SquiggleFilter
An Accelerator for Portable Virus Detection

Tim Dunn, Harisankar Sadasivan, Jack Wadden, Kush Goliya, Kuan-Yu Chen, David Blaauw, Reetuparna Das, and Satish Narayanasamy

University of Michigan
MICRO '21

Presented by: Joël Lindegger
joel.lindegger@inf.ethz.ch
23/12/2021
Executive Summary

Motivation: Portable nanopore sequencers enable **virus detection early** in a pandemic, before PCR or antigen tests are available

- Sequencing output must be labeled as “viral” or “non-viral” in real-time
- Existing solutions are too slow by ≥2x and will not scale for future sequencers
- Most of the work done by existing solutions is unnecessary

Problem:
- Accelerate the labelling process to keep up even with future sequencers

Goal:
- Basecalling is a necessary step in the pipeline and the main bottleneck
- It is data-dependent, tools may become invalid every 6 months, thus people are discouraged to improve it

Challenge:
- Filter data before the basecalling step (in raw signal space)
- Accelerate the filter in hardware

Key Ideas:
- 274x more throughput
- 2x less power usage

(baseline: Guppy-lite on NVIDIA Jetson AGX Xavier)
Outline

1. Background and Motivation
 1. Virus detection
 2. Nanopore sequencing

2. SquiggleFilter
 1. Pipeline
 2. Accelerator

3. Results

4. Strengths/Weaknesses

5. Discussion
Outline

1. Background and Motivation
 1. Virus detection
 2. Nanopore sequencing

2. SquiggleFilter
 1. Pipeline
 2. Accelerator

3. Results

4. Strengths/Weaknesses

5. Discussion
Virus Detectors
Virus Detectors

Does he have COVID-19?
Virus Detectors

<table>
<thead>
<tr>
<th></th>
<th>Non-Programmable</th>
<th>Programmable</th>
</tr>
</thead>
</table>

Virus Detectors

Non-Programmable

Programmable
Virus Detectors

Non-Programmable

Antigen test

RT-PCR test

Programmable
Virus Detectors

Non-Programmable
- Antigen test
- RT-PCR test

Programmable
- ONT MinION Sequencer
- Illumina Sequencer
Motivation

Figure 2: Progression of US COVID-19 testing [15]
Motivation

Non-programmable virus detectors are slow to deploy.

Figure 2: Progression of US COVID-19 testing [15]
Motivation

Non-programmable virus detectors are slow to deploy.

Programmable virus detectors can help bridge the gap early in a pandemic.

Figure 2: Progression of US COVID-19 testing [15]
Outline

1. Background and Motivation
 1. Virus detection
 2. Nanopore sequencing

2. SquiggleFilter
 1. Pipeline
 2. Accelerator

3. Results

4. Strengths/Weaknesses

5. Discussion
Nanopore Sequencing Overview

Biological sample
DNA/RNA

MinION
Raw electrical signal
“squiggle”

Basecaller

...ACGT...
Read

Analysis

Virus Variant A
Virus Variant B
No Virus
Nanopore Sequencing Overview

Physical Process

Biological sample DNA/RNA
MinION
Raw electrical signal “squiggle”
Basecaller...ACGT...
Read

Software

Analysis

Virus Variant A
Virus Variant B
No Virus

ETH zürich

SAFARI
Nanopore Sequencing Overview

Physical Process

- Biological sample DNA/RNA
- MinION
- Raw electrical signal “squiggle”

Software

- Basecaller
- Read
- Analysis

- ...ACGT...
- Virus Variant A
- Virus Variant B
- No Virus
MinION
MinION is
- cheap ($1000 + $hundreds for consumables)
- portable
- and supports ReadUntil
MinION

- Flowcell consumable
- Grid of connectors one for each nanopore
How Do Nanopores Work?

- **Nanopore** is a nano-scale hole (<20nm).
- In nanopore sequencers, an ionic current passes through the nanopores.
- When the DNA strand passes through the nanopore, the sequencer measures the change in current.
- This change is used to identify the bases in the strand with the help of different electrochemical structures of the different bases.

Figure is adapted from: https://phys.org/news/2013-12-gene-sequencing-future.html
Nanopore Sequencing Overview

Biological sample DNA/RNA → MinION → Raw electrical signal “squiggle” → Basecaller → ...ACGT... Read → Analysis

Virus Variant A
Virus Variant B
No Virus
Nanopore Sequencing Overview

Biological sample DNA/RNA → MinION

Raw electrical signal “squiggle” → Basecaller

...ACGT...

