
TRRespass: Exploiting the Many
Sides of Target Row Refresh

Presenter: Meryem Banu Cavlak
December 9, 2021

Proceedings of the 41st IEEE Symposium on Security and Privacy (S&P), May 2020.
Authors: Pietro Frigo, Emanuele Vannacci, Hasan Hassan, Victor van der Veen, Onur

Mutlu, Cristiano Giuffrida, Herbert Bos and Kaveh Razavi

https://www.ieee-security.org/TC/SP2020/

2

Executive Summary
• Problem: RowHammer protection in current DRAM modules relies on

undocumented in-DRAM TRR mitigations.

•Goal: Analyzing the security guarantees of in-DRAM TRR against
RowHammer attacks.

• Key Methodology:
- Perform series of hammers and refreshes.
- Vary the number of hammers and refreshes.

• Key Observations:
- The TRR mitigation acts on refresh command.
- Sweeping the number of refreshes & aggressor rows reveals the sampler size.

• Key Mechanism (TRRespass): Black-box RowHammer test suite that
generates effective access patterns to bypass inDRAM TRR solutions by
varying the cardinality & location of aggressors.

• Key Results:
- 13/42 DDR4 and LPDDR4 modules are vulnerable to RowHammer.
- Bit flips can be exploited to create RowHammer attacks.

3

Executive Summary
• Problem: RowHammer protection in current DRAM modules relies on

undocumented in-DRAM TRR mitigations.

•Goal: Analyzing the security guarantees of in-DRAM TRR against RowHammer
attacks.

• Key Methodology:
- Perform series of hammers and refreshes.
- Vary the number of hammers and refreshes.

• Key Observations:
- The TRR mitigation acts on refresh command.
- Sweeping the number of refreshes & aggressor rows reveals the sampler size.

• Key Mechanism (TRRespass): Black-box RowHammer test suite that
generates effective access patterns to bypass inDRAM TRR solutions by
varying the cardinality & location of aggressors.

• Key Results:
- 13/42 DDR4 and LPDDR4 modules are vulnerable to RowHammer.
- Bit flips can be exploited to create RowHammer attacks.

RowHammer is still an open problem.

4

Background - DRAM Organization

A row needs to be activated and fetched to Row Buffer before
access.

A DRAM cell consists of a capacitor to encode the bit and an
access transistor to access the bit.

5

Background

Periodic refreshes are required to preserve the
stored data as the cells leak charge.

6

Background

Victim Row

Hammered Row

Victim Row

Hammered Row

Victim Row

Open

Open

Closed

Closed

Open

Open

Closed

Repeatedly opening and closing DRAM rows (Hammered Row)
cause RowHammer bit flips in nearby cells (Victim Rows).

7

Background
42 recent DDR4 modules are tested against

• single-sided
• double-sided
• one-location hammering patterns.

No bit flips observed. Existing mitigation mechanisms are
effective against the known hammering patterns.

aggressor rows victim rows

8

Prior Work
● Increasing DRAM refresh rate Not scalable

● Physical Isolation

In-DRAM mapping is
proprietary information

● Error Correcting Codes Not effective

● PARA Not deterministic
Victim Row

Hammered Row

Victim Row

REFRESH

9

Problem: Is RowHammer Solved?

Can be employed in:

Target Row Refresh (TRR): family of mitigation mechanism that
selectively refresh the victim rows.

1. The Memory Controller

2. Inside the DRAM Chips

10

Analyzing the Memory Controller

Memory Controller can

• monitor the number of activations to specific DRAM rows
• send additional refreshes to DRAM rows affected

The maximum number of ACTIVATEs (MAC) a row can bear
before any bit in its neighboring rows flips should be known.

