TRRespass: Exploiting the Many

Sides of Target Row Refresh

Proceedings of the 41st IEEE Symposium on Security and Privacy (S&P), May 2020.
Authors: Pietro Frigo, Emanuele Vannacci, Hasan Hassan, Victor van der Veen, Onur
Mutlu, Cristiano Giuffrida, Herbert Bos and Kaveh Razavi

Presenter: Meryem Banu Cavlak
December 9, 2021

https://www.ieee-security.org/TC/SP2020/

Executive Summary

* Problem: RowHammer protection in current DRAM modules relies on
undocumented in-DRAM TRR mitigations.

* Goal: Analyzing the security guarantees of in-DRAM TRR against
RowHammer attacks.

* Key Methodology:
- Perform series of hammers and refreshes.
- Vary the number of hammers and refreshes.

* Key Observations:
- The TRR mitigation acts on refresh command.
- Sweeping the number of refreshes & aggressor rows reveals the sampler size.

» Key Mechanism (TRRespass): Black-box RowHammer test suite that
generates effective access patterns to bypass inDRAM TRR solutions by
varying the cardinality & location of aggressors.

* Key Results:
- 13/42 DDR4 and LPDDR4 modules are vulnerable to RowHammer.

- Bit flips can be exploited to create RowHammer attacks.

Executive Summary

* Problem: RowHammer protection in current DRAM modules relies on
undocumented in-DRAM TRR mitigations.

* Goal: Analyzing the security guarantees of in-DRAM TRR against RowHammer
attacks.

* Key Methodology:

- Perform series of hammers and refreshes.

RowHammer is still an open problem.

&2 C Cl AdlC w < VC O < \J O < U UV VO

varying the cardinality & location of aggressors.

* Key Results:
- 13/42 DDR4 and LPDDR4 modules are vulnerable to RowHammer.

- Bit flips can be exploited to create RowHammer attacks.

Background - DRAM Organization

DRAM Cell

DRAM Bank

Bitline

|

Wordline
. s

Wordline

Access
Transistor

Memory
Controller

hegd

Row Buffer J

[
c
=
C

6
e
5
o
£
@
=

Joypede)

—
CPU

—\ [Row Decoder]

A row needs to be activated and fetched to Row Buffer before
access.

A DRAM cell consists of a capacitor to encode the bit and an
access transistor to access the bit.

Background

Periodic refreshes are required to preserve the
stored data as the cells leak charge.

Refresh Operations
Refresh Window

2R BN

100%

Vmin

Capacitor voltage (Vdd)

O% : : :
REF REF REF
time

Background

Victim Row e

Cldseen

Victim Row e e

Cldseen

Victim Row e e

Repeatedly opening and closing DRAM rows (Hammered Row)
cause RowHammer bit flips in nearby cells (Victim Rows).

SAFARI

Background

42 recent DDR4 modules are tested against

* single-sided
* double-sided
* one-location hammering patterns.

B aggressor rows B victim rows

x-4 x-4 x-4
x-3 X-3 x-3

X-2 X-2 x-2

x-1 x-1 x-1
X X X
x+1 x+1 x+1
. X+2 xX+2
. x+3 x+3
X+n xX+4 x+4
(a) Single-sided (b) Double-sided (¢) One-location

No bit flips observed. Existing mitigation mechanisms are
effective against the known hammering patterns.

Prior Work

e Increasing DRAM refresh rate Not scalable

100% 100%

q

Vmin

100%
#

Vmin Vmin

e Physical Isolation

Aggressor Row

In-DRAM mapping is

I Large-enough distance

proprietary information
Victim Rows

e Error Correcting Codes Not effective

% Victim Row ~ REFRESH
: Hammered Row Not deterministic

e PARA

Victim Row

Problem: Is RowHammer Solved?

Target Row Refresh (TRR): family of mitigation mechanism that
selectively refresh the victim rows.

Can be employed in:
1. The Memory Controller
2. Inside the DRAM Chips

Analyzing the Memory Controller

Memory Controller can

* monitor the number of activations to specific DRAM rows
» send additional refreshes to DRAM rows affected

The maximum number of ACTIVATEs (MAC) a row can bear
before any bit in its neighboring rows flips should be known.

Three possible MAC values in commodity memory modules:

1. unlimited |
SPD (Serial Preser

2. untested cerroms

3. adiscrete value (e.g., 300K)

Analyzing Intel pTRR

Aim:
* verify the existence of pTRR
 analyze different Intel systems to understand the deployment and
effectiveness of pTRR

Motivation:

e pTRRis the most prominent in memory controller defense mechanism
* very little is actually known about the pTRR mechanism

Mechanism:

e refresh the victim row when # number of hammers > MAC
double refresh for non-TRR-compliant DRAM modules

11

Reverse Engineering pTRR

Experiments (Xeon E5-2620):
1. overwrite the MAC value to untested

mm Untested mmm Unlimited

REF x2
4001

N

1001

w
o
o

N
o
o

Latency (ns)

0.0 7.8 15.6 23.4 312 39.0
Time (us)

2. overwrite the MAC value to different discrete values

s MAC=400K mm MAC=Unlimited
100 .
g 1071
g
=e 1072
mv
10-3 .
Xeon E5- Core i7-
2620 v2 8700K

