
TRRespass: 
Exploiting the many 
sides of Target Row 
Refresh

Pietro Frigo, Emanuele Vannacci, Hasan Hassan, Victor van der Veen, 
Onur Mutlu, Cristiano Giuffrida, Herbert Bos, Kaveh Razavi

2020 IEEE Symposium on Security and Privacy
18-21 May 2020

Julian Müller



 2 

Motivation

 RowHammer discovered in 2014
 Used as attack vector in the wild
 Aim of the paper: Analyze and circumvent 

mitigation mechanisms 



 3 

Overview

 DRAM
 RowHammer

 Exploiting RowHammer
 RowHammer based attacks

 Mitigation
 Target Row Refresh

 Hammering
 Analyzing TRR

 MC-based TRR (Intel‘s pTRR)
 In-DRAM TRR

 TRRespass
 Conclusion
 Paper analysis
 Discussion



 4 

DRAM

 Organized into rows and 
columns

 Memory cells leak => 
refresh every 64ms

 Content of a row is 
loaded into row buffer

 Electromagnetic field 
produced by row 
activation increases 
leakage => bit may flip

Row buffer



 5 

RowHammer

 Electromagnetic field 
produced by row 
activation increases 
leakage => bit may flip

 Alternately read 
addresses X and Y

 Flush the cache
 Clflush is an unprivileged 

instruction on x86

code1a: 
mov (X), %eax // read from address X
mov (Y), %ebx // read from address Y
clflush (X) // flush cache for address X
clflush (Y) // flush cache for address Y
jmp code1a 

Victim rows Aggressor 
row

Row buffer



 6 

Exploiting RowHammer

 Change contents of read-only memory, 
e.g. shared libaries

 Change contents of virtual pages of other 
processes/kernel

 Without the OS noticing it

RowHammer breaks memory isolation!!!



 7 

RowHammer based 
attacks

 Manipulate Page Tables to gain access to 
the whole physical Memory1

 Breaking out of NaCl Sandbox1

 Emulate clflush in a web browser using 
JavaScript2

 Read out secred data, e.g. an RSA-Key3

1. M. Seaborn and T. Dullien, “Exploiting the DRAM Rowhammer Bugto Gain Kernel Privileges,” 
Black Hat USA, 2015 

2. D. Grusset al., “Rowhammer.js: A Remote Software-Induced FaultAttack in JavaScript,” DIMVA, 
2016 

3. A. Kwong et al., “RAMBleed: Reading Bits in Memory WithoutAccessing Them,” inS&P, 2020 



 8 

Mitigation (so far)

 Doubling (or even quadrupling) the 
refresh rate
Only solution for existing circuits
Energy consumption is proportional to 

refresh rate
Latency increases
Time frame still too big
=>Ineffective



 9 

Mitigation (so far)

 ECC memory
Can correct 1 bit flip per 64-bit word
Can detect 2 bit flips per 64-bit word
Cannot detect 3 or more bit flips
RowHammer usually induces more bit 

flips
=>Ineffective



 10 

Mitigation (so far)

 Doubling (or even quadrupling) the 
refresh rate
 =>Ineffective

 ECC memory
 =>Ineffective

 Target Row Refresh (TRR)
 Count accesses per row
 Issue extra refreshes to victim 

rows
 DRAM manufacturers advertise 

their chips as RowHammer-free
 DRAM manufacturers do not 

disclose their TRR 
implementations 

Industry on RowHammer:



 11 

Hammering

 Single sided: 
Standard pattern 
used in original 
demonstration

 Double sided: victim 
row in the middle 
experiences twice as 
many hammerings



 12 

Hammering DDR4

 2016: 87% of all modules 
vulnerable (DDR3)

 Analysis of 42 recent 
modules (DDR4) 
(Samsung, Micron, Hynix)

 Standard hammering 
patterns

 No bit flips observable



 13 

Hammering DDR4

 Refreshing turned off
 Double sided 

hammering
 Bit flips at 25K 

activations per row
 139K needed on 

DDR3
 Exponential growth

C12:



 14 

Intel‘s pTRR

 Only publicly advertised MC-
implementation of TRR

 MAC-value inside DRAM chips:
any positive number => issue refresh if that 

number is reached
Untested => double refresh rate
Unlimited => do nothing



 15 

Intel‘s pTRR

 MAC=400k vs. 
MAC=Unlimited

 Core i7 vs. Xeon E5
 Xeon E5: almost no bit 

flips with MAC=400k
 Core i7: No difference
 No pTRR on consumer 

line CPUs



 16 

Reverse-engineering in-
DRAM TRR

 Hypothesis:
Sampler: detects potential aggressor rows
 Inhibitor: issues additional refreshes to victim 

rows 



 17 

TRRespass

 New Version of 
RowHammer code

 Extends double-sided 
to n-sided access 
pattern

#MakeDoubleSidedGreatAgain



 18 

Determining the size of the 
sampler

 Increasing n reveals 
sampler size
 4 on C12

 6 on A15

 Exploitable
 Use n dummy 

aggressor rows
 Camouflage real 

aggressor rows

A15:

C12:



 19 

TRRespass

Actual victim row

Dummy victim rows

TRR



 20 

TRRespass: The full 
evaluation

 TRRespass running for 6 
hours

 13 of 42 modules 
vulnerable (31%)

 87% after discovery
 Large divergence in # of 

bit flips
 5 bit flips on B2

 190k bit flips on C12

 Only 2 of C‘s modules 
vulnerable



 21 

TRRespass on phones

 13 models tested
 Only Android

 5 of 13 vulnerable (38%)
 Different DRAM chips 

accross the same model



 22 

 Mounting real-world 
attacks using TRRespass

 Attacks tested:
 Manipulating page tables
 Corrupting RSA-Key
 Circumventing sudo 

checks
 Most and least vulnerable 

modules from each 
vendor

 All attacks failed on B‘s 
modules

 Time span between 2s 
and 3h



 23 

Conclusion

 RowHammer is still a 
problem

 Partially worse
 2016: 139k activations for 

bit flips
 2020: 50k

 Partially better
 2016: 87% of all modules 

vulnerable
 2020: 31%

Researchers:

We have RowHammer-free DRAM

Industry:



 24 

Strengths

 Addressing a serious security issue
 Very detailed analysis and reverse 

engineering of mostly undocumented 
hardware

 Proving manufacturers wrong 



 25 

Weaknesses

 No statement about what DRAM 
manufacturers did wrong

 No improvement suggestions
 TRRespass vs. pTRR??
 TRRespass vs. iPhone??
 Real-world attacks on phones??
 No disclosure of the manufacturers



 26 

Discussion

Can‘t get RowHammered

If the OS prohibits 
memory access

 Is such detailed public 
disclosure of 
vulnerabilities a good 
idea?

 Is TRR the right way to 
go?

 Will RowHammer kill 
DRAM?


	TRRespass: Exploiting the many sides of Target Row Refresh
	Motivation
	Overview
	DRAM
	RowHammer
	Exploiting RowHammer
	RowHammer based attacks
	Mitigation (so far)
	Slide 9
	Slide 10
	Hammering
	Hammering DDR4
	Slide 13
	Intel‘s pTRR
	Slide 15
	Reverse-engineering in-DRAM TRR
	TRRespass
	Determining the size of the sampler
	Slide 19
	TRRespass: The full evaluation
	TRRespass on phones
	Mounting real-world attacks using TRRespass
	Conclusion
	Strengths
	Weaknesses
	Discussion

