SneakySnake

A Fast and Accurate Universal Genome Pre-
Alignment Filter tor CPUs, GPUs, and FPGASs

Bioinformatics Journal, Volume 36

Authors:

Mohammed Alseri2, Taha Shahroodis,
Juan Gomez-Lunasi,2, Can Alkan,
Onur Mutlui234

1 Department of Computer Science, ETH Zurich

2 Department of Information Technology and Electrical Engineering, ETH Zurich
3 Department of Electrical and Computer Engineering, Carnegie Mellon University
4 Department of Computer Engineering, Bilkent University

Presented by:
Robert Veres May 6, 2021

What is SheakySnake?

What is SheakySnake?

Subject Section

Genome Pre-Alignment Filter for CPUs, GPUs, and

Mohammed Alser 2*, Taha Shahroodi, Juan Gé6mez-Luna-?,
Can Alkan%*, and Onur Mutlu 1,2:3:4:*

" Department of Computer Science, ETH Zurich, Zurich 8006, Switzerland

2Department of Information Technology and Electrical Engineering, ETH Zurich, Zurich 8006, Switzerland
3Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh 15213, PA, USA
4Department of Computer Engineering, Bilkent University, Ankara 06800, Turkey

*To whom correspondence should be addressed.
Associate Editor: XXXXXXX

Received on XXXXX; revised on XXXXX; accepted on XXXXX

Abstract

Motivation: We introduce SneakySnake, a highly parallel and highly accurate pre-alignment filter
that remarkably reduces the need for computationally costly sequence alignment. The key idea of
SneakySnake is to reduce the approximate string matching (ASM) problem to the single net routing
(SNR) problem in VLSI chip layout. In the SNR problem, we are interested in finding the optimal path
that connects two terminals with the least routing cost on a special grid layout that contains obstacles.
The SneakySnake algorithm quickly solves the SNR problem and uses the found optimal path to decide
whether or not performing sequence alignment is necessary. Reducing the ASM problem into SNR also
makes SneakySnake efficient to implement on CPUs, GPUs, and FPGAs.

3

Background

Recap from 10th grade biology

Chromosome

* Your most important attributes are written in your

chromosomes.
(Eye colour, gender, but even your immune

reactions to COVID)

Histones

Chromatin

Nucleosome

* Your chromosomes are just very long strands of
DNA Avgl"

* |f we can read your DNA, we can tell a lot more S
about you.

* |f we could read the DNA of multiple people, we et
could tell even more about you after reading your A SRR U NN PSS S SIS EOFIEs SaE LIS
DNA bt etk e e s b o ks b
= \\le want to read the entire DNA of multiple

people

Recap from 4th session

Seminar in
Computer Architecture
Meeting 4: GateKeeper

Dr. Mohammed Alser
ALSERM@ethz.ch

ETH Zlrich
Spring 2021
18 March 2021

Recap from 4th session

. i Genome Sequencer 1s a2 Chopper
Seminar in k! PP

Computer Architecture
Meeting 4: GateKeeper

Regardless the sequencing machine,

reads still lack information about their order and location

(which part of genome they are originated from)

-

Dr. Mohammed Alser
ALSERM@ethz.ch

ETH Zlrich
Spring 2021
18 March 2021

Recap from 4th session

Solving the Puzzle

Genome Sequencer 1s a Chopper

.FASTA file FASTQ file
Regardless the sequencing machine,

reads still lack information about their order and location

(which part of genome they are originated from)

Billions of Short Reads
"ATATATACGTACTAGTACGT

TTTAGTACGTACGT
ATACGTACTAGTACGT

CGCCCCTACGTA

}CGTACTAGTACGT

TTAGTACGTACGT /
Reference

TACGTACTAAAGTACGT “ ._r

TACGTACTAGTACGT :

' TTTAAAACGTA genome / +
Reads ’

CGTACTAGTACGT

L GGGAGTACGTACGT

e
‘e
''''''''

slatel.t

https://www.pacb.com/smrt-science/smrt-sequencing/hifi-reads-for-highly-accurate-long-read-sequencing/

14

Recap from 4th session

What Makes Read Mapper Slow? What Makes Read Mapper Slow? (cont’d)

Key Observation # 1

4%

Key Observation # 2
TATAATACG
SAM AT

candidate :'A :
alignment ! A
locations (CAL) ' A
! A
G

x .u" Read

- \ Alignment',."" of candidate locations
’ have high dissimilarity

with a given read.

93% 4

of the read mapper’s

execution time is spent

in sequence alignment.

Read Alignment
93%

Reference Genome

Cheng et al, BMC bioinformatics (2015)
Alser et al, Bioinformatics (2017) Xin et al, BMC genomics (2013)

22 23

Key observation #1 Key observation #2

Sequence-Alignment approach 1

 Most sequence alignment approaches are implemented as dynamic
programming algorithms with quadratic time complexity

* \We can use a special hardware to accelerate the procedure

e.g. SIMD capable processors used by Parasail or processing in memory
Architecture such as GenASM

10

Sequence-Alignment approach 2

 Most sequence alignment approaches are implemented as dynamic
programming algorithms with quadratic time complexity

* Introduce pre-alignment filters that reduce the need for DP by eliminating
dissimilar strings

e.g. SHD or GateKeeper

However these are expensive and Inaccurate

11

The goal of SneakySnake

; . nghly accurate pre- allgnment fllter to heIp us dlstlngwsh between S|m|Ia
. and dissimilar Strlngs that we can |gnore *

* Should work for both short and long sequences

* Highly parallelizable

* Deployable on a lot of platfors

Eliminate dissimilar strings via Iving the Approximate
String matching problem

12

How does SheakySnake work?