12

PTRR Deployment

1. overwrite the MAC value to untested

default refresh rate is observed
2. overwrite the MAC value to different discrete values

same number of bit flips for all MAC values

DRAM

CPU Family Year . Defense
generation

Server Line
Xeon E5-2620 v4 Broadwell 2016 DDR4 REF X2
Xeon E5-2620 v2 Ivy Bridge EP 2013 DDR3 pTRR
Xeon E3-1270 v3 Haswell 2013 DDR3 —
Consumer Line
Core 19-9900K Coffee Lake R 2018 DDR4 —
Core 17-8700K Coffee Lake 2017 DDR4 —
Core 17-7700K Kaby Lake 2017 DDR4 —
Core 17-5775C Broadwell 2015 DDR3 —

13

PTRR Deployment

1. overwrite the MAC value to untested

default refresh rate is observed
2. overwrite the MAC value to different discrete values

same number of bit flips for all MAC values

RowHammer mitigation entirely relies on

undocumented in-DRAM TRR mitigations.

Consumer Line
Core 19-9900K Coffee Lake R 2018 DDR4

Core 17-8700K Coffee Lake 2017 DDR4 —
Core 17-7700K Kaby Lake 2017 DDR4 —
Core 17-5775C Broadwell 2015 DDR3 —

14

Inside the DRAM Chips

* The exact implementation details of in-DRAM TRR
mechanisms are unknown

* The goal is to reverse engineer the implementation details by

utilizing SoftMC: an open-source FPGA-based memory
controller

Methodology:

1. Create Hypothesis
2. ldentify the Goals
3. Perform Case Studies

15

Inside the DRAM Chips

* The exact implementation details of in-DRAM TRR

mechanisms are unknown
* The goal is to reverse engineer the implementation details by

utilizing SoftMC: an open-source FPGA-based memory

controller

Methodology:

1. Create Hypothesis
2. ldentity the Goals
3. Perform Case Studies

16

Building Blocks and Hypotheses

TRRis an umbrella term but there are two requirements for
supporting TRR.

* Sampler:
- Tracks aggressor row activations

- Hypothesis: The sampler has a limited size
- Implication: The TRR mitigation can protect only a limited
number of victim rows

* Inhibitor:
- Prevents bit flips by refreshing victim rows
- Hypothesis: The inhibitor acts at refresh time
- Implication: Only a limited number of target rows can be
refreshed within a refresh command

17

Inside the DRAM Chips

* The exact implementation details of in-DRAM TRR
mechanisms are unknown

* The goal is to reverse engineer the implementation details by
utilizing SoftMC: an open-source FPGA-based memory
controller

Methodology:

1. Create Hypothesis
2. ldentify the Goals
3. Perform Case Studies

18

The Goals

e \What is the size of the sampler?
e How does the sampler track aggressor rows?

e How does the inhibitor work? Can it prevent bit flips?

19

Inside the DRAM Chips

* The exact implementation details of in-DRAM TRR
mechanisms are unknown

* The goal is to reverse engineer the implementation details by
utilizing SoftMC: an open-source FPGA-based memory
controller

Methodology:

1. Create Hypothesis
2. ldentity the Goals
3. Perform Case Studies

20

Case |I: Module C12

How many activations we require to actually cause bit flips in
DDR4 chips?

Methodology: Disable refresh command and observe the

100+

#Bit Flips
[
pdir

5K -
6K J

ma
Y Y
N~ 00

ok J
30K

number of bit flips.

n o
<t n

10K
15K -
20K
25K {J

AN 0N (N N

#ACTs per aggressor row

21

Case I: Module C12 - Mastering Refresh

What is the size of the sampler?

- Vary the number of aggressor rows (N) and refreshes (r)

- Perform a series of activations (8K) for each aggressor row

- Perform 10 rounds of series of hammers and refreshes

/\ 10 rounds

Hammers (N * 8K) Refreshes (r)

22

Case I: Module C12 - Mastering Refresh

Adding a refresh reduces the number of bit flips

#Refreshes per round

#Bit Flips

- SR I E
T
- I K BN E3 A Y B 3
noooooos

DK

DREEO
B eI
EEEE
-

0 1 2 3 4 5 6 7 8 9
#Aggressor Rows

22040 25375

- 25000

- 20000

15000

10000

5000

23

Case I: Module C12 - Mastering Refresh

Adding a refresh reduces the number of bit flips

#Bit Flips

- 25000

- 20000

Observation 1: The TRR mitigation acts (i.e., carries
out a targeted refresh) on every refresh command.

5000

15550 | 18790 PR N
3 4 5 6 T 8 9

#Aggressor Rows

24

Increasing the number of Hammered Rows

increasing # of aggressor row -> increasing # of victim row

Victim Row

W e

Clddedn Victim Row W€

Victim Row € e Cldopdn

Cldoedn Victim Row 3 e

Victim $M6w e CldSeén
Victim $¥w e

SAFARI 25

Case I: Module C12 - Mastering Refresh

The number of bit flips stabilizes when N =

#Bit Flips

- 25000
- 25 144 383 1164 | 2348 | 3601 | 4225

- 20000
-- ner | 2em | a7 | a2

DROEon
BRI
BRI
B

0 1 2 3 4 5 6 7 8 9
#Aggressor Rows

15000

10000

#Refreshes per round

5000

22040 25375

26

Case I: Module C12 - Mastering Refresh

The number of bit flips stabilizes when N = r

#Bit Flips

Observation 2: The mitigation can sample more
than one aggressor per refresh interval.

