ETHzurich DINFK

ComputeDRAM: In-Memory Compute Using Off-the-Shelf DRAMs

Fei Gao Georgios Tziantzioulis David Wentzlaff
feig@princeton.edu georgios.tziantzioulis@princeton.edu wentzlaf@princeton.edu
Department of Electrical Engineering Department of Electrical Engineering Department of Electrical Engineering
Princeton University Princeton University Princeton University

Proceeding of the 52nd International Symposium on
Microarchitecture (MICRO), October 2019

Seminar in Computer Architecture
Presented by: Christopher Meier
19 October 2020

Executive summary

« Motivation: Proof that AMBIT and RowClone are usable.

 Goal: Demonstrate row copy and bit-wise logical AND and OR in
unmodified, commercial, DRAM.

 Key ldea: Violate DRAM timing constraints to enable charge sharing
across multiple rows in the same sub-array.

« Mechanism: Perform operations with DRAM, by carefully violating its
timing constraints.

 Implementation: Provide an in-memory compute framework to allow
arbitrary computation.

 Results: Enable high computational throughput, up to 347x more energy
efficient than using a vector unit.

E'HZUFiCh 19.11.20

2

Outline

Motivation

Solution Approaches

Recap on DRAM

Key Idea

Mechanism of ComputeDRAM
Operation Reliability
Implementation of ComputeDRAM
Methodology

Evaluation

10. Conclusion

© 00N ROWODN-=

E'HZUF/C/’) 19.11.20 3

Motivation

Limited Bandwidth

Google consumer workloads;:
Data movement contributes to 62.7% of the total energy consumption.

lllustration from Prof. Mutlu’s presentation on RowClone, pp. 23

Memory

ETHzirich [1]: A. Boroumand et al. 2018. Google Workloads for Consumer Devices: Mitigating Data Movement Bottlenecks. In ASPLOS ’18: 19.11.20 4

https://safari.ethz.ch/architecture_seminar/fall2020/lib/exe/fetch.php?media=onur-seminarincomparch-fall2020-meeting2-example-rowclone-afterlecture.pptx

Motivation

Reduce memory bandwidth demand:

Reduce unnecessary data movement

E'HZUF/C/’) 19.11.20

[1]: Nlustration from Prof. Mutlu’s presentation on RowClone, pp 23.

Solution Approach

Eliminating data movement by bringing computation closer to memory.

AEEroach Enabling Teclmologies

Logic layers in 3D-stacked memory
Processing-Near-Memory Silicon interposers
Logic in memory controllers
SRAM
DRAM
Processing-Using-Memory Phase-change memory (PCM)
Magnetic RAM (MRAM)
Resistive RAM (RRAM)/memristors

S. Ghose, A. Boroumand, J. S. Kim, J. Gdmez-Luna and O. Mutlu,
"Processing-in-memory: A workload-driven perspective,"

ETHzlUrich inIBM Journal of Research and Development, 19.11.20
vol. 63, no. 6, pp. 3:1-3:19, 1 Nov.-Dec. 2019, doi: 10.1147/JRD.2019.2934048.

Recap: DRAM Hierarchy

. Channel

. Rank

. Chip

. Bank

. Sub-Array

. Row/Colum
. Cell

~N O O &~ W DN -

ETHzirich

W

p >| Memory | CPU
-,__—-.-_ Bl channels | Controller
k= ==
————— Y S~ ———
Banks Chips o, columns .
K, Bitline v
] os g /’ -,
Global Bit-line ’ _l.,- Te o—
5 L1l 111 = . ~ =)
5 |3 é) Sub-arra | BE A =
3|2 - G ol ' (=]
25| T 2| K il ; =
= “© \
A E Sub-array ¥l B B RN @ 4
o = \ O (o) ~ -
-] | I I | | | \O (4 . TP, |
8 Global Row Buffer \\ J
\
nd /’ N S Amplifi
"Ll Col Addr Global 1/0 1 ense Amplifier
_\ l\ Local Row Buffer

