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Executive Summary
• Motivation: Modern computing systems continue to diversify with respect to 

system architecture, memory technologies, and applications’ memory needs

• Problem: Continually adapting the conventional virtual memory framework to 
each possible system configuration is challenging

- Results in performance loss or requires non-trivial workarounds

• Goal: Design an alternative virtual memory framework that

(1) Efficiently supports a wide variety of new system configurations 

(2) Provides the key features and eliminates the key inefficiencies of
the conventional virtual memory framework 

• Virtual Block Interface (VBI):
Delegates memory management to dedicated hardware in the memory controller

- Efficiently adapts to diverse system configurations

- Reduces overheads and complexities associated with conventional virtual memory

- Enables many optimizations (e.g., low-overhead page walks in virtual machines, virtual caches)

• Evaluation: Two example use cases
1. VBI significantly improves performance for both native execution (2.4x)

and virtual machine environments (4.3x)

2. VBI significantly improves heterogeneous memory architecture effectiveness
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Computing Systems Are Diversifying
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Challenges

• Three examples of the challenges in adapting 
conventional virtual memory frameworks for 
increasingly-diverse systems:

- Requiring a rigid page table structure

- High address translation overhead in virtual machines

- Inefficient heterogeneous memory management
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Challenge 1: Rigid Page Table Structures

• Flexibly customized page tables can reduce the 
address translation overhead

- Customized to the application’s
memory behavior

• e.g., larger granularities for more densely

allocated memory regions

• Con:
- Requires a rigid page table structure

• e.g., fixed-granularity 4-level page table
in Intel x86
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Challenge 2: Overheads in Virtual Machines
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Challenge 2: Overheads in Virtual Machines

15

• In virtual machines, 
processes go through an 
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• Con:
- 2D page table walks
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conventional virtual memory frameworks for 
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Page Tables

managed by the OS

• Enhancing performance with 
heterogenous memories requires:

- Data mapping
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Virtual Address Space (VAS)

P1
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Page Tables

managed by the OS

Challenge 3: Managing Heterogeneous Memory

Slow Mem.Fast Mem.

• Enhancing performance with 
heterogenous memories requires:

- Data mapping

- Data migration

• Con:
- OS has low visibility into

runtime memory behavior

• Timely reaction to the changes is challenging



Prior Works

• Optimizations that alleviate the overheads of
the conventional virtual memory framework

Shortcomings:

• Based on specific system or workload characteristics

- Are applicable to only limited problems or applications

• Require specialized and not necessarily compatible
changes to both the OS and hardware

- Implementing all in a system is a daunting prospect
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Prior Works
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the conventional virtual memory framework

Shortcomings:
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- Are applicable to only limited problems or applications
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changes to both the OS and hardware

- Implementing all in a system is a daunting prospect
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We need a holistic solution that efficiently supports 
increasingly diverse system configurations



Design an alternative virtual memory framework that

• Efficiently and flexibly supports increasingly diverse
system configurations

• Provides the key features of conventional virtual memory 
framework while eliminating its key inefficiencies

Our Goal
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Virtual Block Interface (VBI)

VBI is an alternative virtual memory framework

Key idea:

Delegate physical memory management to dedicated 
hardware in the memory controller
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VBI: Guiding Principles

• Size virtual address spaces appropriately for processes
- Mitigates translation overheads of unnecessarily large 

address spaces

• Decouple address translation from access protection
- Defers address translation until necessary to access memory

- Enables the flexibility of managing translation and protection 
using separate structures

• Communicate data semantics to the hardware
- Enables intelligent resource management

24

Addresses the rigidness and lack of information in 
current frameworks, to reduce large overheads
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VBI: Overview
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Virtual Blocks
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• Globally-visible VBI address space
- Consists of a set of virtual blocks (VBs)

of different sizes

• Example size classes: 4 KB, 128 KB, 4 MB,
128 MB, 4 GB, 128 GB, 4 TB, 128 TB

• All VBs are visible to all processes

• Processes map each semantically 
meaningful unit of information 

to a separate VB
- e.g., a data structure, a shared library
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Inherently Virtual Caches

• VBI address space provides
system-wide unique
VBI addresses which are also
visible to caches

• VBI addresses are directly used
to access on-chip caches

- No longer require address translation

• Pros: 
- Enables inherently virtual caches

• no synonyms and homonyms
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Hardware-Managed Memory

• Memory management is delegated
to the Memory Translation Layer
(MTL) in the memory controller

- Address translation

- Physical memory allocation

• Pros: Many benefits, including

- Physical memory is allocated only 
when the location needs to be written 
to memory

- No need for 2D page walks in 
virtual machines

- Enabling flexible translation structures
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OS-Managed Access Permissions