Read → Analysis

Virus Variant A, Virus Variant B, No Virus

ETH Zürich
Basecalling

Raw electrical signal "squiggle"

Basecaller

...A C G T ...

Read
Basecalling

State-of-the-art basecallers use computationally expensive **deep neural networks** to convert the electrical signal to nucleotide bases.

Raw electrical signal “squiggle”

...A C G T ...

Read
Basecalling Cost

Figure 5: Basecalling is the bottleneck in a Read Until assembly of a SARS-CoV2 genome from specimens with a) 1%, and b) 0.1% viral reads.
Basecalling Cost

Basecalling is the **sole bottleneck** of the computational steps.

Figure 5: Basecalling is the bottleneck in a Read Until assembly of a SARS-CoV2 genome from specimens with a) 1%, and b) 0.1% viral reads.
Required Squiggles

Biological sample
DNA/RNA

MinION

Basecaller

Analysis

Virus Variant A
Virus Variant B
No Virus

... T G C A ...
... T G C A A C G T ...
... T G C A T G C A ...
... T G C A ...
... A C G T T G C A ...
... T G C A ...
... T G C A ...
... T G C A ...
... T G C A ...
Required Squiggles

Biological sample DNA/RNA → MinION → Basecaller → Analysis

Virus Variant A
Virus Variant B
No Virus
Most (>99%) of squiggles are from human DNA. However, only in viral squiggles are of interest for virus detection.

Thus, most of the basecaller’s work is unnecessary.
Without ReadUntil

Bases
From Basecaller

Squiggle
From Sequencer

... A C G T ...

From Sequencer
Without ReadUntil

Without ReadUntil, the **entire squiggle** is processed by the machine.
Without ReadUntil

Bases From Basecaller

Squiggle From Sequencer

Analyze short prefix

... A C G

T ...

ETH zürich

SAFARI
With ReadUntil

- Bases From Basecaller: ... A C G
- Squiggle From Sequencer

Squiggle From Sequencer

Analyze **short prefix**

Remaining bases are not read if the **prefix** looks unpromising.
With ReadUntil

Viral Genome

... G G A A ...

Bases
From Basecaller

... A C G ...

Squiggle
From Sequencer

For example, compare the prefix to the virus genome we are looking for
Required Squiggles

Biological sample
DNA/RNA

MinION

Basecaller

Analysis

Virus Variant A
Virus Variant B
No Virus
Outline

1. Background and Motivation
 1. Virus detection
 2. Nanopore sequencing

2. SquiggleFilter
 1. Pipeline
 2. Accelerator

3. Results

4. Strengths/Weaknesses

5. Discussion
Before SquiggleFilter
With SquiggleFilter
With SquiggleFilter

By filtering most of the unneeded squiggles, the basecaller’s workload is reduced significantly.
SquiggleFilter

1. Translate reference genome to expected squiggle
2. Normalize query squiggle
3. Compare input and reference signal using dynamic time warping
4. If they match: keep analyzing
 If not: reject immediately
SquiggleFilter

1. Translate reference genome to expected squiggle
2. Normalize query squiggle
3. Compare input and reference signal using dynamic time warping
4. If they match: keep analyzing
 If not: reject immediately
Expected Squiggle

<table>
<thead>
<tr>
<th>6-mer</th>
<th>current</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAAAAA</td>
<td>86.486</td>
</tr>
<tr>
<td>AAAAAAC</td>
<td>83.949</td>
</tr>
<tr>
<td>AAAAAAG</td>
<td>85.475</td>
</tr>
<tr>
<td>AAAAAAT</td>
<td>84.424</td>
</tr>
<tr>
<td>AAAACA</td>
<td>77.097</td>
</tr>
</tbody>
</table>

reference

CT

AAAAC A A A C A

expected signal

Figure 7: Aligning reference bases to expected currents.
Expected Squiggle

<table>
<thead>
<tr>
<th>6-mer</th>
<th>current</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAAAAAA</td>
<td>86.486</td>
</tr>
<tr>
<td>AAAAAC</td>
<td>83.949</td>
</tr>
<tr>
<td>AAAAAAG</td>
<td>85.475</td>
</tr>
<tr>
<td>AAAAAAT</td>
<td>84.424</td>
</tr>
<tr>
<td>AAAACA</td>
<td>77.097</td>
</tr>
</tbody>
</table>

Figure 7: Aligning reference bases to expected currents.