19.11.20

@

rows

Recap: DRAM Hierarchy

Channel
Rank

. Chip

. Bank

. Sub-Array

. Row/Colum
. Cell

\lc»m-hoo!\)_—\

ETHzirich

@

@

Memory | CPU
- _— - - Channels Controller
Banks Chlps B columns @
. : B t I ”
>4 it-line
T Global Bit-line /:, ’—l-. e \I E N\
3 L1 1111 =]l 4 :
5 |8 5) Sub-arra B o O -g
3 4 - _ S o-.) (7,
2|3l I —. 2| |K - ; = L2
= © \
AE Sub-array hE IS T (D)) o
il i \o) B -
3 I YA [l E S
8 Global Row Buffer \\ J
\
— \ “— -
1 cot Addr—\ Global 1/0 7 Sense Amplifier
Local Row Buffer

19.11.20

Recap: DRAM Commands

. @
— Activate:
On row level @ ...|
1. Open target row 2
Ri ‘ \
R; ‘ \
SA &

ETHzirich

Recap: DRAM Commands

— Activate:
On row level _uae

1. Open target row
2. Amplify bit-line charge

ETHzirich

Recap: DRAM Commands

— Activate:

On row level Vdd | l | | |
2

1. Open target row
2. Amplify bit-line charge

— Precharge: |
On bank level R,

3. Close all rows

E'HZUFiCh 19.11.20 1

Recap: DRAM Commands

— Activate:

On row level % | _Il | |

1. Open target row

2. Amplify bit-line charge
ainininl
— Precharge: E E []
On bank level R,
3. Close all rows
4. Drive bit-lines to V ;,;/2 SA & & &&

E'HZUFiCh 19.11.20 12

Motivation

Vivek Seshadri, Yoongu Kim, Chris Fallin, Donghyuk Lee, Rachata Ausavarungnirun, Gennady
Pekhimenko, Yixin Luo, Onur Mutlu, Michael A. Kozuch, Phillip B. Gibbons, and Todd C. Mowry,
"RowClone: Fast and Enerqy-Efficient In-DRAM Bulk Data Copy and Initialization”

Proceedings of the 46th International Symposium on Microarchitecture (MICRO), Davis, CA, December
2013.

RowClone: Fast and Energy-Efficient
In-DRAM Bulk Data Copy and Initialization

Vivek Seshadri Yoongu Kim Chris Fallin* Donghyuk Lee
vseshadr@cs.cmu.edu yoongukim@cmu.edu cfallin@cif.net donghyuki@cmu.edu

Rachata Ausavarungnirun Gennady Pekhimenko Yixin Luo
rachata@cmu.edu gpekhime@cs.cmu.edu yixinluo@andrew.cmu.edu

Onur Mutlu Phillip B. Gibbons' Michael A. Kozucht Todd C. Mowry

onur@cmu.edu phillip.b.gibbons@intel.com michael.a.kozuch@intel.com tcm@cs.cmu.edu

Carnegie Mellon University tIntel Pittsburgh
ETHzurich

19.11.20 13

http://users.ece.cmu.edu/~omutlu/pub/rowclone_micro13.pdf
http://www.microarch.org/micro46/

RowClone: Intra-Subarray Copy

IY/%/

Amplify the
difference
Data gets

Sense Amplifier
(Row Buffer)

(@)
O
g.
(D
o

======"
o
(W)
S~
No

© <

ETHzUrich ustration from Prof. Mutiu’s presentation on RowClone, pp 31.

Motivation

* Vivek Seshadri, Donghyuk Lee, Thomas Mullins, Hasan Hassan, Amirali Boroumand, Jeremie Kim,
Michael A. Kozuch, Onur Mutlu, Phillip B. Gibbons, and Todd C. Mowry,

"Ambit: In-Memory Accelerator for Bulk Bitwise Operations Using Commodity DRAM
Technoloqy”

Proceedings of the 50th International Symposium on Microarchitecture (MICRO), Boston, MA, USA,
October 2017.

