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Executive Summary
Motivation: 
• Existing processing-using-DRAM proposals either mostly focus on basic bitwise operations 

and aren’t flexible or require significant changes to the DRAM subarray

Observation: 
• Shifts can often be eliminated by changing the data-layout, Ambit and RowClone already 

implement sufficient primitives

Goal: 
• A framework that aids the adoption of processing-using-DRAM by efficiently implementing 

complex operations and providing the flexibility to support new desired operations

Idea: 
• Built up complex operations from basic bitwise primitives by offloading scheduling to a 

separate SIMDRAM control unit

Evaluation: 
• Very low area cost (0.2% of a modern CPU)

• Throughput analysis shows that SIMDRAM outperforms both CPUs / GPUs by 88x / 5.8x 

respectively

• 257x / 31x / 2.6x more energy efficient than CPU / GPU / Ambit
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Problem
• Data Movement between memory and CPU is slow and inefficient


• Modern applications can be very data intensive, doing computations on 
large amounts of data can be very slow


• A lot of computation involves applying data-parallel operations to large 
amounts of data.


• Traditional SIMD speeds up processing in the CPU, but memory 
movement overhead still exists


• Existing Processing-using-DRAM proposals mostly support bitwise 
operations. Real-world kernels are more complicated, chaining these 
primitives can be the bottleneck
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DRAM Basics
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Mechanisms / Implementation

Re
gu

la
r R

ow
 D

ec
od

er
B-

G
ro

up
 R

ow
 D

ec
od

er

C0
C1

Sense Amplifiers

…

T0
T1
T2
T3
DCC0
DCC0
DCC1
DCC1

Re
gu
la

r 
Da
ta
 R
ow
s

B
C

D

10



Outline
Problem 
Background (RowClone / Ambit) 
SIMDRAM Summary 

Goal 
Key Ideas + Mechanisms 

Vertical Data Layout 
Three Step Process 
System Integration 

Evaluation 
Limitations 
Major Results 

Strengths / Weaknesses 
Discussion

11



Goal
• Goal: design a framework which aids adoption of processing-using-DRAM


• SIMDRAM: An end-to-end processing-using-DRAM framework


• Supports complex operations and can easily be extended


• Low overhead: Only minor changes to the existing DRAM design are 
required, the area overhead is minimal


• End-to-end: Proposes hardware changes, ISA extensions, and a high-level 
C API
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Key Ideas
• Bit-shifting operations are essential for many complex computations


• Idea: Relies on Ambit (implementation of row-wise Majority, Not) and 
RowClone (fast intra-subarray copies) as Processing-in-Memory primitives


• Use vertical data layout to circumvent the need for any explicit shift 
operations


• Often times shift operations can be eliminated entirely by simply changing 
the index of the operands


• Computations are achieved using Majority and Not operations, which are 
functionally complete
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Horizontal Data Layout
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mutations to arrays
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Vertical Data Layout
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Row Buffer

• Can quickly query / mutate a 
single bit of every element


• Bit-shifts can be accomplished 
using multiple consecutive row-
clone operations


• By simply shifting element 
indices bit-shifts can be avoided 
by simply adding an offset to the 
row index
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Adding a new complex operation
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Mechanisms / Implementation
• Step 1: Efficient MAJ/NOT Implementation


• Takes an AOIG (And/Or/Inverter Graph) as input


• Replaces And / Or naively with their Maj 
equivalent (add constant 0 / 1)


• The result is a MIG (Majority/Inverter Graph)


• Optimized using greedy logic optimization 
algorithm which combines multiple Majority 
Nodes when possible
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Mechanisms / Implementation
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Mechanisms / Implementation
• Step 2: μProgram Generation


• Allocates compute rows in DRAM subarray


• Determines naive sequence of AAP / AP 
instructions


• Coalesces AAP / AP instructions where 
possible, reducing the number of required 
instructions


• For n-bit operations the 1-bit operation has 
to be repeated n-times


• Result is stored in DRAM
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Mechanisms / Implementation
• Step 3: Operation Execution


• bbop_op instructions are issued from the CPU to the SIMDRAM control unit


• Commands are sent to the DRAM controller by a special SIMDRAM control unit which 
orchestrates complex operations


• Similar in function to a naive, simple processor:


• Program memory, Program counter, uRegisters


• Executes μPrograms, made up of μOps:


• Some μOps are sent to the DRAM controller (AAP, AP)


• Others are executed in the control unit itself: Simple arithmetic operations, two 
control operators (bnez, done)
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Mechanisms / Implementation
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System Integration
• SIMDRAM is thought as a supplement for traditional processing elements


• SIMDRAM works on vertically-laid-out data, CPU / GPU use traditional 
horizontal format


→Memory management in SIMDRAM needs to support horizontal + vertical 
data layouts


• Transforming data between horizontal / vertical layout necessary


• Software isn't a valid solution as this would have a massive overhead
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• Data transposition unit 

• between LLC (last-level cache) and the 
memory controller


• Ensures horizontal layout in cache and 
vertical layout in DRAM.