Each reference 6-mer corresponds to a current level, the mapping is provided by the manufacturer. The expected signal can be obtained through lookups from the table.
SquiggleFilter

1. Translate **reference** genome to **expected squiggle**
2. Normalize **query squiggle**
3. **Compare** input and reference signal using **dynamic time warping**
4. If they match: keep analyzing
 If not: reject immediately
SquiggleFilter

1. Translate reference genome to expected squiggle
2. Normalize query squiggle
3. Compare input and reference signal using dynamic time warping
4. If they match: keep analyzing
 If not: reject immediately
Normalizing Query Squiggles
Normalizing Query Squiggles

Measured currents in query squiggles can vary due to process variation, among other things.
Normalizing Query Squiggles

Measured currents in query squiggles can vary due to process variation, among other things.
Normalizing Query Squiggles

Normalizing removes these differences.

Measured currents in query squiggles can vary due to process variation, among other things.
SquiggleFilter

1. Translate reference genome to expected squiggle
2. Normalize query squiggle
3. Compare input and reference signal using dynamic time warping
4. If they match: keep analyzing
 If not: reject immediately
SquiggleFilter

1. Translate reference genome to expected squiggle
2. Normalize query squiggle

3. **Compare** input and reference signal using **dynamic time warping**

4. If they match: keep analyzing
 If not: reject immediately
Dynamic Time Warping (prior work)

Reference Squiggle

Query Squiggle

Dynamic Time Warping (prior work)

Query squiggles are stretched on the x-axis, relative to the reference squiggle.

Dynamic Time Warping (prior work)

Query squiggles are stretched on the x-axis, relative to the reference squiggle. Dynamic time warping finds the stretch that matches the squiggles best.

DTW Dynamic Programming (prior work)
DTW Dynamic Programming (prior work)

Update rule:
\[dp[i,j] = \min(\text{neighbors}) + \abs(a[i] - b[j]) \]
DTW Dynamic Programming (prior work)
The reference squiggle is lower resolution than the query squiggle. A common technique for such cases is to only consider insertions and matches.
With ReadUntil

Analyze short prefix

Remaining bases are not read if the prefix looks unpromising

Bases From Basecaller

Squiggle From Sequencer
With ReadUntil

Analyze **short prefix**. But **how short?**

Remaining bases are not read if the **prefix looks unpromising**
Query Prefix Size

Figure 11: sDTW cost distributions for reads of 3 prefix lengths, aligned to the lambda phage genome.
Query Prefix Size

The authors determine **2000 samples** to be a good middle ground between accuracy and performance.
DTW Dynamic Programming (prior work)

The table is large, should be computed in real-time, and computation should be energy efficient. This motivates designing a hardware accelerator.
Outline

1. Background and Motivation
 1. Virus detection
 2. Nanopore sequencing

2. SquiggleFilter
 1. Pipeline
 2. Accelerator

3. Results

4. Strengths/Weaknesses

5. Discussion
Accelerator Overview

Figure 12: System-on-Chip design with the accelerated hardware filter on ASIC integrated with NVIDIA GPU and 8-core ARM v8.2 64-bit CPU
Accelerator Systolic Array

Figure 13: SquiggleFilter Tile. N=2000 PEs are connected with streaming inputs and outputs. The last PE determines the classification by comparing its cost to a threshold every cycle. c is the cycle and i is the PE index.
The DTW accelerator is implemented as a systolic array of 2000 PEs.
Outline

1. Background and Motivation
 1. Virus detection
 2. Nanopore sequencing
2. SquiggleFilter
 1. Pipeline
 2. Accelerator
3. Results
4. Strengths/Weaknesses
5. Discussion
Results – Computational Speedup

Figure 16: a) Latency, and b) throughput of Guppy, Guppy-lite and SquiggleFilter during Read Until.
Results - Computational Speedup

Figure 16: a) Latency, and b) throughput of Guppy, Guppy-lite and SquiggleFilter during Read Until.

