
SIMDRAM: An End-to-End
Framework for Bit-Serial SIMD
Computing in DRAM
Nastaran Hajinazar1,2, Geraldo F. Oliveira1, Sven Gregorio1, João Dinis Ferreira1,
Nika Mansouri Ghiasi1, Minesh Patel1, Mohammed Alser1, Saugata Ghose3, Juan
Gómez-Luna1, Onur Mutlu1

1 ETH Zurich, 2 Simon Fraser University, 3 University of Illinois at Urbana Champaign
ASPLOS ’21, April 19–23, 2021, Virtual, USA https://doi.org/10.1145/3445814.3446749

Seminar in Computer Architecture (ETH 227-2211-00L)
Presented by: Lukas Möller
02.12.2021

Executive Summary
Motivation:
• Existing processing-using-DRAM proposals either mostly focus on basic bitwise operations

and aren’t flexible or require significant changes to the DRAM subarray

Observation:
• Shifts can often be eliminated by changing the data-layout, Ambit and RowClone already

implement sufficient primitives

Goal:
• A framework that aids the adoption of processing-using-DRAM by efficiently implementing

complex operations and providing the flexibility to support new desired operations

Idea:
• Built up complex operations from basic bitwise primitives by offloading scheduling to a

separate SIMDRAM control unit

Evaluation:
• Very low area cost (0.2% of a modern CPU)

• Throughput analysis shows that SIMDRAM outperforms both CPUs / GPUs by 88x / 5.8x

respectively

• 257x / 31x / 2.6x more energy efficient than CPU / GPU / Ambit

2

Outline
Problem
Background (RowClone / Ambit)
SIMDRAM Summary

Goal
Key Ideas + Mechanisms

Vertical Data Layout
Three Step Process
System Integration

Evaluation
Limitations

Strengths / Weaknesses
Discussion

3

Problem
• Data Movement between memory and CPU is slow and inefficient

• Modern applications can be very data intensive, doing computations on
large amounts of data can be very slow

• A lot of computation involves applying data-parallel operations to large
amounts of data.

• Traditional SIMD speeds up processing in the CPU, but memory
movement overhead still exists

• Existing Processing-using-DRAM proposals mostly support bitwise
operations. Real-world kernels are more complicated, chaining these
primitives can be the bottleneck

4

Outline
Problem
Background (RowClone / Ambit)
SIMDRAM Summary

Goal
Key Ideas + Mechanisms

Vertical Data Layout
Three Step Process
System Integration

Evaluation
Limitations

Strengths / Weaknesses
Discussion

5

DRAM Basics

RankRank
Rank

Processor

Memory Channel

Memory Controller

Subarray

Chip Chip Chip

SubarraySubarray

0 1 2 3 4 5 6 7
8 9 10 11 12 13 14 15
16 17 18 19 20 21 22 23
24 25 26 27 28 29 30 31
32 33 34 35 36 37 38 39
40 41 42 43 44 45 46 47
48 49 50 51 52 53 54 55
56 57 58 59 60 61 62 63

DRAM Cells

6

Su
ba

rra
y

DRAM Basics

Ro
w

 D
ec

od
er

Sense Amplifiers

Access Transistor

Storage
Capacitor

Bitline

Word Line

D
RA

M
 C

el
l

Bitline

Enable

7

Se
ns

e
Am

pl
ifi

er
s

Su
ba

rra
y

RowClone

Ro
w

 D
ec

od
er

Sense Amplifiers

0 1 1 0 1 0 1 0 0

8

Su
ba

rra
y

Ambit Majority Operation

Ro
w

 D
ec

od
er

Sense Amplifiers

1 1 0 0 1 0 0 0 0

9

Mechanisms / Implementation

Re
gu

la
r R

ow
 D

ec
od

er
B-

G
ro

up
 R

ow
 D

ec
od

er

C0
C1

Sense Amplifiers

…

T0
T1
T2
T3
DCC0
DCC0
DCC1
DCC1

Re
gu
la

r
Da
ta
 R
ow
s

B
C

D

10

Outline
Problem
Background (RowClone / Ambit)
SIMDRAM Summary

Goal
Key Ideas + Mechanisms

Vertical Data Layout
Three Step Process
System Integration

Evaluation
Limitations
Major Results

Strengths / Weaknesses
Discussion

11

Goal
• Goal: design a framework which aids adoption of processing-using-DRAM

• SIMDRAM: An end-to-end processing-using-DRAM framework

• Supports complex operations and can easily be extended

• Low overhead: Only minor changes to the existing DRAM design are
required, the area overhead is minimal