Three possible MAC values in commodity memory modules:

1. unlimited
2. untested
3. a discrete value (e.g., 300K)

11

Analyzing Intel pTRR

Aim:
• verify the existence of pTRR
• analyze different Intel systems to understand the deployment and

effectiveness of pTRR

Motivation:
• pTRR is the most prominent in memory controller defense mechanism
• very little is actually known about the pTRR mechanism

Mechanism:
• refresh the victim row when # number of hammers > MAC
• double refresh for non-TRR-compliant DRAM modules

12

Reverse Engineering pTRR
Experiments (Xeon E5-2620):

2. overwrite the MAC value to different discrete values

1. overwrite the MAC value to untested

Untested Unlimited

13

pTRR Deployment

1. overwrite the MAC value to untested

2. overwrite the MAC value to different discrete values
default refresh rate is observed

same number of bit flips for all MAC values

14

pTRR Deployment

1. overwrite the MAC value to untested

2. overwrite the MAC value to different discrete values
default refresh rate is observed

same number of bit flips for all MAC values

RowHammer mitigation entirely relies on
undocumented in-DRAM TRR mitigations.

15

Inside the DRAM Chips

• The exact implementation details of in-DRAM TRR

mechanisms are unknown

Methodology:

1. Create Hypothesis
2. Identify the Goals
3. Perform Case Studies

• The goal is to reverse engineer the implementation details by

utilizing SoftMC: an open-source FPGA-based memory
controller

16

Inside the DRAM Chips

• The exact implementation details of in-DRAM TRR

mechanisms are unknown

• The goal is to reverse engineer the implementation details by

utilizing SoftMC: an open-source FPGA-based memory
controller

Methodology:

1. Create Hypothesis
2. Identify the Goals
3. Perform Case Studies

17

Building Blocks and Hypotheses
TRR is an umbrella term but there are two requirements for
supporting TRR.

• Inhibitor:
- Prevents bit flips by refreshing victim rows
- Hypothesis: The inhibitor acts at refresh time
- Implication: Only a limited number of target rows can be

refreshed within a refresh command

• Sampler:
- Tracks aggressor row activations
- Hypothesis: The sampler has a limited size
- Implication: The TRR mitigation can protect only a limited

number of victim rows

18

Inside the DRAM Chips

• The exact implementation details of in-DRAM TRR

mechanisms are unknown

• The goal is to reverse engineer the implementation details by

utilizing SoftMC: an open-source FPGA-based memory
controller

Methodology:

1. Create Hypothesis
2. Identify the Goals
3. Perform Case Studies

19

The Goals

● What is the size of the sampler?

● How does the inhibitor work? Can it prevent bit flips?

● How does the sampler track aggressor rows?

20

Inside the DRAM Chips

• The exact implementation details of in-DRAM TRR

mechanisms are unknown

• The goal is to reverse engineer the implementation details by

utilizing SoftMC: an open-source FPGA-based memory
controller

Methodology:

1. Create Hypothesis
2. Identify the Goals
3. Perform Case Studies

21

Case I: Module C12
How many activations we require to actually cause bit flips in
DDR4 chips?

Methodology: Disable refresh command and observe the
number of bit flips.

22

Case I: Module C12 - Mastering Refresh
What is the size of the sampler?

Hammers (N * 8K) Refreshes (r)

10 rounds

- Vary the number of aggressor rows (N) and refreshes (r)

- Perform a series of activations (8K) for each aggressor row

- Perform 10 rounds of series of hammers and refreshes

23

Case I: Module C12 - Mastering Refresh
Adding a refresh reduces the number of bit flips

24

Case I: Module C12 - Mastering Refresh
Adding a refresh reduces the number of bit flips

Observation 1: The TRR mitigation acts (i.e., carries
out a targeted refresh) on every refresh command.

25

Increasing the number of Hammered Rows

increasing # of aggressor row -> increasing # of victim row

Victim Row

Hammered Row

Victim Row

Hammered Row

Victim Row

Open

Open

Closed

Closed

Victim Row

Hammered Row

Victim Row

Hammered Row

Victim Row

Open

Open

Closed

Closed

Victim Row

Hammered Row OpenClosed

26

Case I: Module C12 - Mastering Refresh
The number of bit flips stabilizes when N = r

27

Case I: Module C12 - Mastering Refresh
The number of bit flips stabilizes when N = r

Observation 2: The mitigation can sample more
than one aggressor per refresh interval.

28

Case I: Module C12 - Mastering Refresh
The number of bit flips stabilizes when N = r

Observation 3: The mitigation can refresh only a
single victim within a refresh operation.

29

Case I: Module C12 - Mastering Refresh
RECALL: What is the size of the sampler?

The # of bit flips stabilizes for r < N, revealing the sampler size (4).