Only the most inaccurate model on a server-class GPU or SquiggleFilter can keep up with even the slowest sequencer.
Results - Computational Speedup

Only SquiggleFilter can keep up with a projected future version of the slowest sequencer.
Results - Accuracy
Results - Accuracy

![Graph showing accuracy and data through rates](image)
Results - Accuracy

More precise
Fewer useless data slip through

More sensitive
Fewer useful data is lost
Results - Accuracy

More precise

Fewer useless data slip through

More sensitive

Fewer useful data is lost

Ideal

Accuracy

SquiggleFilter 1000 samples
SquiggleFilter 2000 samples
SquiggleFilter 3000 samples
SquiggleFilter 5000 samples
SquiggleFilter 8000 samples
Guppy-lite 1000 samples

ETH Zürich

SAFARI
Results - Accuracy

More sensitive

Fewer useless data is lost

Fewer useless data slip through

More precise

Ideal

Accuracy

SquiggleFilter 1000 samples
SquiggleFilter 2000 samples
SquiggleFilter 3000 samples
SquiggleFilter 5000 samples
SquiggleFilter 8000 samples
Guppy-lite 1000 samples
Results - Accuracy

Analyzing longer prefixes yield better tradeoffs between precision and sensitivity.
For a given prefix length, we can **trade off** precision and sensitivity by setting the DTW threshold.
In this context, better precision or sensitivity is **not an end-to-end metric**. The **best** filter configuration is the one with the best end-to-end **runtime**.
Results - Accuracy

Lambda Phage

Read Until runtime (s)

0 20000 40000 60000 80000
sDTW Alignment Score Threshold

10^4 10^5

SquiggleFilter 1000 samples
SquiggleFilter 2000 samples
SquiggleFilter 3000 samples
SquiggleFilter 5000 samples
SquiggleFilter 8000 samples

ETH Zürich

SAFARI
Results - Accuracy

The authors decide **2000 samples** to be the sweet-spot.
The authors decide 2000 samples to be the sweet-spot.

SquiggleFilter achieves an end-to-end speedup over Guppy-lite of 12.9%. (Not drawn here)
Results - Accuracy

\[F_1 = \frac{2}{\text{recall}^{-1} + \text{precision}^{-1}} \]

Figure 18: Accuracy results for modifications to the standard sDTW algorithm.
Results - Power

<table>
<thead>
<tr>
<th>ASIC Element</th>
<th>Area (mm²)</th>
<th>Power (W)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normalizer</td>
<td>0.014</td>
<td>0.045</td>
</tr>
<tr>
<td>Processing Element</td>
<td>0.001</td>
<td>0.002</td>
</tr>
<tr>
<td>Tile (1x2000 PEs)</td>
<td>2.423</td>
<td>2.780</td>
</tr>
<tr>
<td>Query buffer</td>
<td>0.023</td>
<td>0.009</td>
</tr>
<tr>
<td>Reference buffer</td>
<td>0.185</td>
<td>0.028</td>
</tr>
<tr>
<td>Complete 1-Tile ASIC</td>
<td>2.65</td>
<td>2.86</td>
</tr>
<tr>
<td>Complete 5-Tile ASIC</td>
<td>13.25</td>
<td>14.31</td>
</tr>
</tbody>
</table>

Table 4: SquiggleFilter ASIC synthesis results.

Synthesized for **28nm TSMC HPC @2.5GHz**
Results - Power

SquiggleFilter’s ASIC is significantly more power efficient than a server-class GPU, sufficiently so it could be battery powered.

<table>
<thead>
<tr>
<th>ASIC Element</th>
<th>Area (mm²)</th>
<th>Power (W)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normalizer</td>
<td>0.014</td>
<td>0.045</td>
</tr>
<tr>
<td>Processing Element</td>
<td>0.001</td>
<td>0.002</td>
</tr>
<tr>
<td>Tile (1×2000 PEs)</td>
<td>2.423</td>
<td>2.780</td>
</tr>
<tr>
<td>Query buffer</td>
<td>0.023</td>
<td>0.009</td>
</tr>
<tr>
<td>Reference buffer</td>
<td>0.185</td>
<td>0.028</td>
</tr>
<tr>
<td>Complete 1-Tile ASIC</td>
<td>2.65</td>
<td>2.86</td>
</tr>
<tr>
<td>Complete 5-Tile ASIC</td>
<td>13.25</td>
<td>14.31</td>
</tr>
</tbody>
</table>

Table 4: SquiggleFilter ASIC synthesis results.