How does SneakySnake work?

14

How does SneakySnake work?

Approximate String Matching (ASM)

15

How does SheakySnake work?

Approximate String Matching (ASM)

Single Net Routing (SNR)

16

How does SneakySnake work?

 Reduce ASM problem to SNR

17

How does SneakySnake work?

 Reduce ASM problem to SNR

* Solve the SNR problem

18

How does SneakySnake work?

 Reduce ASM problem to SNR

* Solve the SNR problem

o 777
* Profit!

19

Reducing ASM to SNR

Step 1: Replace the DP-table with chip-maze™

20

Reducing ASM to SNR

Step 1: Replace the DP-table with ,

Step 2: Find the number of differences between two sequences by
solving the GNR problemin the chip-maze™

What are those?

21

The Single Net Routing problem

22

The Single Net Routing problem

23

The Single Net Routing problem

Goal: getting from the in- to the end-terminal
with the least amount of obstacles possible

- . - . . . out-terminal
24

In-terminal

The Single Net Routing problem

Checkpoints
Change track

Vertical-Routing-Track / \

Escape segment

“The solution™

Out-terminal

In-terminal

Horizontal-Routing-Track

The chip-maze

Replace (m+1) x (m+1) matrix with (2E+1) x m where Zi,j is defined as:

iof i=FE+1, Q[j] = R[j],

if 1<i<E, Q[j —1i] = R[j],

if i1 >FE+1, Qlj+1— FE —1] = R|j],
B otherwsise

(1)

20%1

26

The chip-maze

Replace (m+1) x (m+1) matrix with (2E+1) x m where Zi,j is defined as:

27

The chip-maze

Replace (m+1) x (m+1) matrix with (2E+1) x m where Zi,j is defined as:

HEEE BEEBE
HEEEEREERN
You can solve

- - . the SNR
BEEE problem on this!

28

Creating the chip-maze

of i=E+1, Qj] = R[j],

o if 1<i<E, Q[j—i] = R[j],
Zi, j] = if i>FE+1, Q[j +i— E — 1] = RJj], o

. otherwsise

Creating the chip-maze

if 1= E+1, Q[j] = R[j],
. if 1<i<E, Q[j—i]=R[j],
Z1, j] = if i>FE+1, Qj+i— E— 1] = R[j], o

. otherwsise

L1 3
I
- P (S
) L a %
_agatt™?
» g L
N r. ’
ﬁ" -
i SRS O
- s B

Creating the chip-maze

iof i=FE+1, Q[j] = R[],
if 1<i<E, Q[j —1i] = R[j],

if i>E+1, Q[j+i— E —1] = R[j],

otherwsise

31

(D)

Creating the chip-maze

iof i=E+1, Q] = R[j],
if 1<i<E, Qlj—1i] = RJj],

23] = if i>E+1, Qi+i—E—1=R[j,
B otherwise
HEEE BB
NoO data dependencies, thus parallelisable
_ Cont’d
AACCGTA
2. 1. 3. 4. 5. ...
H EEERE

32

How does SneakySnake work?

 Reduce ASM problem to SNR

* Solve the SNR problem

o 777
* Profit!

33

Solving the Single Net Routing problem

Step 1: Select the longest escape segment
Step 2: Create a checkpoint

Step 3: Repeat step 2 and 3 until you reach the end or threshold exceeded
0
0
1
3

0

If length Q != R, deduct leading and trailing obstacles from the count of edits
34

Solving the Single Net Routing problem

Step 1: Select the longest escape segment
Step 2: Create a checkpoint

Step 3: Repeat step 2 and 3 until you reach the end or threshold exceeded

If length Q != R, deduct leading and trailing obstacles from the count of edits
35

Solving the Single Net Routing problem

Step 1: Select the longest escape segment
Step 2: Create a checkpoint

Step 3: Repeat step 2 and 3 until you reach the end or threshold exceeded

0 0
0 0
1 1
3 0
0 0

If length Q != R, deduct leading and trailing obstacles from the count of edits
36

Solving the Single Net Routing problem

Step 1: Select the longest escape segment
Step 2: Create a checkpoint

Step 3: Repeat step 2 and 3 until you reach the end or threshold exceeded

Cont'd

If length Q != R, deduct leading and trailing obstacles from the count of edits
37

Sketch of optimality proof

"
> s lot of obstacles
.
—7 | | J ‘ e Same
L ﬁ/\(;f% e vo the |
> HQPBW\Q{ |
N solution

T ———

38

Sketch of optimality proof

39

Sketch of optimality proof

ot o obs ﬂml{g

ot of @L)S{,CCC‘-QS
[IJC Jomg JDO JCIwQ Same

Path lale-
>”®P£3Mu(”
SoLution

L

If SneakySnake doesn’t join the optimal solution at the next option, we can shift it to

the next checkpoint or we reach the end (thus SneakySnake has less edits)
40

Solving the Single Net Rounting problem

In conclusion:

There is one or more Signal nets that — SneakySnake finds the Signal net with
connects the In and Out-Terminal the least amount of obstacles possible.

