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Executive summary

« Motivation: Proof that AMBIT and RowClone are usable.

 Goal: Demonstrate row copy and bit-wise logical AND and OR in
unmodified, commercial, DRAM.

 Key ldea: Violate DRAM timing constraints to enable charge sharing
across multiple rows in the same sub-array.

« Mechanism: Perform operations with DRAM, by carefully violating its
timing constraints.

 Implementation: Provide an in-memory compute framework to allow
arbitrary computation.

 Results: Enable high computational throughput, up to 347x more energy
efficient than using a vector unit.
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Motivation

Limited Bandwidth

Google consumer workloads;:
Data movement contributes to 62.7% of the total energy consumption.

lllustration from Prof. Mutlu’s presentation on RowClone, pp. 23

Memory

ETHzirich [1]: A. Boroumand et al. 2018. Google Workloads for Consumer Devices: Mitigating Data Movement Bottlenecks. In ASPLOS ’18: 19.11.20 4


https://safari.ethz.ch/architecture_seminar/fall2020/lib/exe/fetch.php?media=onur-seminarincomparch-fall2020-meeting2-example-rowclone-afterlecture.pptx

Motivation

Reduce memory bandwidth demand:

Reduce unnecessary data movement

E'HZUF/C/’) 19.11.20
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Solution Approach

Eliminating data movement by bringing computation closer to memory.

AEEroach Enabling Teclmologies

Logic layers in 3D-stacked memory
Processing-Near-Memory Silicon interposers
Logic in memory controllers
SRAM
DRAM
Processing-Using-Memory Phase-change memory (PCM)
Magnetic RAM (MRAM)
Resistive RAM (RRAM )/memristors

S. Ghose, A. Boroumand, J. S. Kim, J. Gdmez-Luna and O. Mutlu,
"Processing-in-memory: A workload-driven perspective,"

ETHzlUrich inIBM Journal of Research and Development, 19.11.20
vol. 63, no. 6, pp. 3:1-3:19, 1 Nov.-Dec. 2019, doi: 10.1147/JRD.2019.2934048.



Recap: DRAM Hierarchy
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Recap: DRAM Hierarchy
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Recap: DRAM Commands
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— Activate:
On row level @ ...| ............
1. Open target row 2
Ri ‘ \
R; ‘ \
SA &

ETHzirich



Recap: DRAM Commands

— Activate:
On row level _uae

1. Open target row
2. Amplify bit-line charge
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Recap: DRAM Commands

— Activate:

On row level Vdd | ................. l ........... | .... | ............ |
2

1. Open target row
2. Amplify bit-line charge

— Precharge: |
On bank level R,

3. Close all rows
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Recap: DRAM Commands

— Activate:

On row level % | ................. _Il ................. | ........... |

1. Open target row

2. Amplify bit-line charge
ainininl
— Precharge: E E [ ]
On bank level R,
3. Close all rows
4. Drive bit-lines to V ;,;/2 SA & & &&

E'HZUFiCh 19.11.20 12




Motivation

Vivek Seshadri, Yoongu Kim, Chris Fallin, Donghyuk Lee, Rachata Ausavarungnirun, Gennady
Pekhimenko, Yixin Luo, Onur Mutlu, Michael A. Kozuch, Phillip B. Gibbons, and Todd C. Mowry,
"RowClone: Fast and Enerqy-Efficient In-DRAM Bulk Data Copy and Initialization”

Proceedings of the 46th International Symposium on Microarchitecture (MICRO), Davis, CA, December
2013.

RowClone: Fast and Energy-Efficient
In-DRAM Bulk Data Copy and Initialization

Vivek Seshadri Yoongu Kim Chris Fallin* Donghyuk Lee
vseshadr@cs.cmu.edu yoongukim@cmu.edu cfallin@cif.net donghyuki@cmu.edu

Rachata Ausavarungnirun Gennady Pekhimenko Yixin Luo
rachata@cmu.edu gpekhime@cs.cmu.edu  yixinluo@andrew.cmu.edu

Onur Mutlu Phillip B. Gibbons' Michael A. Kozucht Todd C. Mowry

onur@cmu.edu phillip.b.gibbons@intel.com michael.a.kozuch@intel.com tcm@cs.cmu.edu

