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Executive Summary

Motivation: Portable nanopore sequencers enable virus detection early in a pandemic,
before PCR or antigen tests are available
Problem: -Sequencing output must be labeled as “viral” or “non-viral” in real-time
- Existing solutions are too slow by 22x and will not scale for future sequencers
- Most of the work done by existing solutions is unnecessary
Goal: - Accelerate the labelling process to keep up even with future sequencers
Challenge: - Basecalling is a necessary step in the pipeline and the main bottleneck
- It is data-dependent, tools may become invalid every 6 months, thus people are
discouraged to improve it

Key Ideas: - Filter data before the basecalling step (in raw signal space)
- accelerate the filter in hardware

Results: - 274x more throughput
- 2x less power usage
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(baseline: Guppy-lite on NVIDIA Jetson AGX Xavier)
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1. Virus detection

ETHzurich 4 SAFARI



Virus Detectors

c"Q
N\—"

~J1

A

ETHzurich 5 SAFARI




Virus Detectors

c"%
N\—"

\~
( Does he have COVID-19?

/S

ETHzurich 6 SAFARI




Virus Detectors

Non-Programmable Programmable

ETHzurich 7 SAFARI



Virus Detectors

Non-Programmable

il

%RS-COV-Z Rapid Antigen Test Nasal
% 9901-NCOV-03G 23

S i 2
C

ETHzurich

Programmable

SAFARI



Virus Detectors

Non-Programmable

S CoV-2 Rapid Antigen Test Nasal

RT-PCR test

990NCO 03G
i
H——“
C 6w [ miEE e '

ETH:zurich

Programmable

SAFARI



Virus Detectors

Non-Programmable Programmable

ONT MinION Sequencer

lllumina Sequencer

N S-CoV-2 Rapid Antigen Test Nasal
9901-NCOV-03G g2

RT-PCR test

%——w

"‘“44‘@‘

€ W [T mfEs @

ETHzurich 10 SAFARI



Motivation
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Figure 2: Progression of US COVID-19 testing [15]
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Motivation

virus detectors are slow to deploy.
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Figure 2: Progression of US COVID-19 testing [15]

virus detectors can help
bridge the gap early in a pandemic.
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Outline

2. Nanopore sequencing
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Nanopore Sequencing Overview
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Nanopore Sequencing Overview
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MinION

Micro USB

MinlON is
* cheap (51000 + Shundreds for consumables)

e portable
e and supports ReadUntil
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MinlION
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MinlION

Flowcell
consumable
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How Do Nanopores Work?
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Nanopore is a nano-scale hole (<20nm).
In nanopore sequencers, an ionic current passes through the nanopores
When the DNA strand passes through the nanopore, the sequencer measures the change in

current
This change is used to identify the bases in the strand with the help of different electrochemical

structures of the different bases

Figure is adapted from: https://phys.org/news/2013-12-gene-sequencing-future.html
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Nanopore Sequencing Overview
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Nanopore Sequencing Overview
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Basecalling
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Basecalling
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State-of-the-art basecallers use computationally
expensive deep neural networks to convert the
electrical signal to nucleotide bases.
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Basecalling Cost
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a)

B Basecalling (87.72%) Il Basecalling (95.95%)
Alignment (2.75%) Alignment (3.01%)
Variant Calling (9.53%) Variant Calling (1.04%)

Figure 5: Basecalling is the bottleneck in a Read Until assem-
bly of a SARS-CoV2 genome from specimens with a) 1%, and
b) 0.1% viral reads.
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Ba SeCqa | | | N g Cost Basecalling is the sole bottleneck of the
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computational steps.

a) b)

B Basecalling (87.72%) Il Basecalling (95.95%)
Alignment (2.75%) Alignment (3.01%)
Variant Calling (9.53%) Variant Calling (1.04%)

Figure 5: Basecalling is the bottleneck in a Read Until assem-
bly of a SARS-CoV2 genome from specimens with a) 1%, and
b) 0.1% viral reads.
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Required Squiggles
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Required Squiggles

Virus Variant A

Virus Variant B

=

MinION

Analysis

Biological sample No Virus

DNA/RNA

]

Most (>99%) of squiggles are from :
However, only in viral squiggles are of interest for
virus detection.