Ambit: In-Memory Accelerator for Bulk Bitwise Operations
Using Commodity DRAM Technology

Vivek Seshadri'® Donghyuk Lee?® Thomas Mullins®>® Hasan Hassan® Amirali Boroumand®
Jeremie Kim®® Michael A. Kozuch® Onur Mutlu®® Phillip B. Gibbons® Todd C. Mowry”

!Microsoft Research India *NVIDIA Research Z3Intel “ETH Ziirich °Carnegie Mellon University

ETHzirich

19.11.20

https://people.inf.ethz.ch/omutlu/pub/ambit-bulk-bitwise-dram_micro17.pdf
http://www.microarch.org/micro50/

Triple-Row Activation: Majority Function

a ¥t O
activate I

all three ()

l,.l_

B

—

sense amp

ETH:zUrich Animation from: https://www.archive.ece.cmu.edu/~safari/pubs/ambit-bulk-bitwise-dram_micro17-talk.pptx

Key Idea

DRAM Operation Timing
» Timing constraints guarantee correctness

* T1, Row Access Strobe t,,, . time to open a row, enable sense amplifier, wait for
voltage to reach V , or GND

* T2, Row Precharge t, : ensures that the previously activated row is closed, and
the bit-line voltage has reached V /2

E'HZUFiCh 19.11.20 17

Key Idea

DRAM Operation Timing

» Timing constraints guarantee correctness

Key ldea:
Violate timing constraints of T1 and T2 to perform operations.

E'HZUFiCh 19.11.20 18

Mechanism

Performing Row Copy

. Vdd
1. Issue Activate R1 B3 }

D—O—0 O—0O—
ACT(R,) PRE ACT(R,) time
| Y J \ Y]
T, T,

E'HZUFiCh 19.11.20

19

Mechanism

Performing Row Copy
1. Issue Activate R1 BB

2. Bit-line gets amplified r_}
" AY DY
© 9 o
-O—Q@ ® O—0C—
ACT(R,) PRE ACT(R,) time
.;-1 ;-2

E'HZUFiCh 19.11.20

20

Mechanism

Performing Row Copy

) Vdd I PRI R S FUN S

1. Issue Activate R1 BB

2. Bit-line gets amplified r_} |

3. Issue Precharge Ry |j7 [:]7A [:]7

IS PSP
© 2 O -
-O—Q@ ® O>—0O—
ACT(R,) PRE ACT(R,) time
.;-1 ;-2

ETHzirich

19.11.20 21

Mechanism

Performing Row Copy
1. Issue Activate R1 2
2. Bit-line gets amplified
3. Issue Precharge Ry

[:]F)

4. |
— R1 closed, driving Vy4/2 g, [37
AY

®

_©

— Interrupt Precharge

with Activate R2 SA @
@
® O—0O—
ACT(R,) PRE ACT(R) ~ time
T,

E'HZUFiCh 19.11.20 22

Mechanism

Performing Row Copy
1. Issue Activate R1 2
2. Bit-line gets amplified
3. Issue Precharge

[:]F)

4. |
— R1 closed, driving Vy4/2 g, [37
AY

®

_®

— Interrupt Precharge

with Activate R2 SA
5. Bit-line and cell of R2 get @ ®
amplified © “‘-@ “'7\5)_',
ACT(R,) PRE ACT(R,) time
T,

E'HZUFiCh 19.11.20 23

Mechanism

Performing Row Copy
1. Issue Activate R1
2. Bit-line gets amplified
3. Issue Precharge
4,
— R1 closed, driving V44/2

— Interrupt Precharge
with Activate R2

5. Bit-line and cell of R2 get
amplified
6. R1 successfully copied to R

ETHzirich

ACT(R;)

@& &
® O>—&
PRE ACT(R,) time

T,

Mechanism

Performing Bulk-Bitwise logical AND/OR

By further reducing T'1 and T2, three different rows can be
opened simultaneously.

— The second Activate Is sent while setting the word-line.

— The word-line according to the value on the
row address bus is being driven.

— Intermediate row is being opened as well.

ETHzirich

changing
row
address

01 R,

|

00 R,

l

10 R,

19.11.20

25

Mechanism

Performing Bulk-Bitwise logical AND/OR

— Speculation:
— Row address is updated from LSB to MSB

— Note:

— The row address update order is dependent on the
manufacturer.