30

Case I: Module C12 - Mastering Refresh
RECALL: What is the size of the sampler?

The # of bit flips stabilizes for r < N, revealing the sampler size (4).

Observation 4: Sweeping the number of refresh
operations and aggressor rows while hammering

reveals the sampler size.

31

Case I: Module C12 - Mastering Refresh
Hammering more than 4 rows should circumvent the mitigation.

● The mitigation mechanism is overwhelmed by hammering 5
rows

● It is not clear why the number of bit flips is changing drastically
after number of aggressor rows > 5

32

Case II: Module A15
Goal: understand different flavors of in-DRAM TRR

Is it possible to revive the more efficient double-sided
RowHammer attack?

- Prior observations verified
- The sampler size: 6

33

Case II: Module A15

Methodology:

1. Find the minimal set of dummy rows
- to trick the mitigation mechanism

3. Modify
- the distribution of activations across aggressor and dummy

rows
- the number of dummies starting from sampler size

2. Select a specific victim row
- Find the threshold of hammers to observe a bit flip

34

Case II: Module A15

Methodology:

1. Find the minimal set of dummy rows
- to trick the mitigation mechanism

3. Modify
- the distribution of activations across aggressor and dummy

rows
- the number of dummies starting from sampler size

2. Select a specific victim row
- Find the threshold of hammers to observe a bit flipNo bit flips observed

35

Case II: Module A15

What might be going wrong?

• Address dependency:
- The number of bit flips depend on the address of dummy rows
- This implies the design of the sampler is optimized to reduce

storage cost

• DRAM command order dependency:
- How does sampler act? (on specific DRAM commands?)
- For A15, the samper records first α activations after the refresh

36

Case II: Module A15

What might be going wrong?

• Address dependency:
- The number of bit flips depend on the address of dummy rows.
- This implies the design of the sampler is optimized to reduce

storage cost.

• DRAM command order dependency:
- How does sampler act? (on specific DRAM commands?)
- For A15, the samper records first α activations after the refresh.

Observation 5: The sampler records row activations
at specific commands and likely at specific ordering
of commands (command-order-based sampling).

Observation 6: The sampling mechanism is
affected by the addresses of aggressor rows

(row-address-dependent sampling).

37

Running on the CPU
Challenges:

- The sampling algorithm of TRR is command order and address
dependent

- Memory controller optimizes and reorders the requests

Methodology:

- Carry out specific series of activations after Refresh command

- The RowHammer access pattern needs to be synchronized with the

Refresh command

much fewer bit flips observed compared to SoftMC

38

Running on the CPU
Challenges:

- The sampling algorithm of TRR is command order and address
dependent

- Memory controller optimizes and reorders the requests

Methodology:

- Carry out specific serious of activations after Refresh command

- The RowHammer access pattern needs to be synchronized with the

Refresh command.

much fewer bit flips observed compared to SoftMC

We need a better solution for finding effective
access patterns that trigger bit flips on

TRR-protected DDR4 chips.

39

TRRespass: A TRR-Aware Rowfuzzer

Black-box RowHammer test suite that generates effective
access patterns to bypass in-DRAM TRR solutions

It’s design consists of three different components:

1. Cardinality

2. Location

3. Fuzzing Strategy

40

TRRespass: A TRR-Aware Rowfuzzer
1. Cardinality

3. Fuzzing Strategy

2. Location

- The number of aggressor rows
- The number of aggressor rows (typically high) required to

overflow the sampler varies across modules
- The number of activations per refresh interval is limited

41

TRRespass: A TRR-Aware Rowfuzzer
1. Cardinality

3. Fuzzing Strategy

2. Location
- sampler may have address dependency: randomize the

location of aggressors

- The number of aggressor rows
- The number of aggressor rows (typically high) required to

overflow the sampler varies across modules
- The number of activations per refresh interval is limited

42

TRRespass: A TRR-Aware Rowfuzzer
1. Cardinality

3. Fuzzing Strategy

2. Location

- The access patterns generated are evaluated based on the
number of unique bit flips they generate

- Randomize the cardinality and location parameters
- Test a chunk of memory for 3 × refresh period