41

How does SneakySnake work?

 Reduce ASM problem to SNR

* Solve the SNR problem

o 777
* Profit!

42

Different versions of SheakySnake
Snake-on-Chip Snake-on-GPU

Exploits the advantages Exploits the advantages
of an FPGA-Board of a GPU

43

Snake-on-Chip, idea

Solve multiple (2E+1) x t sized problems instead of solving one (2E+1) x m SNR
problem

44

Snake-on-Chip, benefits

Benefits:

1. Smaller maze -> less amt. of possible solutions -> smaller LUT size
2. Easlly scalable

3. Highly parallelisable (no Data dependency at all)!

45

Snhake-on-Chip, problem

The idea: Divide and conquer

Solve multiple (2E+1) x t sized problems instead of solving one (2E+1) x m SNR
problem

: Actual solution: 2 |
i What we get 1 O ‘

We can underestimate the optimal solution

= Similar strings get marked “moye similar” as they are, but it’s ok.

Snake-on-Chip, problem

Benefits:

1. Smaller maze -> less amt. of possible solutions -> smaller LUT size
2. Easlly scalable

3. Highly parallelisable (no Data dependency at all)!

But:

Less accurate! (However, it won’t mark a similar string as dissimilar)

47

Snake-on-GPU

The idea: Exploit the amount of GPU threads to solve multiple SNR problems

at the same time

» Copy reference and query into the

GPU'’s
global memory

 Each thread solves a complete SNR

problem

48

Reference Sequences

Global Memory

ref 1

ref 2

ref 3

ref 4

Registers

Quei Seiuences

ref 1

Registers
thread 1 ref 1 thread 1
thread 2 ref 2 thread 2
thread T ref T thread T
concurrent thread execution
thread T
tﬁ;eaa 2f
thread 1 "
solve the
SNR
maze
/ problem

—>

Fig 8

Different versions of SneakySnake

Comparison

Snake-on-Chip Snake-on-GPU
+Scalable and parallizable +Easier to configure

+More energy efficient than Snake-on-GPU | +Less expensive and time consuming

+Scalable and parallizable
-More expensive and time consuming

-You can’t configure the parameters after -Not as energy efficient as Snake-on-Chip
design time!!!

49

Result

Result

What we mostly care about is:

1. Filtering accuracy
2. Filtering time (short-and long sequences)

3. Effect on read-mapping

51

Dataset for accuracy test

How much
edits two similar
strings can have

Accession no. ERR240727 1 SRR826471 1
Source https://www.ebi1.ac.uk/ena/data/view/E https://www.ebi.ac.uk/ena/data/view/S
RR240727 RR826471
Sequence Length 100 250
Sequencing Platform [llumina HiSeq 2000 [1lumina HiSeq 2000
Dataset 100bp 1 100bp 2 250bp 1 250bp 2
5 mrFAST e 2 40 3 100
Amount of Edits Low-edit High-edit Low-edit High-edit

Table 3, Page 20

52

Dataset for accuracy test

 Each dataset contains 30 million real sequence pairs
o 2 different sequence length, 100 and 250 basepair (prefix 100bp or 250bp)

* We differentiate between low and high edits (suffix _1 or _2)

53

Filtering accuracy, goal

We want to know how many false accepts and false rejects we have

Goal is: no false reject and the less false accept the better.

Definitions:

False accept := Two dissimilar string classified as similar by the algorithm

False reject := Two similar string classified as dissimilar by the algorithm

54

Filtering accuracy, false accepts

 SneakySnake has the lowest false
accept rate

o All filters are less accurate when
they have less Edits (i.e. _1
databases are harder to tell than
_2)

« SHD and GateKeeper is
iIneffective for E=8%

55

100%F
80% T
60% +
40% +
20% £
0% Lk

100%?7
58%

250bp_2

y =l

SHD GateKeeper Shouiji MAGNET SneakySnake
E= H0% M 1% M2% H3%H 4% M 5% M 6% M 7% M8% Hl 9% W 10%

Filtering accuracy, false accepts

Each dataset contains 30 million real sequence pairs.

Accession no. ERR240727 1

Read length

(bp) 100 How much

No. of reads 4 million edits two similar

HTS Illumina HiSeq strings can have
2000

Accession no. ERR240727 1

Dataset no. 1 2 3 4

MmrFAST -e 2 3 5 40

Filtering accuracy, false accepts

100% »—2100% ~—t
2 80% et 80% S
ad / o
SHD S 60% g 60%
O GateKeeper S
® Shouiji < 40% 40%
O MAGNET 3
O SneakySnake-100 P 20% 20%
{F SneakySnake-5
0% e—= 0%
- 012345678910 012345678910
- Sneakysnake e“mlnates’ on Edit Distance Threshold Edit Distance Threshold
average, up to 412x, 40x, and 100% . .100%
20x more incorrect mappings L s0% 809
compared to GateKeeper, Shouiji &
8 60% | 60%
and MAGNET.
< 40% 40%
g |
£ 20% ~20% /u/”
0% &—=—8—8—8— -—a—a—R o 0% & oot o= T