- 25000

0 ‘ 0]

3 K
EEEm - -

0 1 2 3 4 5 6 7 8 9

#Aggressor Rows

2/

Case I: Module C12 - Mastering Refresh

The number of bit flips stabilizes when N = r

#Bit Flips

Observation 3: The mitigation can refresh only a
single victim within a refresh operation.

- 25000

8995 15550 | 18799 WP IllIMENPLEYE
0 1 2 3 4 5 6 r 8 9

#Aggressor Rows

28

Case I: Module C12 - Mastering Refresh

RECALL: What is the size of the sampler?

The # of bit flips stabilizes for r < N, revealing the sampler size (4).

#Bit Flips

72 1202 2508 3598 4218

771 1932 3758 5348 6146

1710 3806 5761 8558 9301

-- 2066 4338 7109 10139 12771 E
2866 5936 8995 12246 15550 22040 25375

0 1 2 3 4 5 6 7 8 9
#Aggressor Rows

#Refreshes per round

- 25000

- 20000

15000

10000

5000

29

Case I: Module C12 - Mastering Refresh

RECALL: What is the size of the sampler?

The # of bit flips stabilizes for r < N, revealing the sampler size (4).

#Bit Flips
- 1 Y Y Y Y
Observation 4: Sweeping the number of refresh

operations and aggressor rows while hammering
reveals the sampler size.

- 25000

1 2 3 = 5 6 I 8 9

#Aggressor Rows

30

Case I: Module C12 - Mastering Refresh

Hammering more than 4 rows should circumvent the mitigation.
e The mitigation mechanism is overwhelmed by hammering 5
rows

e Itis not clear why the number of bit flips is changing drastically
after number of aggressor rows > 5

150+

100 -

#Bit Flips

(9)
o

—~ N M <t N o N~ 00 O O =2 N M < N ©
~_—— 4 4 ~ ~

#Aggressor rows
31

Case ll: Module A15

Goal: understand different flavors of in-DRAM TRR

- Prior observations verified
- The sampler size: 6

o
G

#Bit Flips
N
&

N
2

- N M < N O N~ 0 O O A N M I 1n w0
- - - - - ~ -

#Aggressor rows

s it possible to revive the more efficient double-sided
RowHammer attack?

32

Case ll: Module A15

Methodology:

1. Find the minimal set of dummy rows
- to trick the mitigation mechanism

2. Select a specific victim row
- Find the threshold of hammers to observe a bit flip

3. Modify
- the distribution of activations across aggressor and dummy
rows
- the number of dummies starting from sampler size

33

Case Il: Module A15

Methodology:

1. Find the minimal set of dummy rows
- to trick the mitigation mechanism

No bit flips observed

- the distribution of activations across aggressor and dummy
rows
- the number of dummies starting from sampler size

34

Case ll: Module A15

What might be going wrong?

* DRAM command order dependency:
How does sampler act? (on specific DRAM commands?)
For A15, the samper records first a activations after the refresh

e Address dependency:
- The number of bit flips depend on the address of dummy rows
- This implies the design of the sampler is optimized to reduce
storage cost

35

Case ll: Module A15

What might be going wrong?

Observation 5: The sampler records row activations
at specific commands and likely at specific ordering
of commands (command-order-based sampling).

affected by the addresses of aggressor rows
(row-address-dependent sampling).

36

Running on the CPU

Challenges:

- The sampling algorithm of TRR is command order and address
dependent
- Memory controller optimizes and reorders the requests

Methodology:

- Carry out specific series of activations after Refresh command
- The RowHammer access pattern needs to be synchronized with the

Refresh command

much fewer bit flips observed compared to SoftMC

37

Running on the CPU

Challenges:

- The sampling algorithm of TRR is command order and address
dependent
- Memory controller optimizes and reorders the requests

We need a better solution for finding effective

access patterns that trigger bit flips on
TRR-protected DDR4 chips.

Refresh command.

much fewer bit flips observed compared to SoftMC

38

TRRespass: A TRR-Aware Rowfuzzer

Black-box RowHammer test suite that generates effective
access patterns to bypass in-DRAM TRR solutions

It's design consists of three different components:
1. Cardinality

2. Location

3. Fuzzing Strategy

39

TRRespass: A TRR-Aware Rowfuzzer

1. Cardinality

- The number of aggressor rows

- The number of aggressor rows (typically high) required to
overflow the sampler varies across modules

- The number of activations per refresh interval is limited

2. Location

3. Fuzzing Strategy

40

TRRespass: A TRR-Aware Rowfuzzer

1. Cardinality

- The number of aggressor rows

- The number of aggressor rows (typically high) required to
overflow the sampler varies across modules

- The number of activations per refresh interval is limited

2. Location

- sampler may have address dependency: randomize the
location of aggressors

3. Fuzzing Strategy

41

TRRespass: A TRR-Aware Rowfuzzer

1. Cardinality

- The number of aggressor rows

- The number of aggressor rows (typically high) required to
overflow the sampler varies across modules
- The number of activations per refresh interval is limited

