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Executive Summary
Motivation:
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- Filter data before the basecalling step (in raw signal space)
- accelerate the filter in hardware

- Sequencing output must be labeled as “viral” or “non-viral” in real-time
- Existing solutions are too slow by ≥2x and will not scale for future sequencers
- Most of the work done by existing solutions is unnecessary

- 274x more throughput
- 2x less power usage

(baseline: Guppy-lite on NVIDIA Jetson AGX Xavier)

- Basecalling is a necessary step in the pipeline and the main bottleneck
- It is data-dependent, tools may become invalid every 6 months, thus people are 
discouraged to improve it

- Accelerate the labelling process to keep up even with future sequencers

Portable nanopore sequencers enable virus detection early in a pandemic, 
before PCR or antigen tests are available

Results:

Problem: 

Goal: 
Challenge: 

Key Ideas:
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Virus Detectors
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Virus Detectors

Does he have COVID-19?
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Non-Programmable Programmable

Antigen test

RT-PCR test

ONT MinION Sequencer

Illumina Sequencer 
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Motivation

Non-programmable virus detectors are slow to deploy.
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Motivation
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Programmable virus detectors can help 
bridge the gap early in a pandemic.

Non-programmable virus detectors are slow to deploy.
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MinION
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MinION

MinION is
• cheap ($1000 + $hundreds for consumables)
• portable 
• and supports ReadUntil

Micro USB
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MinION
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MinION
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Flowcell
consumable



MinION

22

Flowcell
consumable

Grid of connectors
one for each nanopore



How Do Nanopores Work?
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graphene 
nanopore

DNA strand

Figure is adapted from: https://phys.org/news/2013-12-gene-sequencing-future.html

• Nanopore is a nano-scale hole (<20nm).
• In nanopore sequencers, an ionic current passes through the nanopores
• When the DNA strand passes through the nanopore, the sequencer measures the change in 

current
• This change is used to identify the bases in the strand with the help of different electrochemical 

structures of the different bases

https://phys.org/news/2013-12-gene-sequencing-future.html
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Basecalling

… A C G T …

Raw electrical signal
“squiggle”

Basecaller Read

State-of-the-art basecallers use computationally 
expensive deep neural networks to convert the 
electrical signal to nucleotide bases.
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Basecalling Cost
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Basecalling Cost Basecalling is the sole bottleneck of the 
computational steps.
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Required Squiggles
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Virus Variant A

Virus Variant B

No Virus
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Required Squiggles
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Most (>99%) of squiggles are from human DNA. 
However, only in viral squiggles are of interest for 
virus detection.

Thus, most of the basecaller’s work is unnecessary.

Virus Variant A



Without ReadUntil
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Squiggle
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Without ReadUntil
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… A C G T …

Without ReadUntil, the entire squiggle is 
processed by the machine.

Squiggle
From Sequencer

Bases
From Basecaller



Without ReadUntil
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… A C G T …

Squiggle
From Sequencer

Bases
From Basecaller

Analyze short prefix



With ReadUntil
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… A C G T …

Squiggle
From Sequencer

Bases
From Basecaller

Analyze short prefix

Remaining bases are not read if 
the prefix looks unpromising



With ReadUntil
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… A C G T …

Squiggle
From Sequencer

Bases
From Basecaller

… G G A A …
For example, compare the prefix to 
the virus genome we are looking forViral Genome
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Before SquiggleFilter

MinION Basecaller
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With SquiggleFilter

MinION BasecallerSquiggleFilter
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With SquiggleFilter

MinION BasecallerSquiggleFilter
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ReadUntil

… A C G T …

… T G C A …

… A C G T … … T G C A …

… A C G T …

By filtering most of the unneeded 
squiggles, the basecaller’s workload is 
reduced significantly.



SquiggleFilter

1. Translate reference genome to expected squiggle

2. Normalize query squiggle

3. Compare input and reference signal using dynamic time warping

4. If they match: keep analyzing
If not: reject immediately

… A C G T …
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Expected Squiggle
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Expected Squiggle

Each reference 6-mer corresponds to a current level, 
the mapping is provided by the manufacturer.
The expected signal can be obtained through lookups 
from the table. 46
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Normalizing Query Squiggles 
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Measured currents in query squiggles 
can vary due to process variation, 
among other things.