01 2 3 45 6 7 8 9 1C
57 Edit Distance Threshold Edit Distance Threshold

01 2 3 456 7 8 9 1

litering accuracy, false rejects

Number of falsely-rejected sequences of SneakySnake, Shouji, MAGNET, SHD, and GateKeeper across 4 real

datasets. We use a wide range of edit distance thresholds (0%-10% of the sequence length) for sequence lengths of

100 and 250

Truly-Rejected Falsely-Accepted
Dataset E Edlib SHD GateKeeper Shouji MAGNET SneakySnake
0 29'618'099 0 0 0 0 0
1 28'654'158 0 0 0 0 0
2 26'733'545 0 0 0 0 0
3 24'404'404 0 0 0 0 0
4 22'174'728 0 0 0 1 0
100bp_1 5 20'178'692 0 0 0 0 0
 SneakySnake has O false o i o o : : o
7 16'592'199 0 0 0 19 0
. 8 14'847'499 0 0 0 27 0
reJ eCt S 9 13'105'320 0 0 0 M 0
10 11'389'103 0 0 0 31 0
0 29'999'989 0 0 0 0 0
1 29'999'982 0 0 0 0 0
2 29'999'976 0 0 0 0 0
. . . . 3 29'999'973 0 0 0 0 0
* This is nothing special s 299em : : : : :
) 100bp_2 5 29'999'966 0 0 0 0 0
. 6 29'999'917 0 0 0 0 0
besides MAGNET they all AT o o o o o
8 29'999'667 0 0 0 0 0
. 9 29'999'289 0 0 0 0 0
have O false rejects o s o o o o o
0 29'292'483 0 0 0 0 0
2 28'537'758 0 0 0 0 0
5 28'026'165 0 0 0 0 0
7 27'638'582 0 0 0 1 0
10 26'816'729 0 0 0 1 0
250bp_1 12 26'137'224 0 0 0 9 0
15 25'084'654 0 0 0 14 0
17 24'449'131 0 0 0 23 0
20 23'595'168 0 0 0 35 0
2 23'040'384 0 0 0 42 0
25 22'142'250 0 0 0 54 0
0 29'999'951 0 0 0 0 0
2 29'999'837 0 0 0 0 0
5 29'999'699 0 0 0 0 0
7 29'999'625 0 0 0 0 0
10 29'999'528 0 0 0 0 0
250bp_2 12 29'999'480 0 0 0 0 0
15 29'999'425 0 0 0 0 0
17 29'999'377 0 0 0 0 0
20 29'999'282 0 0 0 0 0
58 22 29'999'158 0 0 0 0 0
25 29'998'867 0 0 0 0 0

Filtering accuracy, conclusion

*SneakySnake is up to 3,141,100% more accurate than GateKeeper
Also up to 2,060,200% more accurate than SHD

*And up to 64,000% more accurate than Shouiji

*Also, when it comes to false rejects, it is 100% accurate

= SneakySnake is more accurate than other state-of-art pre alignment filters

59

Filtering time

Short sequences Long sequences

*We can have the same dataset as in the *We need datasets with larger basepairs

filtering accuracy tests (100/250_1/2)
*We want to compare runtime of sequence

*We want to compare pre-alignment filters aligners with and without SneakySnake
by using them with the same sequence '
aligners

-We want to separate the tests by CPU, |
GPU and FPGA based algorithms Spoiler: we’ll learn that SneakySnake is
the fastest pre-alignment filter so we only
care about wether it makes sequence
alignment faster

60

Filtering time, short sequences

-Dataset Is the same as In Filtering accuracy test
*We use Edlib and Parasall, two state-of-art sequence aligners

‘We use SHD (Shifted Hamming Distance) and SneakySnake for
the CPU-based comparison

‘We compare GateKeeper, Shouji, Snake-on-Chip and Snhake-on-
GPU for the FPGA/GPU-based speed test

61

Filtering time, short sequences

 SneakySnake alone is slower
than Shifted Hamming
Distance

* But the whole process of
sequence alignment gets
faster

Because the sequence
aligner has to compare more
dissimilar strings with SHD

1.2
1.0
0.8
0.6
0.4
0.2
0.0

Normalized Runtime

p——
Q
—

1.2
1.0
0.8
0.6
0.4
0.2
0.0

Normalized Runtime

BSS MEdIlib afterSS BSHD

Edlib after SHD

100bp 1 100bp 2 250bp 1 250bp 2
1.2x 4.5x 1.8x 2X
16.7x 4.5X 5x 2%
10.9) 12.3x ~|21.3x 37.7x
5. 12.3x - |43x 37.7x
, C — — [.
BmSS M Parasail after SS W SHD Parasail after SHD
100bp 1 100bp 2 250bp 1 250bp 2
1.2x 13.2x 2.4x 18x
17.3x 13.2x 13.8x 20% 18.1x
0.4x 43.9)(
43.9x
16x
16x
| | ‘
X X R X R RN RN XN ¥
O O O - I%; N N < O
— i —