Thus, most of the basecaller’s work is unnecessary.
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Without ReadUntil

Bases ~IAlCIGI|T
From Basecaller

Squiggle
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Without ReadUntil

Without ReadUntil, the entire squiggle is
processed by the machine.

Bases ~IAlCIGI|T
From Basecaller

Squiggle

From Sequencer w
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Without ReadUntil

Analyze short prefix
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From Basecaller
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With ReadUntil

Analyze short prefix

From Basecaller \

Remaining bases are not read if
the prefix looks unpromising

Squiggle
From Sequencer
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With ReadUntil

N For example, compare the prefix to
Viral Genome G| G N Al .. the virus genome we are looking for
Bases 1Aalc 9/
From Basecaller

Squiggle
From Sequencer
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Required Squiggles
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Outline

2. SquiggleFilter
1. Pipeline
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Before SquiggleFilter
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With SquiggleFilter

ReadUntil

SquiggleFilter
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With SquiggleFilter

ReadUntil

ETH:zurich

SquiggleFilter
By filtering most of the unneeded
squiggles, the basecaller’s workload is
reduced significantly.
22 SAFARI



SquiggleFilter

Ww|AIC|IG|TY|..

Translate reference genome to expected squiggle m

Normalize query squiggle M»
Compare input and reference signal using dynamic time warping -, J

i A\

If they match: keep analyzing
If not: reject immediately
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SquiggleFilter

1. Translate reference genome to expected squiggle
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Expected Squiggle

reference
6-mer current

AMAAAA 86486 C T|A A A A C A

AAAAAC 83.949

AAAAAG 85.475

AAAAAT  84.424 — 1
AAAACA  77.097 expected signal

Figure 7: Aligning reference bases to expected currents.
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Expected Squiggle

6-mer
AAAAAA
AAAAAC
AAAAAG
AAAAAT
AAAACA

Figure 7: Aligning reference bases to expected currents.

current

86.486
83.949
85.475
84.424
77.097

I

reference

C T|A A A ACA

I

expected signal

Each reference 6-mer corresponds to a current level,
the mapping is provided by the manufacturer.
The expected signal can be obtained through lookups

ETHzlrich from the table.
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SquiggleFilter

Ww|AIC|IG|TY|..

Translate reference genome to expected squiggle m

Normalize query squiggle M»
Compare input and reference signal using dynamic time warping -, J

i A\

If they match: keep analyzing
If not: reject immediately
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SquiggleFilter

2. Normalize query squiggle M»
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Normalizing Query Squiggles
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Normalizing Query Squiggles

%%\W

Measured currents in query squiggles
can vary due to process variation,
among other things.
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Normalizing Query Squiggles

i signal —mean
\}/\/W mean absolute deviation

Measured currents in query squiggles
can vary due to process variation,
among other things.
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Normalizing Query Squiggles

removes these differences.

\ signal —mean
mean absolute deviation

Measured currents in query squiggles
can vary due to process variation,
among other things.
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SquiggleFilter

Ww|AIC|IG|TY|..

Translate reference genome to expected squiggle m

Normalize query squiggle M»
Compare input and reference signal using dynamic time warping -, J

i A\

If they match: keep analyzing
If not: reject immediately
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SquiggleFilter

3. Compare input and reference signal using dynamic time warping -~
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Dynamic Time Warping (prior work)

Reference Squiggle mm

Query Squiggle

Vintsyuk, T.K. Speech discrimination by dynamic programming.
Cybernetics and System Analysis 4, 52-57 (1968).
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https://doi.org/10.1007/BF01074755

Dynamic Time Warping (prior work)

Query squiggles are stretched on the x-
axis, relative to the reference squiggle.

Reference Squiggle W(\A\WM\'\M

Query Squiggle

Vintsyuk, T.K. Speech discrimination by dynamic programming.
Cybernetics and System Analysis 4, 52-57 (1968).
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https://doi.org/10.1007/BF01074755

Dynamic Time Warping (prior work)

Query squiggles are stretched on the x-
axis, relative to the reference squiggle.
Dynamic time warping finds the stretch
Reference Squiggle " that matches the squiggles best.