— It will not work the same on every DRAM chip

ETHzirich

changing
row
address

01 R,

|

00 R,

l

10 R,

19.11.20

26

Operation Reliability

Manufacturing Variations
— Capacitance variations require different timings

— Faulty cells due to manufacturing imperfections
— Their row addresses are being remapped to another physical location

E'HZUFiCh 19.11.20 27

Implementation

As part of the proof of concept, computeDRAM introduces an in-memory
compute framework.

In-memory compute framework

— Software interface to perform arbitrary computation using the three basic
operations as building blocks.

— Manages the rows, where computations are being executed.

— Addresses the issue of errors due to faulty cells,
by introducing an error table.

E'HZUFiCh 19.11.20 28

Implementation

Performing arbitrary computation

— AND and OR are not logically complete on their own,
the NOT operation is missing

— Workaround: Save negated values in pairwise fashion with their nominals.

(4la) (B[B) (c|c)

— Overhead is quite substantial:
— Generate the negated pair
— Double the memory space needed
— Twice the number of operations needed.

E'HZUFiCh 19.11.20 29

Implementation

Implementation choices

— Computations only performed in the first

three rows.

— Operations require a setup:
1. Copy the operands and the op-constant

2. Perform the computation
3. Copy the result back to the destination

ETHzirich

to these 3 rows

row

Reserved
lines for —

computation
Vector A =

bit <«
bit < |

Vector B —

Vector S —

Carry C

—

16

0
1
|2
— 3]1|0]1
4lof1]o
sl1|1]o
—T
}’9,001
71111
glo|o]o
slofo]o
10111
(11
12
13
| 14
Cisf11]1

19.11.20

30

Implementation

Row
Challenge address
— The library ensures that operand rows are Iin ——
the same sub-array by checking their
address. EE—

— The addresses of remapped rows are not

consistent with their physical locations.

— There is no way to guarantee that data is on

the same sub-array, as the new row could
be anywhere.

ETHzirich

Physical

row layout

3

Re

jund

Aant FFow

19.11.20 31

Implementation

Row
Solution: Error Table address
— |dea: Exclude "bad” columns and rows from ——
computation with a custom mapping.
o

— Requires a scanning process to discover
"bad” parts and save them to the error table.

— The error table requires periodical re-scans,

due to natural wear out etc.

ETHzirich

Physical

row layout

Re

jund

Aant FFow

19.11.20 32

Methodology

* Host system + FPGA running SoftMC to control the DRAM module

* Limitations:
Host SoftMC software |k PCle o SoftMC hardware

. - 3
— Timing intervals are limited to |Pc i SBR3 PV

multiples of 2.5 ns ComputeDsAM Library : ;
Application (a) Peltier plate heater

(-

— DDRS3 chips only

Extensive tests on environment
temperature have been made

E'HZUFiCh 19.11.20 33

Evaluation

Which manufacturers work?

T2 T2 T2 T2 T2 T2
0123456789 0123456789 0123456789 0123456789 0123456789 0123456789

| I S I N N N N — — | I N (N N N N S — — | I S N N SN S S — — L1 1 1 1 1 1 1 /l 1 | I N N N N S S — — 11 11 1 1 1 1 |

0 n A
1 A 7 A/ /A
2 A/ A/ #
3 - 4.4 A 7
T1 4 T Z] /// p.)
5 7 Z] // y Z
6 N //'} 1// p
7 7/ /.
8 n 2 g
9 A (/
Micron_2G_1066 Micron_2G 1333 Elpida_2G 1333 Nanya 4G 1333 Corsair 4G _1333 TimeTec 4G _1333
0 7 [
1 %
2 Z /] /]
3 '/ % A
T1 4 - 7 7
5 1 v / v
6 4 7 Y/ 7z
7 / A A
8 N y. . / /] i
9 - A A A A

SKhynix_2G 1333 SKhynix_4G_1333C SKhynix 4G_1066 SKhynix 4G_1600 Samsung 4G_1333 Samsung_4G_1600
SKhynix_4G_1333B

L I : , 2777777777777 7 7 R IR T IR 7 7 7 s
AND/OR on AND/OR on Open R3, Nothing Row copy on Row copy on Row copy on
all cols (0,100%) cols but no ops changed (0,80%) cols [80%,100%) cols all cols

E'HZUFiCh 19.11.20

Evaluation

Computational Throughput
— Overhead does not change as we move from scalar to vector operations of
64k elements

Energy efficiency
— Eliminates the high energy overhead of transferring data between CPU and
main memory.