2. Location

- sampler may have address dependency: randomize the
location of aggressors

3. Fuzzing Strategy

- The access patterns generated are evaluated based on the
number of unique bit flips they generate

- Randomize the cardinality and location parameters
- Test a chunk of memory for 3 x refresh period

42

Evaluation Methodology

e Device:
- Intel Core i7-7700K, mounted on an ASUS STRIX Z270G
motherboard

* Modules:
- 42 DDR4 DRAM modules from all 3 major manufacturers
are tested

* Methodology:
- Perform a sweep over 256MB of contiguous physical
memory (128 adjacent rows from each bank)
- Examine RowHammer bit flips for both true and anti cells

43

TRRespass-ing Over DDR4

assisted double sided -> many sided

X-4 x-4

X-3 x-3
X-2 | X-2
: ' b X+2
: X+3
X+n x+4
(a) Assisted double-sided (b) 4-sided

44

TRRespass-ing Over DDR4

TABLE II: TRRespass results. We report the number of patterns found and bit flips detected for the 42 DRAM modules in our set.

Module Date Freq. Size Organization Found Best Pattern Corruptions Double
(yy-ww) (MHz) (GB) Ranks Banks Pins Patterns Total 1—0 0—1 Refresh
Aop123 1637 2132 4 1 16 x8 UL — - = — = =
4 1651 2132 4 1 16 x8 UL 4 9-sided 7956 4008 3948 =
As 18-51 2400 4 1 8 x16 UL — — — — — —
Ag,7 18-15 2666 4 1 8 x16 UL - — — — —_ —
As 17-09 2400 8 1 16 x8 UL 33 19-sided 20808 10289 10519 —
Ag 17-31 2400 8 1 16 x8 UL 33 19-sided 24854 12580 12274 —
Ao 1902 2400 16 2 16 x8 UL 488 10-sided 11342 1809 11533 v
A1y 19-02 2400 16 2 16 x8 UL 523 10-sided 12830 1682 11148 v
Az13 1850 2666 8 1 16 x8 UL — — — -~ — —
Ay 19-08" 3200 16 2 16 x8 UL 120 14-sided 32723 16490 16233 —
Ais?t 17-08 2132 4 1 16 x8 UL)] 9-sided 22397 12351 10046 -
B, 18-11 2666 16 2 16 x8 UL 2 3-sided 17 10 q —
B: 18-11 2666 16 2 16 x8 UL 2 3-sided 22 16 6 -
B, 18-49 3000 16 2 16 x8 UL 2 3-sided 5 2 3 —
Bs 19-08t 3000 8 1 16 x8 UL = = = = = =
Bus 19-08" 2666 8 2 16 x8 UL - - — - - -
Bs 7 19-087 2400 4 1 16 x8 UL — = — — — —
Bs® 19-08" 2400 8 1 16 x8 UL — — — — — —
By® 19-08t 2400 8 1 16 x8 UL 2 3-sided 12 - 12 v
Bio11 16-137 2132 8 2 16 x8 UL — - - — —
Coa 18-46 2666 16 2 16 x8 UL — = — = — —
Cay3 19-087 2800 4 1 16 x8 UL - — — — — —
Cap 19-08" 3000 8 1 16 x8 UL — = — — — =
Co,r 19-08" 3000 16 2 16 x8 UL - - - — — —
Cs 19-08t 3200 16 2 16 x8 UL — - — — — =
Co 18-47 2666 16 2 16 x8 UL = = — — —
Ci0.11 19-04 2933 8 1 16 x8 UL - e — — —
Cio?t 15-01t 2132 4 1 16 x8 UT 25 10-sided 190037 63904 126133 v
Ci3t 18-49 2132 4 1 16 x8 UT 3 9-sided 694 239 455 —

1 The module does not report manufacturing date. Therefore, we report purchase date as an approximation.

i Analyzed using the FPGA-based SoftMC.
¢ The system runs with double refresh frequency in standard conditions. We configured the refresh interval to be 64 ms in the BIOS settings.

UL = Unlimited
UT = Untested

45

TRRespass-ing Over DDR4

TABLE II: TRRespass results. We report the number of patterns found and bit flips detected for the 42 DRAM modules in our set.

Module Date Freq. Size Organization Found Best Pattern Corruptions Double
(yy-ww) (MHz) (GB) Ranks Banks Pins Partterns Total 1—0 0—1 Refresh
A0’1)2,3 16-37 2132 4 1 16 X8 UL — — — — — —
Ay 16-51 2132 4 1 16 X8 UL 4 9-sided 7956 4008 3948 =
As 18-51 2400 4 1 8 x16 UL — — — — — —
A7 18-15 2666 4 1 8 x16 UL — — — — — -
Asg 17-09 2400 8 1 16 x8 UL 33 19-sided 20808 10289 10519
Ag 17-31 2400 8 1 16 X8 UL 88 19-sided 24854 12580 12274 -
Ao 19-02 2400 16 2 16 X8 UL 488 10-sided 11342 1809 11533 v
A1 19-02 2400 16 2 16 %8 UL 523 10-sided 12830 1682 11148 v

There is not a single effective access

pattern per module.