Normalizing Query Squiggles 

𝑠𝑖𝑔𝑛𝑎𝑙 − 𝑚𝑒𝑎𝑛

𝑚𝑒𝑎𝑛 𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛
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Measured currents in query squiggles 
can vary due to process variation, 
among other things.



Normalizing Query Squiggles 
Normalizing removes these differences.

𝑠𝑖𝑔𝑛𝑎𝑙 − 𝑚𝑒𝑎𝑛

𝑚𝑒𝑎𝑛 𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛
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Measured currents in query squiggles 
can vary due to process variation, 
among other things.
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Dynamic Time Warping (prior work)

Reference Squiggle

Query Squiggle
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Vintsyuk, T.K. Speech discrimination by dynamic programming.
Cybernetics and System Analysis 4, 52–57 (1968).

https://doi.org/10.1007/BF01074755


Dynamic Time Warping (prior work)
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Reference Squiggle

Query Squiggle

Query squiggles are stretched on the x-
axis, relative to the reference squiggle.

Vintsyuk, T.K. Speech discrimination by dynamic programming.
Cybernetics and System Analysis 4, 52–57 (1968).

https://doi.org/10.1007/BF01074755


Query squiggles are stretched on the x-
axis, relative to the reference squiggle.
Dynamic time warping finds the stretch 
that matches the squiggles best.

57

Reference Squiggle

Query Squiggle

Dynamic Time Warping (prior work)

Vintsyuk, T.K. Speech discrimination by dynamic programming.
Cybernetics and System Analysis 4, 52–57 (1968).

https://doi.org/10.1007/BF01074755
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DTW Dynamic Programming (prior work)
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DTW Dynamic Programming (prior work)

Update rule:
dp[i,j] = min(neighbors) + abs(a[i]-b[j]) 
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The reference squiggle is lower resolution than the 
query squiggle. A common technique for such cases 
is to only consider insertions and matches.



With ReadUntil
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… A C G T …

Squiggle
From Sequencer

Bases
From Basecaller

Analyze short prefix

Remaining bases are not read if 
the prefix looks unpromising



With ReadUntil
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… A C G T …

Squiggle
From Sequencer

Bases
From Basecaller

Analyze short prefix. But how short?

Remaining bases are not read if 
the prefix looks unpromising



Query Prefix Size
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Query Prefix Size
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The authors determine 2000 samples to be a good 
middle ground between accuracy and performance.



0 4 7 8 11 16 20 22 23 26 30 33 34 39 44 47 49 50 51 54

4 7 8 11 16 20 22 23 26 30 33 34 39 44 47 49 50 51 54 57

7 8 11 The table is large, should be computed in real-time, 
and computation should be energy efficient. This 
motivates designing a hardware accelerator.

Reference Length
(e.g. 30’000 for Sars-CoV-2)
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DTW Dynamic Programming (prior work)
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Accelerator Overview
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Accelerator Systolic Array
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Accelerator Systolic Array

2000 PEs

The DTW accelerator is implemented as a 
systolic array of 2000 PEs.
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Results – Computational Speedup
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Results - Computational Speedup

Only the most inaccurate model on a 
server-class GPU or SquiggleFilter can keep 
up with even the slowest sequencer.
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Results - Computational Speedup

Only SquiggleFilter can keep up with a projected 
future version of the slowest sequencer.
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Results - Accuracy
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Analyzing longer prefixes yield 
better tradeoffs between 
precision and sensitivity.



Results - Accuracy
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For a given prefix length, we can 
trade off precision and sensitivity by 
setting the DTW threshold.



Results - Accuracy
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In this context, better precision or sensitivity 
is not an end-to-end metric.
The best filter configuration is the one with 
the best end-to-end runtime.



Results - Accuracy
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Results - Accuracy

84

The authors decide 
2000 samples to be 
the sweet-spot.



Results - Accuracy
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The authors decide 
2000 samples to be 
the sweet-spot.