- sampler may have address dependency: randomize the
location of aggressors

- The number of aggressor rows
- The number of aggressor rows (typically high) required to

overflow the sampler varies across modules
- The number of activations per refresh interval is limited

43

Evaluation Methodology

• Device:
- Intel Core i7-7700K, mounted on an ASUS STRIX Z270G

motherboard

• Modules:
- 42 DDR4 DRAM modules from all 3 major manufacturers

are tested

• Methodology:
- Perform a sweep over 256MB of contiguous physical

memory (128 adjacent rows from each bank)
- Examine RowHammer bit flips for both true and anti cells

44

TRRespass-ing Over DDR4

assisted double sided -> many sided

45

TRRespass-ing Over DDR4

46

TRRespass-ing Over DDR4

There is not a single effective access
pattern per module.

47

TRRespass on LPDDR4(x)

TRR-protected mobile
platforms are still vulnerable

to RowHammer

- TRRespass discovers
hammering patterns on
5 out out 12 devices

48

Evaluation - Results

49

Evaluation - Results

• TRRespass can recover multiple effective access patterns for
7 of the 16 modules.

• TRRespass found more than 16K bit flips on average across the
7 vulnerable modules.

• The number of activations required to create bit flips is quite
low (∼45K row activations).

50

Evaluation - Results

• The number of bit flips observed is significantly lower
compared to vendor A.

• Bypassing the TRR mitigation on these modules is non-trivial.

• Further experiments?

51

Evaluation - Results
What happens when the same RowHammer experiment using the
aggressor rows that are known to be able to cause bit flips is
repeated for multiple iterations?

Varying number of bit flips observed

52

Evaluation - Results

• The number of bit flips observed decreased over years.

in DRAM TRR implementation has improved over time

53

Evaluation - Increasing Refresh Rate
Doubling/quadrupling refresh rate is one mitigation mechanism.

Increasing refresh rate might also improve the effectiveness of TRR.

TRRespass can trigger bit flips when double refresh is employed.

54

Evaluation - Increasing Refresh Rate
Doubling/quadrupling refresh rate is one mitigation mechanism.

Increasing refresh rate might also improve the effectiveness of TRR.

TRRespass can trigger bit flips when double refresh is employed.

“This result further undermines the efficacy of
double refresh as a stopgap solution against

RowHammer even when in-DRAM TRR is deployed.”

55

Evaluation - Repeatability of the Bit Flips

• Repeatability is a fundamental factor in RowHammer
exploitation

• The best pattern found by TRRespass is executed on one
module per DRAM vendor

• Bit flips are repeatable

- multiple attempts might be required

- spurious bit flips might be generated

56

Exploitation with TRRespass

1. Memory templating:
- find the right RowHammer access pattern

2. Memory massaging:
- map the target data onto one of the available templates

3. Exploitation:
- trigger the same RowHammer bit flips on the target data

57

Exploitation with TRRespass

58

Exploitation with TRRespass

Real-world attacks can be mounted to DDR4 for
modules with in-DRAM TRR protection.

59

Conclusion/Takeaways

• Reverse engineers the pTRR and in-DRAM TRR mechanisms
implemented in memory controllers and DRAM chips

• First work to show that DRAM modules with in-DRAM TRR are
vulnerable to RowHammer

• Presents TRRespass, Black-box RowHammer test suite that
generates effective access patterns to bypass in-DRAM TRR
solutions

• Demonstrates that bit flips can be induced in 13/42 DRAM
modules tested

• Provides hammering patterns to mount real-world attacks for
many of the DDR4 DRAM modules in the market

60

Conclusion/Takeaways

• Reverse engineers the pTRR and in-DRAM TRR mechanisms
implemented in memory controllers and DRAM chips

• First work to show that DRAM modules with in-DRAM TRR are
vulnerable to RowHammer

• Presents TRRespass, Black-box RowHammer test suite that
generates effective access patterns to bypass inDRAM TRR
solutions.