Bio,11 16-13 2132 8 2 16 %8 UL = — = — = =
Con 18-46 2666 16 2 16 %8 UL — — —_ — — —
Cas 19-08" 2800 4 1 16 %8 UL = = = = = =
Cus 19-08" 3000 8 1 16 x8 UL - - — — —
Co,7 19-08" 3000 16 2 16 x8 UL - - - — - -
Cs 19-08" 3200 16 2 16 %8 UL — — — — — —
Co 18-47 2666 16 2 16 %8 UL — — — — — —
el 19-04 2933 8 1 16 x8 UL — - - — -
Ciot 15-017 2132 4 1 16 %8 UT 25 10-sided 190037 63904 126133 v
Cyst 1849 2132 4 1 16 x8 UT 3 9-sided 694 239 455 -
1 The module does not report manufacturing date. Therefore, we report purchase date as an approximation. UL = Unlimited
1 Analyzed using the FPGA-based SoftMC. UT = Untested
¢ The system runs with double refresh frequency in standard conditions. We configured the refresh interval to be 64 ms in the BIOS settings. 4 6

TRRespass on LPDDR4(x)

- TRRespass discovers
hammering patterns on
5 out out 12 devices

TRR-protected mobile

platforms are still vulnerable

to RowHammer

.'.

Mobile Memory Found

Phone Year — SoC (GB) Patterns
Google Pixel 2016 MSM8996 4t v
Google Pixel 2 2017 MSM8998 4 —
Samsung Exynos
G960F/DS 2018 9810 4 a
Huawei P20 DS 2018 Kirin 970 4 —
Sony XZ3 2018 SDM&845 4 —
HTC Ul12+ 2018 SDM845 6 —
LG G7 ThinQ 2018 SDM&45 4t v
Google Pixel 3 2018 SDM845 4 v
Google Pixel 4 2019 SMS8150 6 —
OnePlus 7 2019 SMS8150 8 v
Samsung Exynos
G970F/DS i 9820 @ ¥
Huawei P30 DS 2019 Kirin 980 6 —
Xiaomi Redmi Helio
Note 8 Pro 2012 G90T v N

LPDDR4 (not LPDDR4X)

47

Evaluation - Results

TABLE II: TRRespass results. We report the number of patterns found and bit flips detected for the 42 DRAM modules in our set.

Module Date Freq. Size Organization Found Best Pattern Corruptions Double
(yy-ww) (MHz) (GB) Ranks Banks Pins Patterns Total 1—0 0—1 Refresh
Aop123 1637 2132 4 1 16 x8 UL — - = — = =
4 1651 2132 4 1 16 x8 UL 4 9-sided 7956 4008 3948 -~
As 18-51 2400 4 1 8 x16 UL — — — — — —
Ag,7 18-15 2666 4 1 8 x16 UL - — — — —_ —
As 17-09 2400 8 1 16 x8 UL 33 19-sided 20808 10289 10519 —
Ag 17-31 2400 8 1 16 x8 UL 33 19-sided 24854 12580 12274 —
Ao 1902 2400 16 2 16 x8 UL 488 10-sided 11342 1809 11533 v
A1y 19-02 2400 16 2 16 x8 UL 523 10-sided 12830 1682 11148 v
Az13 1850 2666 8 1 16 x8 UL - — — — — —
Ay 19-08" 3200 16 2 16 x8 UL 120 14-sided 32723 16490 16233 —
Ais?t 17-08 2132 4 1 16 x8 UL)] 9-sided 22397 12351 10046 -
B, 18-11 2666 16 2 16 x8 UL 2 3-sided 17 10 q —
B: 18-11 2666 16 2 16 x8 UL D 3-sided 22 16 6 -
B, 18-49 3000 16 2 16 x8 UL 2 3-sided 5 2 3 —
Bs 19-08t 3000 8 1 16 x8 UL = = = = = =
Bus 19-08" 2666 8 2 16 x8 UL - - — - — -
Bs 7 19-08t 2400 4 1 16 x8 UL — = — — — —
Bs® 19-08" 2400 8 1 16 x8 UL - — — — — —
By® 19-08t 2400 8 1 16 x8 UL 2 3-sided 12 - 12 v
Bio11 16-137 2132 8 2 16 x8 UL - — - - — —
Coa 18-46 2666 16 2 16 x8 UL — = — = — —
Cay3 19-087 2800 4 1 16 x8 UL - — — — — —
Cap 19-08t 3000 8 1 16 x8 UL — = — — — =
Co,r 19-08" 3000 16 2 16 x8 UL - - - — — —
Cs 19-08t 3200 16 2 16 x8 UL — - — — = =
Co 18-47 2666 16 2 16 x8 UL = = — — —
Ci0.11 19-04 2933 8 1 16 x8 UL — == — — —
Cio?t 15-01t 2132 4 1 16 x8 UT 25 10-sided 190037 63904 126133 v
Ci3t 18-49 2132 4 1 16 x8 UT 3 9-sided 694 239 455 —

1 The module does not report manufacturing date. Therefore, we report purchase date as an approximation.

i Analyzed using the FPGA-based SoftMC.
¢ The system runs with double refresh frequency in standard conditions. We configured the refresh interval to be 64 ms in the BIOS settings.