Synthesized for **28nm** TSMC HPC @2.5GHz
Outline

1. Background and Motivation
 1. Virus detection
 2. Nanopore sequencing
2. SquiggleFilter
 1. Pipeline
 2. Accelerator
3. Results
4. Strengths/Weaknesses
5. Discussion
Strengths

• Extremely important problem
Strengths

• Extremely important problem
• The solution works well and is reasonable to implement
Strengths

• Extremely important problem
• The solution works well and is reasonable to implement
• Future proof (can tolerate much faster sequencers)
Strengths

• Extremely **important** problem
• The solution **works** well and is **reasonable** to implement
• **Future proof** (can tolerate much faster sequencers)
• They claim to be the **first** proposal of using **squiggle alignment for enriching** low-concentration viral specimen with ReadUntil
Weaknesses

• No comparison to a CPU/GPU implementation of their algorithm. It’s unclear how much of the speedup comes from the algorithm, and how much from HW acceleration
Weaknesses

• **No comparison to a CPU/GPU** implementation of their algorithm. It’s unclear how much of the speedup comes from the algorithm, and how much from HW acceleration

• **No comparison** to other DTW accelerators
Weaknesses

• **No comparison to a CPU/GPU** implementation of their algorithm. It’s unclear how much of the speedup comes from the algorithm, and how much from HW acceleration

• **No comparison** to other DTW accelerators

• **No coverage** accuracy measurements
Weaknesses

• **No comparison to a CPU/GPU** implementation of their algorithm. It’s unclear how much of the speedup comes from the algorithm, and how much from HW acceleration

• **No comparison** to other DTW accelerators

• **No coverage** accuracy measurements

• The work is **limited** to relatively **small viral genomes**. Their proposal would not work for viruses with a larger genome, such as Smallpox and Herpes Simplex
Weakness – Limited to Small Genomes

Figure 10: Epidemic virus genome lengths.
Outline

1. Background and Motivation
 1. Virus detection
 2. Nanopore sequencing
2. SquiggleFilter
 1. Pipeline
 2. Accelerator
3. Results
4. Strengths/Weaknesses
5. Discussion
What are challenges of genome analysis in space?

https://www.universetoday.com/135327/whats-strange-glowing-mold-astronauts-will-soon-able-sequence-unknown-space-organisms/
What are challenges of genome analysis in space?

Wallace offered support to Whitson, a biochemist, as she used the MinION device (developed by Oxford Nanopore Technologies) to sequence the amplified DNA.

The data were downlinked to the team in Houston for analysis and identification.

“Once we actually got the data on the ground we were able to turn it around and start analyzing it,” said Aaron Burton, NASA biochemist and the project’s co-investigator. “You get all these squiggle plots and you have to turn that into As, Gs, Cs and Ts.”

What are challenges of genome analysis in space?

• Low communication bandwidth with base station
• Devices must be low energy, lightweight, portable
• Devices should be reconfigurable
Signal comparison without DTW?
Signal comparison without DTW?

• Fourier Transform, then compare in frequency space?
Signal comparison without DTW?

• Fourier Transform, then compare in frequency space?
• Compare based on handcrafted metrics?
 • Number of peaks and valleys
 • Bin oscillations and compare distributions
 • ...

105
Signal comparison without DTW?

• Fourier Transform, then compare in frequency space?

• Compare based on handcrafted metrics?
 • Number of peaks and valleys
 • Bin oscillations and compare distributions
 • ...

• Fortunately, being inaccurate only costs time, so we are free to experiment wildly in this application!
Can we apply heuristics to DTW?
Can we apply heuristics to DTW?

• Search less entries of the $O(n*m)$ matrix

• Several techniques exist for the (related) approximate string matching problem
 • Banded diagonals, such as when calculating edit distance
 Algorithms for approximate string matching, E. Ukkonen, 1985
 • Greedy
 GenASM: A High-Performance, Low-Power Approximate String Matching Acceleration Framework for Genome Sequence Analysis, Senol Cali et al., 2020
 • Seeding
 Targeted nanopore sequencing by real-time mapping of raw electrical signal with UNCALLED, Kovaka et al., 2021
SquiggleFilter
An Accelerator for Portable Virus Detection

Tim Dunn, Harisankar Sadasivan, Jack Wadden, Kush Goliya, Kuan-Yu Chen, David Blaauw, Reetuparna Das, and Satish Narayanasamy
University of Michigan
MICRO '21

Presented by: Joël Lindegger
joel.lindegger@inf.ethz.ch
23/12/2021
Backup Slides
Virus Detectors

Non-Programmable

Programmable
Virus Detectors

Non-Programmable

• Tailor chemistry to the given virus
• Cheaply mass-manufacture chemistry
• Kits must be physically distributed