Carnegie Mellon University tIntel Pittsburgh
ETHzurich
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http://users.ece.cmu.edu/~omutlu/pub/rowclone_micro13.pdf
http://www.microarch.org/micro46/

RowClone: Intra-Subarray Copy
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Motivation

* Vivek Seshadri, Donghyuk Lee, Thomas Mullins, Hasan Hassan, Amirali Boroumand, Jeremie Kim,
Michael A. Kozuch, Onur Mutlu, Phillip B. Gibbons, and Todd C. Mowry,

"Ambit: In-Memory Accelerator for Bulk Bitwise Operations Using Commodity DRAM
Technoloqy”

Proceedings of the 50th International Symposium on Microarchitecture (MICRO), Boston, MA, USA,
October 2017.

Ambit: In-Memory Accelerator for Bulk Bitwise Operations
Using Commodity DRAM Technology

Vivek Seshadri'® Donghyuk Lee?® Thomas Mullins®>® Hasan Hassan® Amirali Boroumand®
Jeremie Kim®® Michael A. Kozuch® Onur Mutlu®® Phillip B. Gibbons® Todd C. Mowry”

!Microsoft Research India *NVIDIA Research Z3Intel “ETH Ziirich °Carnegie Mellon University

ETHzirich
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https://people.inf.ethz.ch/omutlu/pub/ambit-bulk-bitwise-dram_micro17.pdf
http://www.microarch.org/micro50/

Triple-Row Activation: Majority Function
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Key Idea

DRAM Operation Timing
» Timing constraints guarantee correctness

* T1, Row Access Strobe t,,, . time to open a row, enable sense amplifier, wait for
voltage to reach V , or GND

* T2, Row Precharge t, : ensures that the previously activated row is closed, and
the bit-line voltage has reached V /2

E'HZUFiCh 19.11.20 17



Key Idea

DRAM Operation Timing

» Timing constraints guarantee correctness

Key ldea:
Violate timing constraints of T1 and T2 to perform operations.

E'HZUFiCh 19.11.20 18



Mechanism

Performing Row Copy

. Vdd .............
1. Issue Activate R1 B3 }
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Mechanism

Performing Row Copy
1. Issue Activate R1 BB

2. Bit-line gets amplified r_}
" AY DY
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Mechanism

Performing Row Copy

) Vdd I PRI R S FUN S

1. Issue Activate R1 BB

2. Bit-line gets amplified r_} |

3. Issue Precharge Ry |j7 [:]7A [:]7

IS PSP
© 2 O -
-O—Q@ ® O>—0O—
ACT(R,) PRE ACT(R,) time
.;-1 ;-2

ETHzirich

19.11.20 21



Mechanism

Performing Row Copy
1. Issue Activate R1 2
2. Bit-line gets amplified
3. Issue Precharge Ry
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Mechanism

Performing Row Copy
1. Issue Activate R1 2
2. Bit-line gets amplified
3. Issue Precharge

[:]F)

4. |
— R1 closed, driving Vy4/2 g, [37
AY

®

_®

— Interrupt Precharge

with Activate R2 SA
5. Bit-line and cell of R2 get @ ®
amplified © “‘-@ “'7\5)_',
ACT(R,) PRE ACT(R,) time
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E'HZUFiCh 19.11.20 23



Mechanism

Performing Row Copy
1. Issue Activate R1
2. Bit-line gets amplified
3. Issue Precharge
4,
— R1 closed, driving V44/2

— Interrupt Precharge
with Activate R2

5. Bit-line and cell of R2 get
amplified
6. R1 successfully copied to R

ETHzirich
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Mechanism

Performing Bulk-Bitwise logical AND/OR

By further reducing T'1 and T2, three different rows can be
opened simultaneously.

— The second Activate Is sent while setting the word-line.

— The word-line according to the value on the
row address bus is being driven.

— Intermediate row is being opened as well.

ETHzirich

changing
row
address

01 R,

|

00 R,

l

10 R,

19.11.20

25



Mechanism

Performing Bulk-Bitwise logical AND/OR

— Speculation:
— Row address is updated from LSB to MSB

— Note:

— The row address update order is dependent on the
manufacturer.