UL = Unlimited
UT = Untested

48

Evaluation - Results

Module Date Freq. Size Organization Found Best Pattern Corruptions Double
(yy-ww) (MHz) (GB) Ranks Banks Pins Patterns Totalk 1—0 0—1 Refresh
Ap123 16-37 2132 4 1 16 %8 UL - - — - o o
Ay 16-51 2132 4 1 16 %8 UL 4 O-sided | 7956 4008 3948 —
As 18-51 2400 4 1 8 x16 UL — — — — — —
Asg.7 18-15 2666 4 1 8 x16 UL — - — — - —
As 17-09 2400 8 1 16 %8 UL 35 19-sided |§ 20808 | 10289 10519 —
Ag 17-31 2400 8 1 16 %8 UL 33 19-sided | 24854 | 12580 12274 —
Aig 19-02 2400 16 2 16 %8 UL 488 10-sided | 11342 | 1809 11533 v
A1 19-02 2400 16 2 16 %8 UL 523 10-sided | 12830 | 1682 11148 v
A12,13 18-50 2666 8 1 16 %8 UL — — — — — —
Ay 19-087 3200 16 2 16 %8 UL 120 14-sided | 32723 | 16490 16233 —
At 17-08 2132 4 1 16 x8 UL 2 O-sided | 22397 | 12351 10046 —

» TRRespass can recover multiple effective access patterns for

7 of the 16 modules.

* TRRespass found more than 16K bit flips on average across the

7 vulnerable modules.

* The number of activations required to create bit flips is quite

low (~45K row activations).

49

Evaluation - Results

Modul Date Freq. Size Organization Found Best Pattern Corruptions Double
(yy-ww) (MHz) (GB) Ranks Banks Pins Patterns Total 1—0 0—1 Refresh
By 18-11 2666 16 2 16 x8 UL 2 3-sided 1 10 7 —
B 18-11 2666 16 2 16 x8 UL 2 3-sided 22 16 6 —
B2 18-49 3000 16 2 16 x8 UL 2 3-sided 5 2 3 —
B3 19-08" 3000 8 1 16 x8 UL — — — — — —
By s 19-08" 2666 8 2 16 x8 UL — — — — — —
Be 7 19-087 2400 4 1 16 x8 UL — - — — —
Bs® 19-08" 2400 8 1 16 x8 UL - = = - - -
By® 19-087 2400 8 1 16 %8 UL 2 3-sided 12 — 12 v
Bio,11 16-137 2132 8 2 16 x8 UL - = - = -

The number of bit flips observed is significantly lower

compared to vendor A.

Bypassing the TRR mitigation on these modules is non-trivial.

Further experiments?

50

Evaluation - Results

What happens when the same RowHammer experiment using the
aggressor rows that are known to be able to cause bit flips is
repeated for multiple iterations?

Varying number of bit flips observed

#Bit Flips
o — N w BN w (@)] ~

0 50K 100K 150K 200K 250K 300K 350K 400K

Test iterations
51

Evaluation - Results

Date Freq. Size Organization Found Corruptions Double
Module vy ww) (MHz) (GB) Ranmks Banks Pins TAC pamerns BeStPOerm T 150 01 Refresh
Co 18-46 2666 16 2 16 x8 UL — - — — — -
Ca3 19-087 2800 4 1 16 x8 UL — - - — — —
Cas 19-08" 3000 8 1 16 x8 UL = ~ — — = —
Ce.7 19-08t 3000 16 2 16 x8 UL — — — — — —
Cs 19-08" 3200 16 2 16 x8 UL = = — = = =
Gy 18-47 2666 16 2 16 x8 UL — - — — = s
C1011 19-04 2933 8 1 16 x8 UL — — — — — —
Ciot 15-01t 2132 4 1 16 x8 UT 25 10-sided [190037 63904 126133 v
Ci3t 18-49 2132 4 1 16 x8 UT 3 9-sided| 694 239 455 I —

* The number of bit flips observed decreased over years.

in DRAM TRR implementation has improved over time

52

Evaluation - Increasing Refresh Rate

Doubling/quadrupling refresh rate is one mitigation mechanism.

Increasing refresh rate might also improve the effectiveness of TRR.

Module Date Freq. Size Organization Found Best Pattern Corruptions Double
(yy-ww) (MHz) (GB) Ranks Banks Pins Patterns Total 1—0 0—1 Refresh
Api123 16-37 2132 4 1 16 X8 UL o - — - S —
Ay 16-51 2132 4 1 16 X8 UL 4 9-sided 7956 4008 3948 —
As 18-51 2400 4 1 8 x16 UL — — — — — -
Ag,7 18-15 2666 4 1 8 x16 UL — — — — — —
As 17-09 2400 8 1 16 X8 UL a3 19-sided 20808 10289 10519 —
Ag 17-31 2400 8 1 16 X8 UL 33 -Si 74 -
Ao 19-02 2400 16 2 16 X8 UL 488 10-sided 11342 1809 11533 v
A1l 19-02 2400 16 2 16 X8 UL 523 10-sided 12830 1682 11148 v
Azis 1850 2666 8 1 16 x8 UL . = = — —
Ais 19-081 3200 16 2 16 X8 UL 120 14-sided 32723 16490 16233 —
Azst 17-08 2132 4 1 16 X8 UL 2 9-sided 22397 12351 10046 —

TRRespass can trigger bit flips when double refresh is employed.