VBI Address Space
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.    .    .
Processes• OS controls which processes

access which VBs

• Each process has its own 
permissions (read/write/execute) 
when attaching to a VB

• OS maintains a list of VBs attached
to each process

- Stored in a per-process table

- Used during permission checks
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Process Address Space in VBI
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First guiding principle: 

Appropriately-sized virtual address spaces



Decoupled Protection and Translation

Address mapping
managed by OS

36

Virtual Address Space (VAS)

P1

VAS 1

P2 Pn

Page Tables

managed by the OS

Physical Memory

VAS 2 VAS n

.    .    .
Processes

Access permissions 
managed by OS

VBI Address Space

P1

VB 1

P2 Pn

Memory Translation Layer

in the memory controller

Physical Memory

VB 2 VB 3 VB 4

.    .    .
Processes

Access permissions
managed by OS

Address mapping
managed by the MTL

Conventional virtual memoryVBI



Decoupled Protection and Translation

Address mapping
managed by OS
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Second guiding principle:
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VBI



Address Translation Structures in VBI
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• Translation structures are
not shared with the OS

- Separate structures for translation 
and permission information

- Allows flexible translation structures

- Per-VB translation structure tuned to 
the VB’s characteristics
e.g., single-level tables for small VBs

• Pros: 
- Lowers overheads and allows for 

customization



VB Information
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X
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Third guiding principle:

Communicating data semantics to the hardware



Implementing VBI

• Please refer to our paper

- Detailed reference implementation and microarchitecture

41

Memory Controller

Memory Translation Layer (MTL)

L1

miss
VBUID   offset

L2

Last-Level 
Cache
(LLC)

index = 

request_vb(...);

x = malloc(index, size);

.

.

.

y = (*x); Virtual
Address

Application

index  offset

miss

VBI
Address

CPU Physical Memory

VITs

CVTs

enable_vb attach

CVT

(Client–VB Table) 

Cache Translation

Structures

Data

Translation 

Walker

Physical AddressTLB

miss

hit

VIT

(VB Info Table)

Cache



Motivation

Outline

42

VBI: Virtual Block Interface
Key Idea & Guiding Principles
Design Overview
Optimizations Enabled by VBI

Methodology

Results

Summary

Review

Discussion



• Many optimizations not easily attainable before

• Examples:

- Appropriately sized process address space

- Flexible address translation structures

- Communicating data semantics to the hardware

- Delayed physical memory allocation

- Eliminating 2D page walks in virtual machines

- Inherently virtual caches

- Early memory reservation mechanism

Optimizations Naturally Enabled by VBI
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Achieved
through
guiding

principles

Covered in our 
paper

Covered
next



• Delayed physical memory allocation

• Eliminating 2D page walks in virtual machines

Example Optimizations
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miss
page walk
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In VBI
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• No address translation for accesses 
to regions with no allocation

• No memory access to regions with 
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• No memory allocation for VBs that 
never leave the cache during their 
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VBI reduces address translation overhead, 
improves overall performance, 

and reduces memory consumption

Delayed Physical Memory Allocation



• Inherently virtual caches

• Eliminating 2D page walks in virtual machines

Example Optimizations
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Guest OS
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Guest OS
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Guest OS and host OS interact once to 
attach Process 2 to its VBs
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Guest OS and host OS interact once to 
attach Process 1 to its VBs
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MTL performs address translation and 
memory allocation

Eliminating 2D Page Walks in Virtual Machines
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By eliminating 2D page walks,
VBI reduces address translation overhead

in virtualized environments
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• Simulator: heavily-modified version of Ramulator
- Models virtual memory components (e.g., TLBs, page tables)

- Available at https://github.com/CMU-SAFARI/Ramulator-VBI

• Workloads: SPECspeed 2017, SPEC CPU 2006, TailBench, Graph 500

• System parameters:
- Core: 4-wide issue, OOO, 128-entry ROB

- L1 Cache: 32 KB, 8-way associative, 4 cycles

- L2 Cache: 256 KB, 8-way associative, 8 cycles

- L3 Cache: 8 MB (2 MB per-core), 16-way associative, 31 cycles

- L1 DTLB:       - 4 KB pages: 64-entry, fully associative

- 2 MB pages: 32-entry, fully associative

- L2 DTLB: 4 KB and 2 MB pages: 512-entry, 4-way associative

- Page Walk Cache: 32-entry, fully associative

- DRAM: DDR3-1600, 1 channel, 1 rank/channel, 8 banks/rank

- PCM: PCM-800, 1 channel, 1 rank/channel, 8 banks/rank

Methodology
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• The impact of VBI on reducing the address translation 
overhead in both native execution and virtual machines

• Evaluated systems:

- Three baselines:
• Native: applications run natively on an x86-64 system

• Virtual: applications run inside a virtual machine (accelerated using 2D page 
walk cache [Bhargava+, ASPLOS’08]) 