Edit Distance Threshold

* Runtime significantly reduced
when using a variant of
SneakySnake

 \We can tell that Snake-on-
Chip and Snake-on-GPU is
faster than the CPU version
of SneakySnake

Short sequences, GPU/FPGA

1.0

0.8
0.5
0.3

Normalized Runtime

0.0
w0.32

£0.22
*0.12

2
im

Run

alized R

= 0.02

g 0.01
2 0.00

(b)

63

100bp 1

100bp 2

27.7Tx
21.4x

26.8x
21.5x

368.3x

295 6x 53X

321x

Edlib

T3I6X
109x

0%

FPGASW
w/ GateKeeper

GSWABE
m w/ Snake-on-Chip ®mw/ Snake-on-GPU = w/ Shouji

Parasail

Short sequences, conclusion

*SneakySnake is up to 790% - 3,900% faster than other CPU-based pre-alignment
filters.

*Runtime of Edlib and Parasalil reduced by up to 32,000% and up to 53,500% with
Snake-on-Chip and by 41,200% and 68,800% with Snake-on-GPU

*SneakySnake is also up to 100% faster than Shouji and Gatekeeper
*Snake-on-GPU is 3,900% faster than SneakySnake (CPU based)

=Snake-on-GPU and Snake-on-Chip is the fastest pre-alignment filter (over Edit-
distance of <5%)

64

Long sequences, dataset

*Two datasets, (10Kbp, 100Kbp).
10Kbp has 100,000 10,000 long base pair sequence
100Kbp has 74,687 1000,000 long base pair sequence

‘We use Parasail and KSW2, two state-of-art sequence aligners
when it comes to longer sequences

‘We look at the runtime of SneakySnake, the sequence aligner and
the two combined

65

Filtering time, long sequences

 SneakySnake is faster than the
sequence aligner alone, when the
edit distance threshold is low

e But it gets less and less significant

as we Increase the edit distance
threshold
Because the more strings are
marked as similar the less of a
help the pre-alignment filter is.

10K bp dataset

‘ B SneakySnake =d=Parasail
\ =>=SneakySnake+Parasail =@=Accept Rate of SneakySnake
10000 B
-
=
. =
1000 —y—
4 11 07x
® 100 [
<
e g
E
[
=
=
-
- !
¢ 1
K .
0.1 [
0.01
1 31 101 501 700 1300 160 1395 1950 00
Edit Distance Threshold
B SneakySnake we=KSW2
=>¢=SneakySnake+KSW2 -@=Accept Rate of SneakySnake
10000
‘ 1.0ax,]
1000 +
z : T
@
2
p 1
E
-
- 100 .
2
“ s
S
<
Ry 1
10
1 ‘ L
1 31 101 501 701 1100 1200 1225 1250 2000
Edit Distance Threshold

66

100%
90%
80%
70%
60%
50%
40%
30%
20%

10%

- 0%

100%
90%
80%
70%
60%

- 50%

40%
30%
20%
10%

0%

Accept Rate of SneakySnake

Accept Rate of SneakySnake

1000000

100000

10000

1000

100

Execution Time (sec)

0.1

1000000

100000

)

10000

sec

1000

100

Execution Time (

10

10 -

100K bp dataset

 mmSneakySnake = =geParasal @
=¢=SneakySnake+Parasail -@=Accept Rate of SneakySnake

il

100%
- 90%

- 80%
- 70%
- 60%
- 50%
- 40%
- 30%

- 20%
- 10%

- 0%

S 7
0 319 104y 3079 7039 00,054,102, %08;, %200, %200, %00,
Edit Distance Threshold
B SneakySnake = KSW2
=xe=SneakySnake+KSW2 =@=Accept Rate of SneakySnake
- 100%
-
e | 900
L
’ 0.92xt 7
: m + 80%
+ 70%
’
60%
3 + 50%
+ 40%
30%
+ 20%
+ 10%
- 0%

20, S0,. 20, op. 0c. 05 0. zn 129
% 20 V20 %z, %z, "%, %, 00, 00, ~%0,

Edit Distance Threshold

Accept Rate of SneakySnake

Accept Rate of SneakySnake

Long sequences, conclusion

*SheakySnake accelerates Parasail and KSW2 by 50,800-97,800% and 280-9,070%

But it is only helping when SneakySnake filters out more than ~30% of the
seguences
=|n most cases, it is beneficial to use SneakySnake as pre-alignment filter before
applying the sequence aligner

6/

Effect on read mapping

We want to integrate SneakySnake into a state-of-art read mapper

We use minimap?2 as read mapper as it includes methods to speed up read
mapping and it is parallelized.