• Object tracker tracks memory objects 
which are used for SIMDRAM 
operations


• bbop_trsp_init adds an object to 
the tracker

System Integration
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System Integration
• ISA


• Initialization: bbop_trsp_init address, size, n 

• 1-Input: bbop_op dst, src, size, n


• 2-Input: bbop_op dst, src_1, src_2, size, n 

• Predication: bbop_if_else dst, src_1, src_2, select, size, n 

• C Code


• Two envisioned ways to use the API:


• Manually where the programmer directly writes SIMDRAM primitives


• bbop_trsp_init(A, size, elem_size) … 

• Automatically using compiler optimizations


→ Future work
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System Integration
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Throughput

- SIMDRAM outperforms the three state-of-the-art baseline systems: CPU/GPU/Ambit


- Throughput drops for all operations with increasing element size, since the latency of each 
operation increases with element size
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Energy Efficiency

31

- More energy efficient than all three state-of-the-art baselines for a wide range of operations


- Energy efficiency of SIIMDRAM reduces as element size increases (more TRAs have to be 
executed)



Effects on Real-World-Kernels
• The performance / energy efficiency was also evaluated using real-world-

kernels:


• Databases / CNN / Classification / Image Processing
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Limitations
• Floating-Point Operations


• Shifting by a variable amount is currently infeasible, but is required for some 
IEEE 754 FP32 operations (e.g. for renormalization)


• Shuffling across bitlines


• It doesn't support shifting, only by using vertical data layout


• Synchronization and concurrent execution


• No synchronization primitives are currently supported and only a single 
operation can be executed in a single subarray
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Conclusion
Motivation: 
• Existing processing-using-DRAM proposals either mostly focus on basic bitwise operations 

and aren’t flexible or require significant changes to the DRAM subarray

Observation: 
• Shifts can often be eliminated by changing the data-layout, Ambit and Rowclone already 

implement sufficient primitives

Goal: 
• a framework that aids the adoption of processing-using-DRAM by efficiently implementing 

complex operations and providing the flexibility to support new desired operations

Idea: 
• Built up complex operations from basic bitwise primitives by offloading scheduling to a 

separate SIMDRAM control unit

Evaluation: 
• Very low area cost (0.2% of a modern CPU)

• Throughput analysis shows that SIMDRAM outperforms both CPUs / GPUs by 88x / 5.8x 

respectively

• 257x / 31x / 2.6x more energy efficient than CPU / GPU / Ambit
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Strengths
• Well written paper


• Very detailed evaluation


• Detailed comparison to DualityCache, a competing proposal (not 
mentioned in the presentation)


• Comparison to both CPU / GPU using modern hardware


• Tested using real-world kernels
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Weaknesses
• Process of how a uProgram can be obtained is explained in detail, but the 

process is quite complicated and isn’t feasible for end-users


• Claims to be an end-to-end system, but leaves out details about memory 
allocation: Operands must be stored in the same subarray - how this is to be 
solved isn’t stated


• Unclear how performance would be in a multi-core system, operands have to 
be pinned in DRAM


• No notes about scaling SIMDRAM control unit
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What types of applications could benefit from 
SIMDRAM?

How would application developers utilize SIMDRAM?

How can we scale SIMDRAM so that more operations 
can be performed in parallel?

Would SIMDRAM make sense for consumer hardware 
or only for servers / specialized computers?
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What are the options for solving the memory allocation 
problems?

Can we make it easier to define custom µPrograms?
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How would you imagine the future of Processing-
using-Memory?
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Decoding a bbOp
• Set index of Scratchpad to bbop operand (?)


• Write number of iterations into loop counter (= data elements / DRAM row size)


• uProg is loaded from Scratchpad into μOp Memory


• The Program can be executed one μOp at a time


• μOp is fetched from μOp memory, indexed by the μPC


• Which μRegisters are needed?


•  B0-B17 →  uReg Addressing Unit generates DRAM addresses


• B18-B31 → The uReg File provides values


• uOp Processing FSM executes the uOp


• If done loop counter is decremented


• base source and destination addresses are shifted


• resets μPC


• if loop counter !== 0 next bbop is executed
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Mechanisms / Implementation
• AAP DST, SRC 

• AAP (Act, Act, Pre) can be used to copy data between two rows in the same subarray


• 1. Activate loads the data into the sense amplifier, 2. activate stores the data in the target cell, precharge 
resets the subarray for the next operation


→ RowClone


• AP A, B, C 

• A triple row activation can be used to compute the majority of three DRAM rows: A * B + B * C + A 
* C 

• Destructive: All inputs are overwritten with the output


→ Ambit


• These commands can be sent to the DRAM controller, are then forwarded to the corresponding subarray 
where a RowClone / TRA takes place
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System Integration
• Memory Handling Details


• Uses Virtual Address Space (Existing Translation Lookaside Buffer can be 
used)


• Assumes the relevant pages are loaded and pinned in DRAM


• Cache lines have to be flushed after CPU modifications


• Context Switches have to load / restore the state of the SIMDRAM control 
unit
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Novelty
• First end-to-end framework that support in-DRAM computation


• Very flexible, transparent to the user


• A new three-step framework which can be used to support arbitrary user-
defined operations


• Applicable to a wide range of real-world applications
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Horizontal Data Layout
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Vertical Data Layout
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