— It will not work the same on every DRAM chip

ETHzirich

changing
row
address

01 R,

|

00 R,

l

10 R,

19.11.20

26



Operation Reliability

Manufacturing Variations
— Capacitance variations require different timings

— Faulty cells due to manufacturing imperfections
— Their row addresses are being remapped to another physical location

E'HZUFiCh 19.11.20 27



Implementation

As part of the proof of concept, computeDRAM introduces an in-memory
compute framework.

In-memory compute framework

— Software interface to perform arbitrary computation using the three basic
operations as building blocks.

— Manages the rows, where computations are being executed.

— Addresses the issue of errors due to faulty cells,
by introducing an error table.

E'HZUFiCh 19.11.20 28



Implementation

Performing arbitrary computation

— AND and OR are not logically complete on their own,
the NOT operation is missing

— Workaround: Save negated values in pairwise fashion with their nominals.

(4la) (B[B) (c|c)

— Overhead is quite substantial:
— Generate the negated pair
— Double the memory space needed
— Twice the number of operations needed.

E'HZUFiCh 19.11.20 29



Implementation

Implementation choices

— Computations only performed in the first

three rows.

— Operations require a setup:
1. Copy the operands and the op-constant

2. Perform the computation
3. Copy the result back to the destination

ETHzirich
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Implementation

Row
Challenge address
— The library ensures that operand rows are Iin ——
the same sub-array by checking their
address. EE—

— The addresses of remapped rows are not

consistent with their physical locations.

— There is no way to guarantee that data is on

the same sub-array, as the new row could
be anywhere.

ETHzirich
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Implementation

Row
Solution: Error Table address
— |dea: Exclude "bad” columns and rows from ——
computation with a custom mapping.
o

— Requires a scanning process to discover
"bad” parts and save them to the error table.

— The error table requires periodical re-scans,

due to natural wear out etc.

ETHzirich
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Methodology

* Host system + FPGA running SoftMC to control the DRAM module

* Limitations:
Host SoftMC software |k PCle o SoftMC hardware

. . . . . - 3
— Timing intervals are limited to  |Pc i SBR3 PV

multiples of 2.5 ns ComputeDsAM Library : ;
Application (a) Peltier plate heater

(-

— DDRS3 chips only

Extensive tests on environment
temperature have been made

E'HZUFiCh 19.11.20 33



Evaluation

Which manufacturers work?
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Evaluation

Computational Throughput
— Overhead does not change as we move from scalar to vector operations of
64k elements

Energy efficiency
— Eliminates the high energy overhead of transferring data between CPU and
main memory.

— 347x more efficient than using a vector unit for row copy.
— 48x more efficient for 8-bit AND/OR
— 9.3x more efficient for 8-bit ADD

E'HZUFiCh 19.11.20 35



Conclusion

« Motivation: Proof that AMBIT and RowClone are usable.

 Goal: Demonstrate row copy and bit-wise logical AND and OR in
unmodified, commercial, DRAM.

 Key ldea: Violate DRAM timing constraints to enable charge sharing
across multiple rows in the same sub-array.

« Mechanism: Perform operations with DRAM, by carefully violating its
timing constraints.

 Implementation: Provide an in-memory compute framework to allow
arbitrary computation.

 Results: Enable high computational throughput, up to 347x more energy
efficient than using a vector unit.

E'HZUFiCh 19.11.20
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Strengths

« Working proof of concept
— No additional hardware required
— Accessible in form of a library

« Addresses an important problem
« Well written

E'HZUFiCh 19.11.20 37



Weaknesses

Requirement for pairwise saving of negated values

Not applicable to every DRAM chip
— Getting the timings right is substantial

Requires data to be in the same sub array

No solution for inter subarray row copy

Proof of concept
— No thorough evaluation

E'HZUFiCh 19.11.20 38
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Open Discussion

* |s ComputeDRAM practical for actual use?

— What overhead is imposed?
— Do you think the overhead is acceptable?
— Are there any additional requirements to the system?

« What workloads can benefit from ComputeDRAM?

* |s there a way to enable more general computation?
— E.g. multiplication, division, floating point arithmetic...
— Where are the limits in complexity?

19.11.20 42
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Open Discussion

* Will the solution become more important over time?

« What alternatives do you see?
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