initialization Methods

■ Evaluation
- Methodology
- Results

■ Analysis
- Strengths & Weaknesses
- Discussion

40

Evaluation - Performance

41

Iso-storage with Mini BR

Branch Runahead is effective in improving system performance by
significantly reduce the misprediction rate for H2P data dependent branches.

Evaluation - Limits of History-based Predictors

42

Data dependent branches are the main bottleneck of branch prediction.

Evaluation - Chain Initialization Methods

43

Increasing the aggressiveness of chain initialization increases performance.

Evaluation - Prediction Breakdown

44

Branch Runahead is accurate, but timeliness is still a problem.

~40%

Evaluation - Energy

45

Branch Runahead saves energy by reducing execution time.

Evaluation - Misc
■ Area

- DCE engine area: 0.38 mm2 (2.2% of a baseline out-of-order core)
- 64KB TAGE-SC-L: 0.73 mm2

■ Processor Frequency: Minimal impact.
- Most of the DCE is not on the critical path.
- The execution is divided into many cycles.
- The only influence is the MUX between the TAGE result and DCE result.

■ No changes to the ISA and the compiler.

46

Branch Runahead is a low overhead design.

Executive Summary
■ Problem: History-based branch predictors (BP) are bottlenecked by

hard-to-predict (H2P) data-dependent branches.

■ Goal: Improve system performance by reducing branch mispredictions.

■ Key Idea: Pre-compute H2P data-dependent branches continuously.
- Dynamically detect light-weight dependence chains at run-time.
- New merge point predictor reduces the divergence from the main thread.
- Can be implemented either as a dedicated unit or part of the core.

■ Key Results:
- Reduces MPKI by 43.6% and increases IPC by 13.7% on average.
- 2.2% area overhead of a baseline out-of-order core.

47

Outline
■ Background

- Limitations of Existing Branch Prediction
- Alternative to Branch Prediction

■ Branch Runahead
- Dynamically Extracting Dependence Chains
- Handling Nested Branches
- Putting Things Together
- Optimizations: Chain Initialization Methods

■ Evaluation
- Methodology
- Results

■ Analysis
- Strengths & Weaknesses
- Discussion

48

Strengths
■ Branch prediction is critical to core performance.

■ Important observation that hard to predict branches are data dependent and
thus cannot be effectively predicted by history-based approaches.

■ New mechanism of using continuous runahead to accurately predict data
dependent branches.

■ Merge point prediction and the associated chain initialization methods
significantly improves performance.

■ Very comprehensive design.

49

Weakness
■ Low novelty

- Runahead (2003); Continuous Runahead (2016).
- Anything fundamentally new?

■ No discussion of how BR interacts with context switch / SMT.
- Are the chains saved or discarded?
- How to distinguish chains from different processes?

■ Questionable evaluation setup: The prefetcher is too simple.
- With a good enough prefetcher, larger ROB, wider issue, etc., how much

of the benefit of BR could be achieved?

50

Outline
■ Background

- Limitations of Existing Branch Prediction
- Alternative to Branch Prediction

■ Branch Runahead
- Dynamically Extracting Dependence Chains
- Handling Nested Branches
- Putting Things Together
- Optimizations: Chain Initialization Methods

■ Evaluation
- Methodology
- Results

■ Analysis
- Strengths & Weaknesses
- Discussion

51

Discussion
■ Security

- The DCE is connected to the core cache.
- Opens up more opportunities for cache side-channel attacks?

■ Other components in the system where a similar approach can be applied?
- When a missed LOAD is retired, starts a forward dataflow walk in ROB.
- Dynamically identifies what data are the bottleneck (i.e., is blocking the

most subsequent instructions).
- Pin the cache line in the cache, prioritize this request in the memory

controller, etc.

■ Extend this idea to GPU to dynamically reorganize warps better?

52