 SneakySnake + minimap?2’s aligner is at least 6x faster than minimap?2’s
approach

 The mapping time is reduced from 418 seconds to 206
=\\e reduced the speed of read mapping with SneakySnake

68

Strengths

Strengths

* |t's possible to sequence multiple samples parallel at the same time as it Is
highly parallelisable

* Superior to other approaches (and even to the state-of-art technigques)
when it comes to speed and accuracy

* Available on CPU, GPU and FPGA thus compatible with most sequence
aligner

* First pre-aligner that is both software designed and co-hardware designed

* Shake-on-Chip and Snake-on-GPU exploit their architecture in a very
effective way, without being dependent from a given model or platform

70

Strengths (cont’d)

 We can accelerate state-of-art genome sequencer with integrating
SneakySnake into state-of-art read mappers

* \Very simple, easy-to-understand solution

71

Weaknesses

Weaknesses

 |If the higher HRT found an escape segment to the end, SneakySnake will
still iterate through the lower HRTs

/3

Weaknesses

 |If the higher HRT found an escape segment to the end, SneakySnake will
still iterate through the lower HRTs

Goes to end-terminal,
we could stop

Weaknesses

 |If the higher HRT found an escape segment to the end, SneakySnake will
still iterate through the lower HRTs

* Snake-on-Chip is more expensive and less accurate than the other versions

e Sometimes definitions are unclear

75

Unclear definitions

What if |<i?
0, if i=FE+1, Q[j]= R[j],
. Jo, if 1<i<E, Q[j—i] =R, o
216, 3] = 0, if 1 >FE+1, Qi +1— FE —1] = R|j], () t(\f;
1 otherwsise £ _—
y v
H
\ \0®
%

76 ° i

Unclear definitions

PIALIILI\ 24U — A"

for (n = 0, n < (ReadLength) ; n++) {

else if (ReadSeq[n e]'— RefSeq[n])
printf("1");

else if (ReadSeq[n-el== RefSeql[n]) {
printf("0");

s

(&4

Unclear definitions

, If J<i or jti—E—-1>m

, if i=FE+1, Q5] = R[j],

of 1<i< E, Q|7 —1] = R|j],

, fi>FE+1 Qj+i—E—1] = R[j],

: otherwsise

Zlt,j] = (1)

r—lO“OCD*—‘

This tells the reader what happens for index out of bound

/8

Unclear definitions

Do we create the maze in advance or not?

’ 8 ’ 8 L 0 J T4

algorithm from ever searching backward for the longest escape segment.
This leads to a signal net that has non-overlapping escape segments.

To achieve these two key objectives, the SneakySnake algorithm
applies five effective steps. (1) The SneakySnake algorithm first constructs
the chip maze using Equation 1. It then considers the first column of the chip
maze as the first checkpoint, where the first iteration starts. (2) At each
new checkpoint, the SneakySnake algorithm always selects the longest
escape segment that allows the signal to travel as far forward as possible
until 1t reaches an obstacle. For each row of the chip maze, it computes
the length of the first horizontal segment of consecutive entries of value

79

alignment algorithm. Otherwise, the SneakySnake algorithm terminates
without performing computationally expensive sequence alignment,
since the differences between sequences 1s guaranteed to be > FE.

To efficiently implement the SneakySnake algorithm, we use an
implicit representation of the chip maze. That 1s, the SneakySnake
algorithm starts computing on-the-fly one entry of the chip maze after
another for each row until it faces an obstacle (i.e., Z[z,7] = 1)
or it reaches the end of the current row. Thus, the entries that are
actually calculated for each row of the chip maze are the entries
that are located only between each checkpoint and the first obstacle,
in each row, following this checkpoint, as we show in Fig. 2(c).

Weaknesses

 |If the higher HRT found an escape segment to the end, SneakySnake will
still iterate through the lower HRTs

* Snake-on-Chip is more expensive and less accurate than the other versions

e Sometimes definitions are unclear

» Result analysis of read mapping doesn’t include any figures

* Requires a high knowledge about the topic to understand the paper

* Indexing starts at 1

30

Do you have any questions?

Discussion

We can convert binary code into
DNA base pairs
SCIENTIFIC REPLIRTS

OFEN Demonstration of End-to-End
Automation of DNA Data Storage

Christopher N. Takahashi?, Bichlien H. Nguyen'?, Karin Strauss'? & Luis Ceze(?

- Synthetic DNA has emerged as a novel substrate to encode computer data with the potential to be

. orders of magnitude denser than contemporary cutting edge techniques. However, even with the help
>d: 5 March 2019 . of automated synthesis and sequencing devices, many intermediate steps still require expert laboratory
ed online: 21 March 2019 ~ technicians to execute. We have developed an automated end-to-end DNA data storage device to

. explore the challenges of automation within the constraints of this unique application. Our device

- encodes data into a DNA sequence, which is then written to a DNA oligonucleotide using a custom

. DNA synthesizer, pooled for liquid storage, and read using a nanopore sequencer and a novel, minimal

- preparation protocol. We demonstrate an automated 5-byte write, store, and read cycle with a modular
- design enabling expansion as new technology becomes available.

:d: 26 October 2018

- Storing information in DNA is an emerging technology with considerable potential to be the next generation storage
- medium of choice. Recent advances have shown storage capacity grow from hundreds of kilobytes to megabytes to
- hundreds of megabytes'~>. Although contemporary approaches are book-ended with mostly automated synthesis*
. and sequencing technologies (e.g., column synthesis, array synthesis, [llumina, nanopore, etc.), significant interme-
. diate steps remain largely manual'~*°. Without complete automation in the write to store to read cycle of data storage
- in DNA, it is unlikely to become a viable option for applications other than extremely seldom read archival.