• End-to-end: Proposes hardware changes, ISA extensions, and a high-level
C API

12

Outline
Problem
Background (RowClone / Ambit)
SIMDRAM Summary

Goal
Key Ideas + Mechanisms

Vertical Data Layout
Three Step Process
System Integration

Evaluation
Limitations

Strengths / Weaknesses
Discussion

13

Key Ideas
• Bit-shifting operations are essential for many complex computations

• Idea: Relies on Ambit (implementation of row-wise Majority, Not) and
RowClone (fast intra-subarray copies) as Processing-in-Memory primitives

• Use vertical data layout to circumvent the need for any explicit shift
operations

• Often times shift operations can be eliminated entirely by simply changing
the index of the operands

• Computations are achieved using Majority and Not operations, which are
functionally complete

14

Horizontal Data Layout
Ro

w
 D

ec
od

er

Row Buffer

• CPU can quickly load a group of
consecutive elements in a single
load

• Optimized for point queries /
mutations to arrays

15

Vertical Data Layout
Ro

w
 D

ec
od

er

Row Buffer

• Can quickly query / mutate a
single bit of every element

• Bit-shifts can be accomplished
using multiple consecutive row-
clone operations

• By simply shifting element
indices bit-shifts can be avoided
by simply adding an offset to the
row index

16

Adding a new complex operation

17

1 S

2A

3B

4Cin

2A

3B

4Cin

1 S

Logic Design

Full Adder

And / Or / Inverter Implementation

18

Mechanisms / Implementation
Efficient MAJ/NOT
Implementation

μProgram
Generation

Operation
Execution

AAP B6, B16
AP B15
AP B14
AAP B19
done

AAP B6, B16
AP B15
AP B14
AAP B19
done

Control Unit uProgram

MAJ/NOT logicAND/OR/NOT logic

1 2 3

bbop_op - new ISA
instruction which

executes the uProgram

19

Mechanisms / Implementation
• Step 1: Efficient MAJ/NOT Implementation

• Takes an AOIG (And/Or/Inverter Graph) as input

• Replaces And / Or naively with their Maj
equivalent (add constant 0 / 1)

• The result is a MIG (Majority/Inverter Graph)

• Optimized using greedy logic optimization
algorithm which combines multiple Majority
Nodes when possible

AND

MAJ

A

B

A

B

0

OR

A

B

MAJ

A

B

1

20

Mechanisms / Implementation

2A

3B

4Cin

1 SS

MAJ

MAJ

MAJ

MAJ

MAJ

MAJ

MAJ

MAJ

1

1

0

0

0

0

0

0

A

A

A

B

B

B

Cin

Cin

Cin

S

MAJ

MAJ

MAJ

B

B

A

A

Cin

A

Cin

Optimize

21

Mechanisms / Implementation
• Step 2: μProgram Generation

• Allocates compute rows in DRAM subarray

• Determines naive sequence of AAP / AP
instructions

• Coalesces AAP / AP instructions where
possible, reducing the number of required
instructions

• For n-bit operations the 1-bit operation has
to be repeated n-times

• Result is stored in DRAM

S

MAJ

MAJ

MAJ

B

B

A

A

Cin

A

Cin

A DCC0
B T1
Cin T0

A T2
B DCC1
Cin T3

Out1 T0
A T1
Out2 T2

Out1

Out2

… (AAPs which move values)
AP B15 !// MAJ(DCC0, T0, T2)
AP B14 !// MAJ(DCC0, T1, T3)
… (AAPs which move values)
AP B23 !// MAJ(T0, T1, T2)
… (Control flow)

22

Mechanisms / Implementation
• Step 3: Operation Execution

• bbop_op instructions are issued from the CPU to the SIMDRAM control unit

• Commands are sent to the DRAM controller by a special SIMDRAM control unit which
orchestrates complex operations

• Similar in function to a naive, simple processor:

• Program memory, Program counter, uRegisters

• Executes μPrograms, made up of μOps:

• Some μOps are sent to the DRAM controller (AAP, AP)

• Others are executed in the control unit itself: Simple arithmetic operations, two
control operators (bnez, done)

23

Mechanisms / Implementation

																		…µOp	0 µOp	63

1024

Program
Scratchpad
𝛍

1
bbop_op

/	
…	

Op 0𝜇

≈Op 1𝜇

Op 63 𝜇

μPC

16

μOp
Proccessing

FSM
branch
target

AAP/AP

μOp Memory

shift
amount

1 size

dst, src_1, src_2, n

μProgram
Op𝝁

decrement is_zero

reg dst.
reg src.

