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Motivation

 RowHammer discovered in 2014
 Used as attack vector in the wild
 Aim of the paper: Analyze and circumvent 

mitigation mechanisms 
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Overview

 DRAM
 RowHammer

 Exploiting RowHammer
 RowHammer based attacks

 Mitigation
 Target Row Refresh

 Hammering
 Analyzing TRR

 MC-based TRR (Intel‘s pTRR)
 In-DRAM TRR

 TRRespass
 Conclusion
 Paper analysis
 Discussion
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DRAM

 Organized into rows and 
columns

 Memory cells leak => 
refresh every 64ms

 Content of a row is 
loaded into row buffer

 Electromagnetic field 
produced by row 
activation increases 
leakage => bit may flip

Row buffer
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RowHammer

 Electromagnetic field 
produced by row 
activation increases 
leakage => bit may flip

 Alternately read 
addresses X and Y

 Flush the cache
 Clflush is an unprivileged 

instruction on x86

code1a: 
mov (X), %eax // read from address X
mov (Y), %ebx // read from address Y
clflush (X) // flush cache for address X
clflush (Y) // flush cache for address Y
jmp code1a 

Victim rows Aggressor 
row

Row buffer
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Exploiting RowHammer

 Change contents of read-only memory, 
e.g. shared libaries

 Change contents of virtual pages of other 
processes/kernel

 Without the OS noticing it

RowHammer breaks memory isolation!!!
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RowHammer based 
attacks

 Manipulate Page Tables to gain access to 
the whole physical Memory1

 Breaking out of NaCl Sandbox1

 Emulate clflush in a web browser using 
JavaScript2

 Read out secred data, e.g. an RSA-Key3

1. M. Seaborn and T. Dullien, “Exploiting the DRAM Rowhammer Bugto Gain Kernel Privileges,” 
Black Hat USA, 2015 

2. D. Grusset al., “Rowhammer.js: A Remote Software-Induced FaultAttack in JavaScript,” DIMVA, 
2016 

3. A. Kwong et al., “RAMBleed: Reading Bits in Memory WithoutAccessing Them,” inS&P, 2020 
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Mitigation (so far)

 Doubling (or even quadrupling) the 
refresh rate
Only solution for existing circuits
Energy consumption is proportional to 

refresh rate
Latency increases
Time frame still too big
=>Ineffective
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Mitigation (so far)

 ECC memory
Can correct 1 bit flip per 64-bit word
Can detect 2 bit flips per 64-bit word
Cannot detect 3 or more bit flips
RowHammer usually induces more bit 

flips
=>Ineffective
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Mitigation (so far)

 Doubling (or even quadrupling) the 
refresh rate
 =>Ineffective

 ECC memory
 =>Ineffective

 Target Row Refresh (TRR)
 Count accesses per row
 Issue extra refreshes to victim 

rows
 DRAM manufacturers advertise 

their chips as RowHammer-free
 DRAM manufacturers do not 

disclose their TRR 
implementations 

Industry on RowHammer:
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Hammering

 Single sided: 
Standard pattern 
used in original 
demonstration

 Double sided: victim 
row in the middle 
experiences twice as 
many hammerings
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Hammering DDR4

 2016: 87% of all modules 
vulnerable (DDR3)

 Analysis of 42 recent 
modules (DDR4) 
(Samsung, Micron, Hynix)

 Standard hammering 
patterns

 No bit flips observable
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Hammering DDR4

 Refreshing turned off
 Double sided 

hammering
 Bit flips at 25K 

activations per row
 139K needed on 

DDR3
 Exponential growth

C12:
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Intel‘s pTRR

 Only publicly advertised MC-
implementation of TRR

 MAC-value inside DRAM chips:
any positive number => issue refresh if that 

number is reached
Untested => double refresh rate
Unlimited => do nothing
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Intel‘s pTRR

 MAC=400k vs. 
MAC=Unlimited

 Core i7 vs. Xeon E5
 Xeon E5: almost no bit 

flips with MAC=400k
 Core i7: No difference
 No pTRR on consumer 

line CPUs
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Reverse-engineering in-
DRAM TRR

 Hypothesis:
Sampler: detects potential aggressor rows
 Inhibitor: issues additional refreshes to victim 

rows 
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TRRespass

 New Version of 
RowHammer code

 Extends double-sided 
to n-sided access 
pattern

#MakeDoubleSidedGreatAgain
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Determining the size of the 
sampler

 Increasing n reveals 
sampler size
 4 on C12

 6 on A15

 Exploitable
 Use n dummy 

aggressor rows
 Camouflage real 

aggressor rows

A15:

C12:
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TRRespass

Actual victim row

Dummy victim rows

TRR
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TRRespass: The full 
evaluation

 TRRespass running for 6 
hours

 13 of 42 modules 
vulnerable (31%)

 87% after discovery
 Large divergence in # of 

bit flips
 5 bit flips on B2

 190k bit flips on C12

 Only 2 of C‘s modules 
vulnerable
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TRRespass on phones

 13 models tested
 Only Android

 5 of 13 vulnerable (38%)
 Different DRAM chips 

accross the same model
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 Mounting real-world 
attacks using TRRespass

 Attacks tested:
 Manipulating page tables
 Corrupting RSA-Key
 Circumventing sudo 

checks
 Most and least vulnerable 

modules from each 
vendor

 All attacks failed on B‘s 
modules

 Time span between 2s 
and 3h
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Conclusion

 RowHammer is still a 
problem

 Partially worse
 2016: 139k activations for 

bit flips
 2020: 50k

 Partially better
 2016: 87% of all modules 

vulnerable
 2020: 31%

Researchers:

We have RowHammer-free DRAM

Industry:
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Strengths

 Addressing a serious security issue
 Very detailed analysis and reverse 

engineering of mostly undocumented 
hardware

 Proving manufacturers wrong 
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Weaknesses

 No statement about what DRAM 
manufacturers did wrong

 No improvement suggestions
 TRRespass vs. pTRR??
 TRRespass vs. iPhone??
 Real-world attacks on phones??
 No disclosure of the manufacturers
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Discussion

Can‘t get RowHammered

If the OS prohibits 
memory access

 Is such detailed public 
disclosure of 
vulnerabilities a good 
idea?

 Is TRR the right way to 
go?

 Will RowHammer kill 
DRAM?
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