Query Squiggle /

Vintsyuk, T.K. Speech discrimination by dynamic programming.
Cybernetics and System Analysis 4, 52-57 (1968).
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DTW Dynamic Programming (prior work)
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DTW Dynamic Programming (prior work)
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DTW Dynamic Programming (prior work)
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DTW Dynamic Programming (prior work)

16 ({20122(23|26(30|33(34|39(44|47|49|50(51|54 |57

‘$1

The reference squiggle is lower resolution than the
. A common technique for such cases

is to only consider insertions and matches.
N N A N N N N N N A N A N M
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With ReadUntil

Analyze short prefix

From Basecaller \

Remaining bases are not read if
the prefix looks unpromising

Squiggle
From Sequencer
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With ReadUntil

Analyze short prefix. But how short?

From Basecaller \

Remaining bases are not read if
the prefix looks unpromising

Squiggle
From Sequencer
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Query Prefix Size
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Figure 11: sDTW cost distributions for reads of 3 prefix
lengths, aligned to the lambda phage genome.
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Query Prefix Size
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Figure 11: s”
lengths, alig The aquthors determine 2000 samples to be a good
middle ground between accuracy and performance.
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DTW Dynamic Programming (prior work)
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The table is large, should be computed in real-time,
and computation should be energy efficient. This
motivates designing a hardware accelerator.
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Outline

2. Accelerator
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Accelerator Overview

Assembled genome &

Read Until: eject non-target reads

|
‘ Read Until ARM .
Sqmggles core \ 9 :

MinlON MinKNOW DRAM SquiggleFilter

ARM
— Edge GPU H
core

Target reads L

Reference-guided assembly

raw sequenced data

eMMC
Flash

Figure 12: System-on-Chip design with the accelerated hard-
ware filter on ASIC integrated with NVIDIA GPU and 8-core

ARM v8.2 64-bit CPU
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Accelerator Systolic Array

Query 1
Query 2

—

100 KB

Reference
buffer

—+> Normalizer —

————

|
iate scores

query_init
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refc-i+1]

(score+bonus)[i-1].(c-2)

PE[i]

score[i-1].(c-1)

query init

ref]c-i]

(score+bonus][i].(c-2)

score[i].(c-1)

score[i-1].(c-2)

score[i].(c-2)

Is not virus?

(Eject if read is not virus)

Figure 13: SquiggleFilter Tile. N=2000 PEs are connected with streaming inputs and outputs. The last PE determines the clas-
sification by comparing its cost to a threshold every cycle. c is the cycle and i is the PE index.
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Accelerator Systolic Array
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Is not virus?

(Eject if read is not virus)

Figure 13: SquiggleFilter Tile. N=2000 PEs are connected with streaming inputs and outputs. The last PE determines the clas-
sification by comparing its cost to a threshold every cycle. c is the cycle and i is the PE index.
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The DTW accelerator is implemented as a

systolic array of 2000 PEs.
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Outline

3. Results
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Results — Computational Speedup

a) b)
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Figure 16: a) Latency, and b) throughput of Guppy, Guppy-lite and SquiggleFilter during Read Until.
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Results - Computational Speedup
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>
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=

F—

Guppy Squiggle Squiggle
Lite Filter Filter

Figure 16: a) Latency, and b) throughput of Guppy, Guppy-lite and SquiggleFilter during Read Until.

Only the most inaccurate model on a
server-class GPU or SquiggleFilter can keep
up with even the slowest sequencer.
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Results - Computational Speedup
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Lite Filter Filter

Figure 16: a) Latency, and b) throughput of Guppy, Guppy-lite and SquiggleFilter during Read Until.