I To demonstrate the practicality of integrating fluidics, electronics and infrastructure, and explore the chal-
. lenges of full DNA storage automation, we developed the first full end-to-end automated DNA storage device.
. Our device is intended to act as a proof-of-concept that provides a foundation for continuous improvements, and
- as a first application of modules that can be used in future molecular computing research. As such, we adhered to
- snecific design princinles for the imnlementation: (1) maximize modularitv for the sake of renlication and reuse.

82

Discussion

We can convert binary code into
DNA base pairs

They claim “synthetic DNA has
emerged as a novel substrate to
encode computer data with the
potential to be orders of magnitude
denser than contemporary cutting
edge techniques”™

01001000010001010100
11000100110001001111

* Encode

GCAGACGCCCGTACGTACGTTCA
CCGTGCGTCTTCACCGTGCGTC

* Synthesis

GCAGACGCCC..

* Read

GCAGACGCCCGTGCGTACGTTCA
CCGTGCGTCTTCACCGTGCGTC

Decode &

Error Correct
01001000010001010100
11000100110001001111

Encode/Dec deI

Yﬂ e T/Aligatio
Payload oligo

On-device

sticky-end ligation

a
O

83

Discussion

We can convert binary code into
DNA base pairs

DNA alignment. All DNA alignment was done using the parasail parasail_aligner command line tool'® with
arguments -d -t 1 -O SSW -a sg_trace_striped_16 -0 8 -m NUC.4.4 -e 4. Alignments to the adapter sequence for
decoding used the additional flag -c 20, while payload error analysis used flag -c 8.

They claim “synthetic DNA has
emerged as a novel substrate to o |
encode computer data with the mately 3055 pe base, o 84 0 synchesie 99-mer payload and 12h tocleave and deprotec the oligonucleoties

room temperature. After synthesis, preparation takes an additional 30 min, and nanopore reading and online decoding

p O ten ti al to b e Or der S Of m ag N I tu de ta.keU6in‘Illlign‘this prototype system, we stored and subsequently retrieved the 5-byte message “HELLO” (01001000

01000101 01001100 01001100 01001111 in bits). Synthesis yielded approximately 1 mg of DNA, with approximately

de nser th all COon tem p ora I'y cu ttl 8 g 411~ 100 pmol retained for sequencing. Nanopore sequencing yielded 3469 reads, 1973 of which aligned to our
adapter sequence. Of the aligned sequences, 30 had extractable payload regions. Of those, 1 was successfully decoded
e d g e te C h N i q Hes 7 with a perfect payload. The remaining 29 payloads were rejected by the decoder for being irrecoverably corrupt.

They tested it only with the String
“HELLO”

They used Parasail for DNA alignment

34

Discussion

Does SneakySnake enable us to use DNA as memory storage?
If no, would it at least improve it?

35

Discussion

Does SneakySnake enable us to use DNA as memory storage?
If no, would it at least improve it?

 Helps a lot if small edit distance is possible

* Considering smaller sequences, the CPU based version is up to 40x

faster than Parasalil.
* |n general, it would indeed accelerate the procedure, but still not fast

enough to make DNA and other areas are lacking of performance as
well

36

Discussion

Could we improve the runtime of Sequence-alignment instead of pre-filtering
to make read mapping faster?

87

Discussion

Could we improve the time complexity of Sequence-alignment?

Unfortunately the fastest sequence-
alignment Is proven to be

O(m?/logm)
(Otherwise we can solve 3-sat in less
than O(n?))

=\\e need to decrease the speed of other
areas.

38

Edit Distance Cannot Be Computed

in Strongly Subquadratic Time
(unless SETH is false)*

Arturs Backurs' Piotr Indyk?
MIT MIT

Abstract

The edit distance (a.k.a. the Levenshtein distance) between two strings is defined as the
minimum number of insertions, deletions or substitutions of symbols needed to transform one
string into another. The problem of computing the edit distance between two strings is a
classical computational task, with a well-known algorithm based on dynamic programming.
Unfortunately, all known algorithms for this problem run in nearly quadratic time.

In this paper we provide evidence that the near-quadratic running time bounds known for
the problem of computing edit distance might be tight. Specifically, we show that, if the edit
distance can be computed in time O(n?~°) for some constant § > 0, then the satisfiability
of conjunctive normal form formulas with N variables and M clauses can be solved in time
MOM21=eN for a constant € > 0. The latter result would violate the Strong Exponential Time
Hypothesis, which postulates that such algorithms do not exist.

Discussion

SneakySnake has no data dependencies, but still needs to access a
high amount of data

Could we improve SneakySnake’s performance if we used in-memory
processing or in-cache processing?

89

Discussion

Could we improve SneakySnake’s performance if we used in-memory
processing or in-cache processing?

GenCache: Leveraging In-Cache Operators for Efficient Sequence Alignment

100000 16 400

This is the idea of GenCache (with |
GenAx, not SneakySnake), that uses Srocnble o | 1 [el
In-cache operations to accelerate

sequence aligners e o hhML

Th ey Sig n ifiCantIy red Uced energy Figure 11: (a) Breakdown of time and energy by program
phase. (b) Breakdown of memory accesses by program phase

consumption (8.3x less) and execution and data structure.
time (5.8x less)

300

200

100

(4x speedup from in-cache operators and algorithm) than the sum of
its parts (1.36X from algorithm alone and 1.62X from in-cache oper-
ators alone). The addition of the bloom filter alleviates the remain-
ing memory bottleneck from hash table misses in Phases 1 and 2
to yield a 5.26x speedup over baseline GenAx.