• Demonstrates that bit flips can be induced in 13/42 DRAM
modules tested

• Provides hammering patterns to mount real-world attacks for
many of the DDR4 DRAM modules in the market

Improves our understanding of TRR significantly

CRITIQUE

62

Strengths

• Proves in-DRAM TRR is not effective against RowHammer

• Proposes many-sided RowHammer attacks that can bypass
TRR mechanisms

• TRRespass can automatically induce bit flips

• Proves the exploitability of the RowHammer attacks

• Presents the first overview on in-DRAM TRR implementations:
- uncovers some of their underlying mechanisms
- demonstrates there are a variety of TRR implementations

• Demonstrates that modern memory controllers do not
employ TRR

63

Weaknesses

• TRRespass is inefficient
- might not find a hammering pattern
- might not find the best hammering pattern

• Bit flips observed only in 13/42 modules tested

• Cannot always create an attack

• Vendor based conclusions are not insightful

• The sampling mechanism is not fully understood

• Can create bit flips for only untested DRAM modules for
vendor C

• The writing is poor

64

Discussion Points

What other tests could be developed to exactly figure out the underlying
TRR mechanism?

Reverse Engineered:

Association of TRR with regular refreshes

The sampler size

Still not discovered:

What is the sampling mechanism?

How to select which victim row to refresh?

65

Discussion Points

Would TRR be a viable solution if the sampler size increases significantly?

No bit flips for aggressor rows < sampler size

Kim et al., 2020 reports minimum hammering count (HC) as low as 4800 per
aggressor row. Which one becomes more dominant?

- The max # of activations per refresh interval / min # HC

- Sampler size

66

Discussion Points

Assuming that we can increase the sampler size as much as required:

- Can sampler always sample the aggressor rows?

- How TRR should specify the victim rows of a given aggressor row?

“Observation 6. For a given DRAM
manufacturer, chips of newer
DRAM technology nodes can
exhibit RowHammer bit flips 1) in
more rows and 2) farther away
from the victim row.”

[Kim et al., 2020]

Even if we the sampler always samples the aggressor rows

67

Discussion Points

One key limitation of in-DRAM TRR is that it relies on the execution of
refresh command.

● What if the mitigation mechanism was able to act independently of the
refresh command?

● Or, does it have to rely on refresh at all once the target rows are
identified?

68

Discussion Points

Do you think RowClone can be an effective solution against RowHammer?

● Remap the victim rows when the HC exceeds the threshold

● Remap the aggressor row when the HC exceeds the threshold

One prior approach (CROW):

- Considers remapping only the
victim row

- The number of victim rows that
can be remapped is limited by the
number of copy rows

[Hassan et al., 2019]

69

Discussion Points

https://twitter.com/gururajs92/status/1460484960016601090?s=21

https://twitter.com/gururajs92/status/1460484960016601090?s=21

70

Discussion Points

TRRespass considers the cardinality and the location of aggressor rows
while developing the attack.

There are other parameters that affect the effectiveness of RowHammer:

[Orosa et al., 2021]

- Temperature

- Aggressor Row
Active Time

71

Discussion Points

Can we design mitigation mechanisms based on these other
parameters?

- What other parameters we can think of?

Can we develop attacks that are based on these other parameters?

How would it affect the mitigation mechanisms?

The most common mitigation mechanisms are based on

- Refresh & tracking aggressor rows

72

Discussion Points

If we can solve this problem architecturally,

Is it better to have deterministic or probabilistic solutions?

Probabilistic
- Does not provide full protection
- In-dram TRR has some probabilistic mechanisms (e.g., address

dependency) which makes it difficult to bypass

Deterministic
- Provides full protection
- Would it be easy to bypass it once you know the exact mechanism?

Can it really provide a full solution? Blockhammer

TRRespass: Exploiting the Many
Sides of Target Row Refresh

Presenter: Meryem Banu Cavlak
December 9, 2021

Proceedings of the 41st IEEE Symposium on Security and Privacy (S&P), May 2020.
Authors: Pietro Frigo, Emanuele Vannacci, Hasan Hassan, Victor van der Veen, Onur

Mutlu, Cristiano Giuffrida, Herbert Bos and Kaveh Razavi

https://www.ieee-security.org/TC/SP2020/

74

Discussion Points

“However, all of these solutions merely treat the symptoms of a
RowHammer attack (i.e., prevent RowHammer conditions) without
solving the core circuit vulnerability.” [Kim et al., 2020]

● Any circuit level solution ideas?

● Can we solve this problem architecturally?