Only SquiggleFilter can keep up with a projected
future version of the slowest sequencer.
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Results - Accuracy
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1.0
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+ SquiggleFilter 2000 samples
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+ SquiggleFilter 8000 samples

Guppy-lite 1000 samples
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Results - Accuracy

Accuracy
m— SquiggleFilter 1000 samples
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More precise
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Results - Accuracy

Accuracy
m— SquiggleFilter 1000 samples
1.0 - SquiggleFilter 2000 samples
=« ===« SquiggleFilter 3000 samples
0.8 - - = SquiggleFilter 5000 samples

= = =+ SquiggleFilter 8000 samples
------- Guppy-lite 1000 samples

T T T
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More sensitive
Fewer useful data is lost
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Results - Accuracy
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More precise
Fewer useless data slip through

|deal

Accuracy

©

0.0

02 04 06 08
More sensitive

Fewer useful data is lost
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SquiggleFilter 1000 samples
SquiggleFilter 2000 samples

« SquiggleFilter 3000 samples

SquiggleFilter 5000 samples

+ SquiggleFilter 8000 samples

Guppy-lite 1000 samples
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Results - Accuracy

|deal Accuracy

——— SquiggleFilter 1000 samples
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Fewer useless data slip through
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More sensitive
Fewer useful data is lost
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Results - Accuracy
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Results - Accuracy
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For a given prefix length, we can
trade off precision and sensitivity by
setting the DTW threshold.
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Results - Accuracy
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SquiggleFilter 1000 samples

+ SquiggleFilter 2000 samples
= SquiggleFilter 3000 samples

SquiggleFilter 5000 samples

+ SquiggleFilter 8000 samples

Guppy-lite 1000 samples

In this context, better precision or sensitivity
is not an end-to-end metric.
The best filter configuration is the one with
the best end-to-end runtime.
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Results - Accuracy
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Results - Accuracy
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The authors decide g
2000 samples to be
the sweet-spot.
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SquiggleFilter achieves an end-to-end

ReS U |t5 - ACCU ra Cy speedup over Guppy-lite of 12.9%.

(Not drawn here)

Lambda Phage
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Results - Accuracy
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Figure 18: Accuracy results for modifications to the standard
sDTW algorithm.
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Results - Power

ASIC Element Area (mm?) Power (W)

Normalizer 0.014 0.045
Processing Element 0.001 0.002
Tile (1x2000 PEs) 2.423 2.780
Query buffer 0.023 0.009
Reference buffer 0.185 0.028
Complete 1-Tile ASIC 2.65 2.86
Complete 5-Tile ASIC 13.25 14.31

Table 4: SquiggleFilter ASIC synthesis results.

Synthesized for 28nm TSMC HPC @2.5GHz
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SquiggleFilter’s ASIC is significantly more
power efficient than a server-class GPU,
sufficiently so it could be battery powered.

Results - Power

ASIC Element Area (mm?) Power (W)

Normalizer 0.014 0.045
Processing Element 0.001 0.002
Tile (1x2000 PEs) 2.423 2.780
Query buffer 0.023 0.009
Reference buffer 0.185 0.028
Complete 1-Tile ASIC 2.65 2.86
Complete 5-Tile ASIC 13.25 QL%D

Table 4: SquiggleFilter ASIC synthesis results.

Synthesized for 28nm TSMC HPC @2.5GHz
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Outline

4. Strengths/Weaknesses
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Strengths

* Extremely important problem
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Strengths

* Extremely important problem
* The solution works well and is reasonable to implement
* Future proof (can tolerate much faster sequencers)

* They claim to be the first proposal of using squiggle alignment for
enriching low-concentration viral specimen with ReadUntil
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Weaknesses

* No comparison to a CPU/GPU implementation of their algorithm. It‘s
unclear how much of the speedup comes from the algorithm, and
how much from HW acceleration
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Weaknesses

* No comparison to a CPU/GPU implementation of their algorithm. It‘s
unclear how much of the speedup comes from the algorithm, and
how much from HW acceleration

* No comparison to other DTW accelerators
* No coverage accuracy measurements

* The work is limited to relatively small viral genomes. Their proposal
would not work for viruses with a larger genome, such as Smallpox
and Herpes Simplex
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Weakness — Limited to Small Genomes
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Figure 10: Epidemic virus genome lengths.
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Outline

5. Discussion

ETHzurich 99 SAFARI



What are challenges of genome analysis in space?

https://www.universetoday.com/135327/whats-strange-glowing-mold-
astronauts-will-soon-able-sequence-unknown-space-organisms/
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What are challenges of genome analysis in space?