1024

Loop
Counter

bbop
FIFO Register

Addressing
Unit

μ

Register
File

μ
																		…µOp	0 µOp 63

																		…µOp	0 µOp	63

From Program
Memory

𝛍

From
CPU

To Memory
Controller

2

3

4

5

67

µOp	62

µOp 62

µOp	62

24

System Integration
• SIMDRAM is thought as a supplement for traditional processing elements

• SIMDRAM works on vertically-laid-out data, CPU / GPU use traditional
horizontal format

→Memory management in SIMDRAM needs to support horizontal + vertical
data layouts

• Transforming data between horizontal / vertical layout necessary

• Software isn't a valid solution as this would have a massive overhead

25

• Data transposition unit

• between LLC (last-level cache) and the
memory controller

• Ensures horizontal layout in cache and
vertical layout in DRAM.

• Object tracker tracks memory objects
which are used for SIMDRAM
operations

• bbop_trsp_init adds an object to
the tracker

System Integration

26

System Integration
• ISA

• Initialization: bbop_trsp_init address, size, n

• 1-Input: bbop_op dst, src, size, n

• 2-Input: bbop_op dst, src_1, src_2, size, n

• Predication: bbop_if_else dst, src_1, src_2, select, size, n

• C Code

• Two envisioned ways to use the API:

• Manually where the programmer directly writes SIMDRAM primitives

• bbop_trsp_init(A, size, elem_size) …

• Automatically using compiler optimizations

→ Future work

27

System Integration

28

Outline
Problem
Background (RowClone / Ambit)
SIMDRAM Summary

Goal
Key Ideas + Mechanisms

Vertical Data Layout
Three Step Process
System Integration

Evaluation
Limitations

Strengths / Weaknesses
Discussion

29

Throughput

- SIMDRAM outperforms the three state-of-the-art baseline systems: CPU/GPU/Ambit

- Throughput drops for all operations with increasing element size, since the latency of each
operation increases with element size

30

Energy Efficiency

31

- More energy efficient than all three state-of-the-art baselines for a wide range of operations

- Energy efficiency of SIIMDRAM reduces as element size increases (more TRAs have to be
executed)

Effects on Real-World-Kernels
• The performance / energy efficiency was also evaluated using real-world-

kernels:

• Databases / CNN / Classification / Image Processing

32

Limitations
• Floating-Point Operations

• Shifting by a variable amount is currently infeasible, but is required for some
IEEE 754 FP32 operations (e.g. for renormalization)

• Shuffling across bitlines

• It doesn't support shifting, only by using vertical data layout

• Synchronization and concurrent execution

• No synchronization primitives are currently supported and only a single
operation can be executed in a single subarray

33

Conclusion
Motivation:
• Existing processing-using-DRAM proposals either mostly focus on basic bitwise operations

and aren’t flexible or require significant changes to the DRAM subarray

Observation:
• Shifts can often be eliminated by changing the data-layout, Ambit and Rowclone already

implement sufficient primitives

Goal:
• a framework that aids the adoption of processing-using-DRAM by efficiently implementing

complex operations and providing the flexibility to support new desired operations

Idea:
• Built up complex operations from basic bitwise primitives by offloading scheduling to a

separate SIMDRAM control unit

Evaluation:
• Very low area cost (0.2% of a modern CPU)

• Throughput analysis shows that SIMDRAM outperforms both CPUs / GPUs by 88x / 5.8x

respectively

• 257x / 31x / 2.6x more energy efficient than CPU / GPU / Ambit

34

Outline
Problem
Background (RowClone / Ambit)
Summary

Goal
Key Ideas + Mechanisms

Vertical Data Layout
Three Step Process
System Integration

Evaluation
Limitations
Major Results

Strengths / Weaknesses
Discussion

35

Strengths
• Well written paper

• Very detailed evaluation

• Detailed comparison to DualityCache, a competing proposal (not
mentioned in the presentation)

• Comparison to both CPU / GPU using modern hardware

• Tested using real-world kernels

36

Weaknesses
• Process of how a uProgram can be obtained is explained in detail, but the

process is quite complicated and isn’t feasible for end-users

• Claims to be an end-to-end system, but leaves out details about memory
allocation: Operands must be stored in the same subarray - how this is to be
solved isn’t stated

• Unclear how performance would be in a multi-core system, operands have to
be pinned in DRAM

• No notes about scaling SIMDRAM control unit

37

Outline
Problem
Background (RowClone / Ambit)
Summary

Goal
Key Ideas + Mechanisms

Vertical Data Layout
Three Step Process
System Integration

Evaluation
Limitations
Major Results

Strengths / Weaknesses
Discussion

38

What types of applications could benefit from
SIMDRAM?