Programmable
Virus Detectors

Non-Programmable
- Tailor chemistry to the given virus
- Cheaply mass-manufacture chemistry
- Kits must be physically distributed

Programmable
- Distribute viral genome (Software)
- Sequence DNA/RNA reads
- Compare to viral genome (Software)
Virus Detectors

Non-Programmable

• Tailor chemistry to the given virus
• Cheaply mass-manufacture chemistry
• Kits must be physically distributed

Programmable

“Programmable”

• Distribute viral genome (Software)
• Sequence DNA/RNA reads
• Compare to viral genome (Software)
Virus Detectors

Non-Programmable
- Tailor chemistry to the given virus
- Cheaply mass-manufacture chemistry
- Kits must be physically distributed

Programmable
- Distribute viral genome (Software)
- Sequence DNA/RNA reads
- Compare to viral genome (Software)

- Flexible
Virus Detectors

Non-Programmable

- Tailor chemistry to the given virus
- Cheaply mass-manufacture chemistry
- Kits must be physically distributed

- Inflexible
- Unavailable at beginning of pandemic

Programmable

- Distribute viral genome (Software)
- Sequence DNA/RNA reads
- Compare to viral genome (Software)

- Flexible
- Available immediately
Virus Detectors

Non-Programmable

- Tailor chemistry to the given virus
- Cheaply mass-manufacture chemistry
- Kits must be physically distributed
- Inflexible
- Unavailable at beginning of pandemic
- Low diagnostic power (virus/no virus)

Programmable

- Distribute viral genome (Software)
- Sequence DNA/RNA reads
- Compare to viral genome (Software)
- Flexible
- Available immediately
- High diagnostic power (e.g. virus strain)
Virus Detectors

Non-Programmable

- Tailor chemistry to the given virus
- Cheaply mass-manufacture chemistry
- Kits must be physically distributed
- Inflexible
- Unavailable at beginning of pandemic
- Low diagnostic power (virus/no virus)
- Cheap

Programmable

- Distribute viral genome (Software)
- Sequence DNA/RNA reads
- Compare to viral genome (Software)
- Flexible
- Available immediately
- High diagnostic power (e.g. virus strain)
- Expensive
Virus Detectors

Non-Programmable

- Tailor chemistry to the given virus
- Cheaply mass-manufacture chemistry
- Kits must be physically distributed
- Inflexible
- Unavailable at beginning of pandemic
- Low diagnostic power (virus/no virus)
- Cheap
- Fast

Programmable

- Distribute viral genome (Software)
- Sequence DNA/RNA reads
- Compare to viral genome (Software)
- Flexible
- Available immediately
- High diagnostic power (e.g. virus strain)
- Expensive
- Slow
Related work
Do signal comparison algorithms/accelerators from other domains already exist?

NATSA: A Near-Data Processing Accelerator for Time Series Analysis

Ivan Fernandez§ Ricardo Quislan§ Christina Giannoula† Mohammed Alser†
Juan Gómez-Luna§ Eladio Gutiérrez§ Oscar Plata§ Onur Mutlu†
§University of Malaga †National Technical University of Athens †ETH Zürich

Time series analysis is a key technique for extracting and predicting events in domains as diverse as epidemiology, genomics, neuroscience, environmental sciences, economics, and more. Matrix profile, the state-of-the-art algorithm to perform time series analysis, computes the most similar subsequence for a given query subsequence within a sliced time series. Matrix profile has low arithmetic intensity, but it typically operates on large amounts of time series data. In current computing systems, this data needs to be moved between the off-chip memory units and the on-chip computation units for protection, which cannot be tolerated by many applications (e.g., vehicle safety systems [85]). Unlike approximate algorithms, exact algorithms [67] do not yield false positives or discordant dismissals, but can be very time-consuming on large time series data. Thus, anytime versions (aka interruptible algorithms) of exact algorithms are proposed to provide approximate solutions quickly [108, 112] and can return a valid result even if the user stops their execution early.

The state-of-the-art exact anytime method for motif and discord discovery is matrix profile [108], which is based on Eu-

ICCD 2020, pp. 120-129
Do raw signals contain extra information?

https://www.cell.com/trends/genetics/fulltext/S0168-9525(21)00257-2
Which sequencing technology is best for virus detection?

Massively scaled-up testing for SARS-CoV-2 RNA via next-generation sequencing of pooled and barcoded nasal and saliva samples

Is early “viral”/”non-viral” labelling possible with Illumina as well?