Wallace offered support to Whitson, a biochemist, as she used the MinlON device (developed by Oxford
Nanopore Technologies) to sequence the amplified DNA.

The data were downlinked to the team in Houston for analysis and identification.

“Once we actually got the data on the ground we were able to turn it around and start analyzing it,” said

Aaron Burton, NASA biochemist and the project’s co-investigator. “You get all these squiggle plots and you
have to turn that into As, Gs, Cs and Ts.”

https://www.nasa.qgov/mission pages/station/research/news/b4h-
3rd/qe-qis-3-identifies-unknown-microbes
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https://www.nasa.gov/mission_pages/station/research/news/b4h-3rd/ge-gis-3-identifies-unknown-microbes
https://nanoporetech.com/

What are challenges of genome analysis in space?

* Low communication bandwidth with base station
* Devices must be low energy, lightweight, portable
* Devices should be reconfigurable
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Signal comparison without DTW?
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Signal comparison without DTW?

* Fourier Transform, then compare in frequency space?
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* Fourier Transform, then compare in frequency space?

e Compare based on handcrafted metrics?

* Number of peaks and valleys
* Bin oscillations and compare distributions
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Signal comparison without DTW?

* Fourier Transform, then compare in frequency space?

e Compare based on handcrafted metrics?

* Number of peaks and valleys
* Bin oscillations and compare distributions

* Fortunately, being inaccurate only costs time, so we are free to
experiment wildly in this application!
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Can we apply heuristics to DTW?
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Can we apply heuristics to DTW?

 Search less entries of the O(n*m) matrix

 Several techniques exist for the (related) approximate string matching
problem

* Banded diagonals, such as when calculating edit distance
Algorithms for approximate string matching, E. Ukkonen, 1985

* Greedy

GenASM: A High-Performance, Low-Power Approximate String Matching Acceleration Framework for Genome
Sequence Analysis, Senol Cali et al., 2020

e Seeding

Targeted nanopore sequencing by real-time mapping of raw electrical signal with UNCALLED, Kovaka et al., 2021
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https://doi.org/10.1016/S0019-9958(85)80046-2
https://arxiv.org/abs/2009.07692
https://doi.org/10.1038/s41587-020-0731-9

SquiggleFilter
An Accelerator for Portable Virus Detection

Tim Dunn, Harisankar Sadasivan, Jack Wadden, Kush Goliya,
Kuan-Yu Chen, David Blaauw, Reetuparna Das, and Satish Narayanasamy
University of Michgan
MICRO ‘21

Presented by: Joél Lindegger
joel.lindegger@inf.ethz.ch
23/12/2021
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Virus Detectors

é

Non-Programmable

* Tailor chemistry to the given virus
* Cheaply mass-manufacture chemistry
e Kits must be physically distributed
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“Programmable”

< Distribute viral genome (Software) >
* Sequence DNA/RNAreads

 Compare to viral genome (Software)

 Flexible
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Virus Detectors

Non-Programmable Programmable
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* Tailor chemistry to the given virus '@trlbute viral genome (Software) >
* Cheaply mass-manufacture chemistry Sequence DNA/RNAreads
e Kits must be physically distributed  Compare to viral genome (Software)
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* Unavailable at beginning of pandemic e Available immediately
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Virus Detectors

Non-Programmable

* Tailor chemistry to the given virus
* Cheaply mass-manufacture chemistry
e Kits must be physically distributed

* Inflexible

* Unavailable at beginning of pandemic
* Low diagnostic power (virus/no virus)
 Cheap

* Fast
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Programmable

“Programmable”

< Distribute viral genome (Software) >
* Sequence DNA/RNAreads

 Compare to viral genome (Software)

* Flexible

* Available immediately

* High diagnostic power (e.g. virus strain)
* Expensive

* Slow
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NATSA: A Near-Data Processing Accelerator
for Time Series Analysis