How would application developers utilize SIMDRAM?

How can we scale SIMDRAM so that more operations
can be performed in parallel?

Would SIMDRAM make sense for consumer hardware
or only for servers / specialized computers?

39

What are the options for solving the memory allocation
problems?

Can we make it easier to define custom µPrograms?

40

How would you imagine the future of Processing-
using-Memory?

SIMDRAM: An End-to-End
Framework for Bit-Serial SIMD
Computing in DRAM
Nastaran Hajinazar1,2, Geraldo F. Oliveira1, Sven Gregorio1, João Dinis Ferreira1,
Nika Mansouri Ghiasi1, Minesh Patel1, Mohammed Alser1, Saugata Ghose3, Juan
Gómez-Luna1, Onur Mutlu1

1 ETH Zurich, 2 Simon Fraser University, 3 University of Illinois at Urbana Champaign
ASPLOS ’21, April 19–23, 2021, Virtual, USA https://doi.org/10.1145/3445814.3446749

Seminar in Computer Architecture (ETH 227-2211-00L)
Presented by: Lukas Möller
02.12.2021

Extra Slides

42

Decoding a bbOp
• Set index of Scratchpad to bbop operand (?)

• Write number of iterations into loop counter (= data elements / DRAM row size)

• uProg is loaded from Scratchpad into μOp Memory

• The Program can be executed one μOp at a time

• μOp is fetched from μOp memory, indexed by the μPC

• Which μRegisters are needed?

• B0-B17 → uReg Addressing Unit generates DRAM addresses

• B18-B31 → The uReg File provides values

• uOp Processing FSM executes the uOp

• If done loop counter is decremented

• base source and destination addresses are shifted

• resets μPC

• if loop counter !== 0 next bbop is executed

43

Mechanisms / Implementation
• AAP DST, SRC

• AAP (Act, Act, Pre) can be used to copy data between two rows in the same subarray

• 1. Activate loads the data into the sense amplifier, 2. activate stores the data in the target cell, precharge
resets the subarray for the next operation

→ RowClone

• AP A, B, C

• A triple row activation can be used to compute the majority of three DRAM rows: A * B + B * C + A
* C

• Destructive: All inputs are overwritten with the output

→ Ambit

• These commands can be sent to the DRAM controller, are then forwarded to the corresponding subarray
where a RowClone / TRA takes place

44

System Integration
• Memory Handling Details

• Uses Virtual Address Space (Existing Translation Lookaside Buffer can be
used)

• Assumes the relevant pages are loaded and pinned in DRAM

• Cache lines have to be flushed after CPU modifications

• Context Switches have to load / restore the state of the SIMDRAM control
unit

45

Novelty
• First end-to-end framework that support in-DRAM computation

• Very flexible, transparent to the user

• A new three-step framework which can be used to support arbitrary user-
defined operations

• Applicable to a wide range of real-world applications

46

D
C

CAmbit Inverter

Access Transistor

Storage
Capacitor

Word Line

Se
ns

e
Am

pl
ifi

er
Enable

Inverted Value

Access Transistor

Word Line

Stored Value

• Dual-Contact-Cell

• Two word lines:

• One access transistor
is connected normally

• The other one is
connected to inverted
side of the sense
amplifier

47

Horizontal Data Layout

0 1 2 3 4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23

24 25 26 27 28 29 30 31

32 33 34 35 36 37 38 39

40 41 42 43 44 45 46 47

48 49 50 51 52 53 54 55

56 57 58 59 60 61 62 63

0x00 0x04 0x08 0x0c 0x10 0x14 0x18 0x1c

0x00

0x20

0x40

0x60

0x80

0xa0

0xc0

0xe0

uint_32[64]

48

Vertical Data Layout

0

0x00 0x04 0x08 0x0c 0x10 0x14 0x18 0x1c

0x00

0x20

0x40

0x60

0x80

0xa0

0xc0

0xe0

321 4 65

49