SquiggleFilter achieves an end-to-end
speedup over Guppy-lite of 12.9%.
(Not drawn here)



Results - Accuracy
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Results - Power
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Synthesized for 28nm TSMC HPC @2.5GHz



Results - Power SquiggleFilter’s ASIC is significantly more 
power efficient than a server-class GPU, 
sufficiently so it could be battery powered.
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Synthesized for 28nm TSMC HPC @2.5GHz
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Strengths
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Strengths

• Extremely important problem

• The solution works well and is reasonable to implement

• Future proof (can tolerate much faster sequencers)

• They claim to be the first proposal of using squiggle alignment for 
enriching low-concentration viral specimen with ReadUntil 
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how much from HW acceleration
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Weaknesses

• No comparison to a CPU/GPU implementation of their algorithm. It‘s 
unclear how much of the speedup comes from the algorithm, and 
how much from HW acceleration

• No comparison to other DTW accelerators

• No coverage accuracy measurements

• The work is limited to relatively small viral genomes. Their proposal 
would not work for viruses with a larger genome, such as Smallpox 
and Herpes Simplex
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Weakness – Limited to Small Genomes 
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What are challenges of genome analysis in space?
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https://www.universetoday.com/135327/whats-strange-glowing-mold-
astronauts-will-soon-able-sequence-unknown-space-organisms/

https://www.universetoday.com/135327/whats-strange-glowing-mold-astronauts-will-soon-able-sequence-unknown-space-organisms/


What are challenges of genome analysis in space?

101

https://www.nasa.gov/mission_pages/station/research/news/b4h-
3rd/ge-gis-3-identifies-unknown-microbes

Wallace offered support to Whitson, a biochemist, as she used the MinION device (developed by Oxford 
Nanopore Technologies) to sequence the amplified DNA.

The data were downlinked to the team in Houston for analysis and identification.

“Once we actually got the data on the ground we were able to turn it around and start analyzing it,” said 
Aaron Burton, NASA biochemist and the project’s co-investigator. “You get all these squiggle plots and you 
have to turn that into As, Gs, Cs and Ts.”

https://www.nasa.gov/mission_pages/station/research/news/b4h-3rd/ge-gis-3-identifies-unknown-microbes
https://nanoporetech.com/


• Low communication bandwidth with base station

• Devices must be low energy, lightweight, portable

• Devices should be reconfigurable
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What are challenges of genome analysis in space?
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• Number of peaks and valleys

• Bin oscillations and compare distributions

• …
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Signal comparison without DTW?

• Fourier Transform, then compare in frequency space?

• Compare based on handcrafted metrics?
• Number of peaks and valleys

• Bin oscillations and compare distributions

• …

• Fortunately, being inaccurate only costs time, so we are free to 
experiment wildly in this application!
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Can we apply heuristics to DTW?
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Can we apply heuristics to DTW?

• Search less entries of the O(n*m) matrix

• Several techniques exist for the (related) approximate string matching 
problem
• Banded diagonals, such as when calculating edit distance

Algorithms for approximate string matching, E. Ukkonen, 1985

• Greedy
GenASM: A High-Performance, Low-Power Approximate String Matching Acceleration Framework for Genome 
Sequence Analysis, Senol Cali et al., 2020

• Seeding
Targeted nanopore sequencing by real-time mapping of raw electrical signal with UNCALLED, Kovaka et al., 2021
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https://doi.org/10.1016/S0019-9958(85)80046-2
https://arxiv.org/abs/2009.07692
https://doi.org/10.1038/s41587-020-0731-9
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Virus Detectors
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Non-Programmable Programmable

• Tailor chemistry to the given virus
• Cheaply mass-manufacture chemistry
• Kits must be physically distributed

• Distribute viral genome (Software)
• Sequence DNA/RNA reads
• Compare to viral genome (Software)

• Inflexible
• Unavailable at beginning of pandemic
• Low diagnostic power (virus/no virus)
• Cheap
• Fast

• Flexible
• Available immediately
• High diagnostic power (e.g. virus strain)
• Expensive
• Slow

“Programmable”
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Do signal comparison algorithms/accelerators 
from other domains already exist?

121

ICCD 2020, pp. 120-129



Do raw signals contain extra information?
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https://www.cell.com/trends/genetics/fulltext/S0168-9525(21)00257-2



Which sequencing technology is best for virus 
detection?

123

Nature Biomedical Engineering 5, 657–665 (2021).



Is early “viral”/”non-viral” labelling possible 
with Illumina as well?

124