• Perfect TLB: an unrealistic version of Native with no translation overhead

- One VBI configuration:
• VBI-Full: VBI with all the optimizations that it enables

• See our paper for results on more system configurations

Use Case 1: Address Translation
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• The benefits of VBI in harnessing the full potential of 
heterogeneous memory architectures

- Hybrid PCM–DRAM memory architecture

• Evaluated systems:

- Two baselines:
• Hotness-Unaware PCM–DRAM: unaware of the data hotness

• IDEAL: always maps frequently-accessed data to DRAM

- One VBI configuration:

• VBI PCM–DRAM: VBI maps and migrates frequently-accessed VBs to the 
DRAM

Use Case 2: Memory Heterogeneity
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More in our paper:

• Similar performance improvement for Tiered-Latency-DRAM [Lee+, HPCA’13]

Use Case 2: Memory Heterogeneity
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Use Case 2: Memory Heterogeneity
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• Virtual Block Interface (VBI): A new virtual memory framework
- Addresses the challenges in adapting conventional virtual memory to 

increasingly diverse system configurations and workloads

• Key Idea: Delegate physical memory management to dedicated 
hardware in the memory controller

• Benefits: Not easily attainable in conventional virtual memory 
(e.g., inherently virtual caches ,  delaying physical memory 
allocation, and avoiding 2D page walks in virtual machines)

• Evaluation: 
- VBI significantly improves performance in both native execution and 

virtual machines
- Increases the effectiveness of managing heterogeneous memory 

architectures

• Conclusion: VBI is a promising new virtual memory framework
- Can enable several important optimizations
- Increases design flexibility for virtual memory
- A new direction for future work in novel virtual memory frameworks

Summary
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Questions
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Strengths

• Novel and very efficient idea
- General-purpose: solves many problems at once

- Application/OS/hardware developers all profit

• The authors give an implementation proposal
- Stimulates to think creatively!

• Offer proposals/replacements for many OS 
functionalities

- C-o-W, MM-I/O, Swapping …

VBI should be the future!
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Remember RowClone?

• In-memory copy/bulk zeroing

• Goal: Reduce cache pollution, latency, bandwidth and 
energy waste

• Extremely fast within subarray (FPM)
- Requires data to be mapped in same subarray

- Maximize by making OS subarray-aware

Thanks to VBI this has become easier!

→ OS does no longer manage physical memory
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Weaknesses

• Paper is very dense
- I struggled with it

• What is really important? How do you present it?

• High initial investment
- VBI drastically changes all existing software/OS/hardware 

designs
• But don’t fall into the rat hole!

• Coordination + standardization
- How to guarantee extensibility of the property bit vector?

• What if future technologies could profit of more detailed software-
provided hints? Where to draw the line?

- Could lead to inconsistencies across implementations
• Think about Intel vs. AMD
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Discussion

• Ask me about the implementation proposal …
- Anything you are interested in!

• Changes to you as a software/OS/hardware developer

• What do you think about VBI?
- Do you like/dislike it? Why?

- Do you think modularity is the right step? (vs. integration)
• Any ideas where this also should be used?

- Can even embedded systems profit of VBI?

- Would you want to achieve compatibility to existing OS?
• Can you think of an “easy fix”?
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2D Page Table Walks
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Malloc in VBI

index_t request_vb(size_t expectedSize, enum_t hints);

void* malloc(size_t size, index_t vb);
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Addressing a VB

• Global VBI address is split up

VBUID       Offset

SizeID  +  VBID
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VB Management

• Stored globally in VB Info Tables (VIT) (per size class)

• Reside in a reserved region of PM

• Implicitly managed by OS

VBID Enabled Flags + Hints RefCount TransStructType TransStructPtr

0 Yes Kernel, 
Latency

3 Single-level 0xAA00BB00…

1 No - 0 - -

2 Yes User, 
Bandwidth
Compressible

5 Direct-mapped 0xDEADBEEF…
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Client VB-Table (CVT)

• Per memory client

• Stores the attached VBs

• Implicitly managed by OS

Index VBUID Valid Permissions

0 3 Yes RW

1 12 Yes RX

2 8 No -
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Addressing a VB now

• Virtual address is split up

• Provide another level of indirection and allows easier 
relocation

CVT Index          Offset
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val = *ptr;

CVT Index
+

Offset

Index VBUID V P

VBI Address L1, L2, LLC

C
V

T
 C

ac
h

e

MTL

Client-VB Table

Addressing a VB now (CPU)
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Addressing a VB now (MTL)

VBI Address

SizeId
+

VBID
+

Offset 

VBID E … … Type Ptr

V
IT

 C
ac

h
e

Translation
Walker

TLB

Translation structures

VB Info Table
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