53

Evaluation - Increasing Refresh Rate

Doubling/quadrupling refresh rate is one mitigation mechanism.

Increasing refresh rate might also improve the effectiveness of TRR.

Organization Corruptions
Date Freq Szze MAC Found 7, I — Double

“Thls result fu rther undermlnes the efﬁcacy of

Module

double refresh as a stopgap solution against
RowHammer even when in-DRAM TRR is deployed !

Ai2.13
Aia 19-08F 3200 16 2 16 X8 1L 120 14-sided 32723 16490 16233 —
A15 17-08 2132, 4 1 16 X8 B/l 2 O-sided 22397 12351 10046 —

18-50 2666 8 1 16 x8 UL —

TRRespass can trigger bit flips when double refresh is employed.

54

Evaluation - Repeatability of the Bit Flips

* Repeatability is a fundamental factor in RowHammer

exploitation
* The best pattern found by TRRespass is executed on one

module per DRAM vendor

* Bit flips are repeatable
- multiple attempts might be required
- spurious bit flips might be generated

55

Exploitation with TRRespass

1. Memory templating:
- find the right RowHammer access pattern

2. Memory massaging:
- map the target data onto one of the available templates

3. Exploitation:
- trigger the same RowHammer bit flips on the target data

56

Exploitation with TRRespass

TABLE IV: Time to exploit. Time to find the first exploitable
template on two sample modules from each DRAM vendor.

Module T (ms) PTE [81] RSA-2048 [79] sudo [27]

A4 188.7 4 .9s 6m27s —
Ay 180.8 38.8s 39m 28s —
B 360.7 — — —
B- 331.2 — — —
Cio 300.0 2.3s 74.6s 54m16s
Ci3 180.9 3h 15m — —

T: Time to template a single row: time to fill the victim and aggressor rows + hammer
time + time to scan the row.

57

Exploitation with TRRespass

TABLE IV: Time to exploit. Time to find the first exploitable
template on two sample modules from each DRAM vendor.

Module T (ms) PTE [81] RSA-2048 [79] sudo [27]

Real-world attacks can be mounted to DDR4 for

modules with in-DRAM TRR protection.

Ci3 180.9 3h 15m — —
T: Time to template a single row: time to fill the victim and aggressor rows + hammer
time + time to scan the row.

58

Conclusion/Takeaways

Reverse engineers the pTRR and in-DRAM TRR mechanisms
implemented in memory controllers and DRAM chips

First work to show that DRAM modules with in-DRAM TRR are
vulnerable to RowHammer

Presents TRRespass, Black-box RowHammer test suite that
generates effective access patterns to bypass in-DRAM TRR
solutions

Demonstrates that bit flips can be induced in 13/42 DRAM
modules tested

Provides hammering patterns to mount real-world attacks for
many of the DDR4 DRAM modules in the market
59

Conclusion/Takeaways

Reverse engineers the pTRR and in-DRAM TRR mechanisms
implemented in memory controllers and DRAM chips

First work to show that DRAM modules with in-DRAM TRR are
vulnerable to RowHammer

Improves our understanding of TRR significantly

modules tested

Provides hammering patterns to mount real-world attacks for
many of the DDR4 DRAM modules in the market
60

CRITIQUE

Strengths

Proves in-DRAM TRR is not effective against RowHammer

Proposes many-sided RowHammer attacks that can bypass
TRR mechanisms

TRRespass can automatically induce bit flips
Proves the exploitability of the RowHammer attacks

Presents the first overview on in-DRAM TRR implementations:
- uncovers some of their underlying mechanisms

- demonstrates there are a variety of TRR implementations

Demonstrates that modern memory controllers do not
employ TRR

62

Weaknesses

TRRespass is inefficient
- might not find a hammering pattern
- might not find the best hammering pattern

Bit flips observed only in 13/42 modules tested
Cannot always create an attack
The sampling mechanism is not fully understood

Can create bit flips for only untested DRAM modules for
vendor C

The writing is poor

- Vendor based conclusions are not insightful

63

Discussion Points

What other tests could be developed to exactly figure out the underlying
TRR mechanism?

Reverse Engineered:
J The sampler size
J Association of TRR with regular refreshes

Still not discovered:
? How to select which victim row to refresh?

? What is the sampling mechanism?

64

Discussion Points

Would TRR be a viable solution if the sampler size increases significantly?

150+

100 1

#Bit Flips

50 1

T T T T T
— N Mm < n O© ™~ W o O =< (N Mm < n o
~ ~ [~ ~ ~ ~

#Aggressor rows

Fig. 10: Bit flips vs. number of aggressor rows. Module Ci2:

No bit flips for aggressor rows < sampler size

Kim et al., 2020 reports minimum hammering count (HC) as low as 4800 per
aggressor row. Which one becomes more dominant?

- The max # of activations per refresh interval / min # HC

- Sampler size

65

Discussion Points

Assuming that we can increase the sampler size as much as required:

- Can sampler always sample the aggressor rows?