Ivan Fernandez’ Ricardo Quislant®

Juan Gémez-Luna®

SUniversity of Malaga

Time series analysis is a key technique for extracting and
predicting events in domains as diverse as epidemiology, ge-
nomics, neuroscience, environmental sciences, economics,
and more. Matrix profile, the state-of-the-art algorithm to
perform time series analysis, computes the most similar sub-
sequence for a given query subsequence within a sliced time
series. Matrix profile has low arithmetic intensity, but it typi-
cally operates on large amounts of time series data. In current
computing systems, this data needs to be moved between the
off-chip memory units and the on-chip computation units for

Eladio Gutiérrez’

"National Technical University of Athens

Christina Giannoula' Mohammed Alser?
Oscar Plata$ Onur Mutlu?
YETH Ziirich

tection, which cannot be tolerated by many applications (e.g.,
vehicle safety systems [85]). Unlike approximate algorithms,
exact algorithms [67] do not yield false positives or discor-
dant dismissals, but can be very time-consuming on large
time series data. Thus, anytime versions (aka interruptible
algorithms) of exact algorithms are proposed to provide ap-
proximate solutions quickly [108,112] and can return a valid
result even if the user stops their execution early.

The state-of-the-art exact anytime method for motif and
discord discovery is matrix profile [108]. which is based on Eu-

ICCD 2020, pp. 120-129
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Do signal comparison algorithms/accelerators
‘rom other domains already exist?
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Do raw signhals contain extra information?

ETHzurich

Trends in
Genetics

¢? CellPress

Beyond sequencing: machine leaming
algorithms extract biology hidden in Nanopore

signal data

Yuk Kei Wan, '% Christopher Hendra,®' Ploy N. Pratanwanich, '** and Jonathan Goke @ '~

Nanopore sequencing provides signal data corresponding to the nucleotide
motifs sequenced. Through machine learning-based methods, these signals
are translated into long-read sequences that overcome the read size limit
of short-read sequencing. However, analyzing the raw nanopore signal data
provides many more opportunities beyond just sequencing genomes and
transcriptomes: algorithms that use machine learning approaches to extract
biological information from these signals allow the detection of DNA and RNA

https://www.cell.com/trends/qgenetics/fulltext/S0168-9525(21)00257-2

122

Highlights

Nanopore sequencing accuracy has
increased to 98.3% as new-generation
base calers replace early generation hid-
den Markov model basecaling algo-
rithms with neural network algorithms.

Machine leaming methods can classify

SAFARI



Which sequencing technology is best for virus
detection? [ ARTICLES

biomedical Cngiﬂeel‘ lﬂg https://doi.org/10.1038/541551-021-00754-5

") Check for updates

Massively scaled-up testing for SARS-CoV-2 RNA
via next-generation sequencing of pooled and
barcoded nasal and saliva samples

Joshua S. Bloom©'%38, Laila Sathe ®#, Chetan Munugala'? Eric M. Jones? Molly Gasperini®,

Nathan B. Lubock?, Fauna Yarza®?3, Erin M. Thompson?, Kyle M. Kovary?, Jimin Park?,

Dawn Marquette ©5, Stephania Kay®, Mark Lucas?, TreQuan Love®, A. Sina Booeshaghis,

Oliver F. Brandenberg"??, Longhua Guo'*’, James Boocock"?*’, Myles Hochman?, Scott W. Simpkins ©3,
Isabella Lin'#, Nathan LaPierre®, Duke Hong®, Yi Zhang', Gabriel Oland ©°, Bianca Judy Choe'™,
Sukantha Chandrasekaran?, Evann E. Hilt*, Manish J. Butte ®"'2, Robert Damoiseaux’'415,

Clifford Kravit™, Aaron R. Cooper?, Yi Yin', Lior Pachter”, Omai B. Garner?®, Jonathan Flint"'8,

Eleazar Eskin'*%, Chongyuan Luo’, Sriram Kosuri @3, Leonid Kruglyak ®'27% and

Valerie A. Arboleda® 4

Nature Biomedical Engineering 5, 657—665 (2021).
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s early “viral”/”non-viral” labelling possible
with lllumina as well?
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