Figure 10 shows an energy comparison (in terms of reads per
m]J) and memory fetches for the same six configurations. Most of
the energy reduction is from a reduction in memory accesses. The

90

Discussion

Could we improve SneakySnake’s performance if we used in-memory
processing or in-cache processing?

GenCache: Leveraging In-Cache Operators for Efficient Sequence Alignment

100000 16 400

This is the idea of GenCache (with |
GenAx, not SneakySnake), that uses g0 Loreame | [et
In-cache operations to accelerate

sequence aligners o hhML l .

(a)

Th ey Sig n ifiCantIy red Uced energy Figure 11: (a) Breakdown of time and energy by program
phase. (b) Breakdown of memory accesses by program phase

consumption (8.3x less) and execution and data structure.
time (5.8x less)

300

200

100

-

Memory Fetches (G

(4x spee;lup from in-cache ope-rators and aigorithm) than the sum of
its parts (1.36X from algorithm alone and 1.62X from in-cache oper-

Th ey use a s peC | al arc h |'teC't U re, SS fztors alone). The addition of the bloom ﬁlte.r alleffiates the remain-

ing memory bottleneck from hash table misses in Phases 1 and 2
"I KL 7 : :
would lose it's “Independence foyleld asia6x speedup over baseline Senfx
Figure 10 shows an energy comparison (in terms of reads per
m]J) and memory fetches for the same six configurations. Most of
the energy reduction is from a reduction in memory accesses. The

9

Discussion

Could we do better if we sacrificed the “platform independence of
SneakySnhake”?

92

Discussion

Could we do better if we sacrificed the “platform independence of

SneakySnake”?

GenASM creates a framework to
remove limitation of Bitap (like GenAx)
on current systems

They compare it to Shouji and provide 3.7X
speedup, thus faster than SneakySnake
(only with 100bp)

= Design of special framework could speed
up SneakySnake

93

GenASM: A High-Performance, Low-Power
Approximate String Matching Acceleration Framework
for Genome Sequence Analysis

Damla Senol Calit™ Gurpreet S. Kalsi® Ziilal Bingdl” Can Firtina® Lavanya Subramanian? Jeremie S. Kim®!
Rachata Ausavarungnirun® Mohammed Alser® Juan Gomez-Luna® Amirali Boroumand! Anant Nori*
Allison Scibisz| ~ Sreenivas Subramoney® Can Alkan" Saugata Ghose* Onur Mutlu®T
T Carnegie Mellon University ™ Processor Architecture Research Lab, Intel Labs " Bilkent University ~°ETH Ziirich
YFacebook ©King Mongkut’s University of Technology North Bangkok *University of Illinois at Urbana—Champaign

Genome sequence analysis has enabled significant advance- ~ amounts of genomics data at low cost [8, 118, 153], but are
ments in medical and scientific areas suc i as personalized unable to extract an organism’s complete DNA in one piece.
medicine, outbreak tracing, and the understanding of evolution. ~ Instead, these machines extract smaller random fragments
To perform genome sequencing, devices extract small random of the original DNA sequence, known as reads. These reads
Jfragments of an organism’s DNA sequence (known asreads). then pass through a computational process known as read

The first step of genome sequence analysis is a computational mapping, which takes each read, aligns it to one or more
process known as read mappi F In read mapping, each frag- possible locations within the reference %enome and finds the
ment is matched to its potential location in the reference genome matches and differences (i.e., distance) between the read and

with the goal of identifying the original location of each read the reference genome segment at that location [6,177]. Read
in the genome. Unfortunately, rapid genome sequencing is cur- ~ mapping is the first key step in genome sequence analysis.
rentlv bottlenecked bv the computational bower and memorv State-of-the-art seauencing machines nroduce broadlv one

We compare GenASM with the state-of-the-art FPGA-
based pre-alignment filter for short reads, Shouji [9], us-
ing two datasets provided in [9]. When we compare Shouji
(with maximum f{)ltermg units) and GenASM for the dataset
with 100bp sequences, we ﬁnd that GenASM provides 3.7 x
speedup over Shouji, while reducing power consumption by
1.7X. When we perform the same analysis with 250bp se-
quences, we ﬁndp hat GenASM does not provide speedup
over Shouji, but reduces power consumption by 1.6 X.

Different versions of SneakySnake

Comparison

Snake-on-Chip Snake-on-GPU
+Scalable and parallizable +Easier to contigure

+More energy efficient than Snake-on-GPU | +Less expensive and time consuming

+Scalable and parallizable
-More expensive and time consuming

-You can’t configure the parameters after -Not as energy efficient as Snake-on-Chip
design time!!!

94

Discussion

As a lab offering genome sequencing, would you rather buy a sequencer
based on Snake-on-Chip or Snake-on-GPU?

95

Discussion

As a lab offering genome sequencing, would you rather buy a sequencer
based on Snake-on-Chip or Snake-on-GPU?

= Depends on how many customers we expect. Snake-on-GPU worth it if we can
exploit the thousands of threads a GPU offers

96

Thank you for your attention!