Even if we the sampler always samples the aggressor rows

e MmA)

B e
“Observation 6. For a given DRAM %E o | jE;»
manufacturer, chips of newer siil wla :
DRAM technology nodes can Sl | :
exhibit RowHammer bit flips 1) in gl wlla E
more rows and 2) farther away EEE Moo :
from the victim row.” ;Sé I EdRAShanaREEe :
[Kim et al., 2020] Fissmarl iesssnsmeRtuiNbadEace asnars g

46 64202 4 6 6 42
Distance from the victim row (row 0)

Figure 6: Distribution of RowHammer bit flips across row
offsets from the victim row.

- How TRR should specify the victim rows of a given aggressor row?

66

Discussion Points

One key limitation of in-DRAM TRR is that it relies on the execution of
refresh command.

e \What if the mitigation mechanism was able to act independently of the
refresh command?

e Or, does it have to rely on refresh at all once the target rows are
identified?

6/

Discussion Points

Do you think RowClone can be an effective solution against RowHammer?

e Remap the victim rows when the HC exceeds the threshold

e Remap the aggressor row when the HC exceeds the threshold

One prior approach (CROW):

- Considers remapping only the
victim row

- The number of victim rows that
can be remapped is limited by the
number of copy rows

[Hassan et al., 2019]

68

Discussion Points

Randomized Row-Swap: Mitigating Row Hammer
by Breaking Spatial Correlation Between Aggressor and Victim Rows

Gururaj Saileshwar Bolin Wang
Georgia Tech, USA UBC, Canada

gururaj.s @gatech.edu bolin@ece.ubc.ca

Abstract

Row-Hammer (RH) is a fault-injection attack that occurs
when a DRAM row is accessed frequently causing bit-flips
in nearby rows. RH is a serious security threat as attackers

can cause bit-flips in page-tables to achieve privilege escala-

tion. Several defenses have been recently proposed that track

attacker-controlled aggressor-rows and apply mitigating ac-
tion on immediate neighboring victim rows by refreshing them.

However, all such proposals using vicim-focused mitigation
preserve the spatial connection between victim and aggressor

Moinuddin Qureshi

Prashant Nair
UBC, Canada
prashantnair@ece.ubc.ca

Georgia Tech, USA
moin@ gatech.edu

that bit-flips injected by RH are a significant security threat.
An attacker could flip bits in the Page-Tables to enable priv-
ilege escalation and access data stored at arbitrary locations.
Furthermore, the bit-flips from RH are data-dependent, and
this property can also be used to stealthily infer data stored in
nearby rows [18]. Moreover, the frequency of bit-flips due to
RH in modern devices has only increased in recent years. For
example, the number of activations required on a particular
aggressor row to obtain a bit-flip due to RH (termed as the
Row-Hammer Threshold) has reduced by almost 30x in the last

mhtiaes Gt ams Gmsmcces i dascise S 1IOY L. TMAAANY 72 MNTATIEN

https://twitter.com/gqururajs92/status/14604849600166010907s=21

69

https://twitter.com/gururajs92/status/1460484960016601090?s=21

Discussion Points

TRRespass considers the cardinality and the location of aggressor rows
while developing the attack.

There are other parameters that affect the effectiveness of RowHammer:
[Orosa et al., 2021]

* A DRAM cell experiences bit flips within a bounded temperature range

no bit flips no bit flips
_Ll Vulnerable Temperature Range I—L>
- Temperature

Temperature

* Arow can be disabled within the row’s vulnerable temperature range

—I Disable RowA I—I Disable RowB I—b
T

emperature

- Aggressor Row
Active Time

Number of Bit Flips
per DRAM Row

34.5 64.5 94.5 124.5 154.5
Aggressor Row Active Time (ns)

/70

Discussion Points

Can we develop attacks that are based on these other parameters?
How would it affect the mitigation mechanisms?

The most common mitigation mechanisms are based on

- Refresh & tracking aggressor rows
Can we design mitigation mechanisms based on these other
parameters?

- What other parameters we can think of?

Discussion Points

If we can solve this problem architecturally,
Is it better to have deterministic or probabilistic solutions?

Probabilistic
- Does not provide full protection

- In-dram TRR has some probabilistic mechanisms (e.g., address
dependency) which makes it difficult to bypass

Deterministic
- Provides full protection

- Would it be easy to bypass it once you know the exact mechanism?

Can it really provide a full solution? Blockhammer

/2

TRRespass: Exploiting the Many

Sides of Target Row Refresh

Proceedings of the 41st IEEE Symposium on Security and Privacy (S&P), May 2020.
Authors: Pietro Frigo, Emanuele Vannacci, Hasan Hassan, Victor van der Veen, Onur
Mutlu, Cristiano Giuffrida, Herbert Bos and Kaveh Razavi

Presenter: Meryem Banu Cavlak
December 9, 2021

https://www.ieee-security.org/TC/SP2020/

Discussion Points

"However, all of these solutions merely treat the symptoms of a
RowHammer attack (i.e., prevent RowHammer conditions) without
solving the core circuit vulnerability.” [Kim et al., 2020]

e Any circuit level solution ideas?

e Can we solve this problem architecturally?

74