— 347x more efficient than using a vector unit for row copy.
— 48x more efficient for 8-bit AND/OR
— 9.3x more efficient for 8-bit ADD

E'HZUFiCh 19.11.20 35

Conclusion

« Motivation: Proof that AMBIT and RowClone are usable.

 Goal: Demonstrate row copy and bit-wise logical AND and OR in
unmodified, commercial, DRAM.

 Key ldea: Violate DRAM timing constraints to enable charge sharing
across multiple rows in the same sub-array.

« Mechanism: Perform operations with DRAM, by carefully violating its
timing constraints.

 Implementation: Provide an in-memory compute framework to allow
arbitrary computation.

 Results: Enable high computational throughput, up to 347x more energy
efficient than using a vector unit.

E'HZUFiCh 19.11.20

36

Strengths

« Working proof of concept
— No additional hardware required
— Accessible in form of a library

« Addresses an important problem
« Well written

E'HZUFiCh 19.11.20 37

Weaknesses

Requirement for pairwise saving of negated values

Not applicable to every DRAM chip
— Getting the timings right is substantial

Requires data to be in the same sub array

No solution for inter subarray row copy

Proof of concept
— No thorough evaluation

E'HZUFiCh 19.11.20 38

Related Work

Low-Cost Inter-Linked Subarrays (LISA):
Enabling Fast Inter-Subarray Data Movement in DRAM

Kevin K. Changf, Prashant J. Nair*, Donghyuk Leel, Saugata Ghose!, Moinuddin K. Qureshi*, and Onur Mutluf
T Carnegie Mellon University ~ *Georgia Institute of Technology

AlignS: A Processing-In-Memory Accelerator for

DNA Short Read Alignment Leveraging SOT-MRAM

Shaahin Angizi', Jiao Sun*, Wei Zhang* and Deliang Fan'
¥ Department of Electrical and Computer Engineering, University of Central Florida, Orlando, FL 32816
¥ Department of Computer Science, University of Central Florida, Orlando, FL 32816

E'HZUFiCh 19.11.20 39

Related Work

Duality Cache for Data Parallel Acceleration

Daichi Fujiki Scott Mahlke Reetuparna Das
dfujiki@umich.edu mahlke@umich.edu reetudas@umich.edu
University of Michigan University of Michigan University of Michigan

A Case for Exploiting Subarray-Level Parallelism (SALP) in DRAM

Yoongu Kim Vivek Seshadri Donghyuk Lee Jamie Liu Onur Mutlu

Carnegie Mellon University

DRISA: A DRAM-based Reconfigurable In-Situ Accelerator

Shuangchen Li! Dimin Niu? Krishna T. Malladi®* Hongzhong Zheng?

Bob Brennan? Yuan Xie!
1University of California, Santa Barbara 2Samsung Semiconductor Inc.

E'HZUFiCh 19.11.20 40

Related Work

DrAcc: a DRAM based Accelerator for Accurate CNN Inference
Quan Deng Lei Jiang Youtao Zhang

College of Computer Intelligent Systems Engineering Computer Science Department
National University of Defense School of Informatics and Computing University of Pittsburgh
Technology Indiana University Bloomington zhangyt@cs.pitt.edu
dengquan12@nudt.edu.cn jlang60@ie.edu

Minxuan Zhang Jun Yang
College of Computer Electrical and Computer Engineering
National University of Defense Department
Technology University of Pittsburgh
mxzhang@nudt.edu.cn juy9@pitt.edu

E'HZUFiCh 19.11.20 41

Open Discussion

* |s ComputeDRAM practical for actual use?

— What overhead is imposed?
— Do you think the overhead is acceptable?
— Are there any additional requirements to the system?

« What workloads can benefit from ComputeDRAM?

* |s there a way to enable more general computation?
— E.g. multiplication, division, floating point arithmetic...
— Where are the limits in complexity?

19.11.20 42

ETHzirich

Open Discussion

* Will the solution become more important over time?

« What alternatives do you see?

E'HZUFiCh 19.11.20 43

ETH:zurich

