
The Virtual Block Interface:
A Flexible Alternative to the

Conventional Virtual Memory Framework

Nastaran Hajinazar Pratyush Patel Minesh Patel
Konstantinos Kanellopoulos Saugata Ghose

Rachata Ausavarungnirun Geraldo F. Oliveira Jonathan Appavoo
Vivek Seshadri Onur Mutlu

Presented by Stefan Scholbe

Most slides by Nastaran Hajinazar

ISCA, 2020

Executive Summary
• Motivation: Modern computing systems continue to diversify with respect to

system architecture, memory technologies, and applications’ memory needs

• Problem: Continually adapting the conventional virtual memory framework to
each possible system configuration is challenging

- Results in performance loss or requires non-trivial workarounds

• Goal: Design an alternative virtual memory framework that

(1) Efficiently supports a wide variety of new system configurations

(2) Provides the key features and eliminates the key inefficiencies of
the conventional virtual memory framework

• Virtual Block Interface (VBI):
Delegates memory management to dedicated hardware in the memory controller

- Efficiently adapts to diverse system configurations

- Reduces overheads and complexities associated with conventional virtual memory

- Enables many optimizations (e.g., low-overhead page walks in virtual machines, virtual caches)

• Evaluation: Two example use cases
1. VBI significantly improves performance for both native execution (2.4x)

and virtual machine environments (4.3x)

2. VBI significantly improves heterogeneous memory architecture effectiveness
2

Motivation

Outline

3

VBI: Virtual Block Interface
Key Idea & Guiding Principles
Design Overview
Optimizations Enabled by VBI

Methodology

Results

Summary

Review

Discussion

Motivation

Outline

4

VBI: Virtual Block Interface
Key Idea & Guiding Principles
Design Overview
Optimizations Enabled by VBI

Methodology

Results

Summary

Review

Discussion

Virtual Memory

5

Application

Hardware

Virtual Memory
managed by the operating system

Computing Systems Are Diversifying

6

Application

Virtual Memory
managed by the operating system

Hardware

Cannot adapt
efficiently

7

Virtual Address Space (VAS)

P1

VAS 1

P2 Pn

Page Tables

managed by the OS

Physical Memory

VAS 2 VAS n

. . .
Processes

Conventional Virtual Memory Framework

8

Virtual Address Space (VAS)

P1

VAS 1

P2 Pn

Page Tables

managed by the OS

Physical Memory

VAS 2 VAS n

. . .
Processes

Conventional Virtual Memory Framework

each process is mapped to a fixed-size
virtual address space

e.g., 256 TB in Intel x86-64

9

Virtual Address Space (VAS)

P1

VAS 1

P2 Pn

Page Tables

managed by the OS

Physical Memory

VAS 2 VAS n

. . .
Processes

Conventional Virtual Memory Framework

one-to-one mapping
managed by the OS

10

Virtual Address Space (VAS)

P1

VAS 1

P2 Pn

Page Tables

managed by the OS

Physical Memory

VAS 2 VAS n

. . .
Processes

Conventional Virtual Memory Framework

per-process page tables to
map each VAS to physical memory

managed by the OS

read by hardware

Challenges

• Three examples of the challenges in adapting
conventional virtual memory frameworks for
increasingly-diverse systems:

- Requiring a rigid page table structure

- High address translation overhead in virtual machines

- Inefficient heterogeneous memory management

11

Challenge 1: Rigid Page Table Structures

• Flexibly customized page tables can reduce the
address translation overhead

- Customized to the application’s
memory behavior

• e.g., larger granularities for more densely

allocated memory regions

• Con:
- Requires a rigid page table structure

• e.g., fixed-granularity 4-level page table
in Intel x86

12

Virtual Address Space (VAS)

P1

VAS 1

P2 Pn

Page Tables

managed by the OS

Physical Memory

VAS 2 VAS n

. . .
Processes

accessed by both OS and hardware

Challenges

• Three examples of the challenges in adapting
conventional virtual memory frameworks for
increasingly-diverse systems:

- Requiring a rigid page table structure

- High address translation overhead in virtual machines

- Inefficient heterogeneous memory management

13

Challenge 2: Overheads in Virtual Machines

14

Host Virtual Address Space

Host OS

Host Page Tables

Physical Memory

Process 1

VAS 1

Challenge 2: Overheads in Virtual Machines

15

• In virtual machines,
processes go through an
extra level of indirection

• Con:
- 2D page table walks

Guest OS

Host Virtual Address Space

Host OS

Process 2

Host Page Tables

Physical Memory

---- virtualization layer ----

Guest Virtual Address Space

g VAS

Guest Page Tables

Process 1

VAS 1 VAS 2

guest virtual
– to –

host virtual

host virtual
– to –

host physical

Challenges

• Three examples of the challenges in adapting
conventional virtual memory frameworks for
increasingly-diverse systems:

- Requiring a rigid page table structure

- High address translation overhead in virtual machines

- Inefficient heterogeneous memory management

16

Page Tables

managed by the OS

• Enhancing performance with
heterogenous memories requires:

- Data mapping

17

Virtual Address Space (VAS)

P1

VAS 1

Challenge 3: Managing Heterogeneous Memory

Slow Mem.Fast Mem.

18

Virtual Address Space (VAS)

P1

VAS 1

Page Tables

managed by the OS

Challenge 3: Managing Heterogeneous Memory

Slow Mem.Fast Mem.

• Enhancing performance with
heterogenous memories requires:

- Data mapping

- Data migration

• Con:
- OS has low visibility into

runtime memory behavior

• Timely reaction to the changes is challenging

Prior Works

• Optimizations that alleviate the overheads of
the conventional virtual memory framework

Shortcomings:

• Based on specific system or workload characteristics

- Are applicable to only limited problems or applications

• Require specialized and not necessarily compatible
changes to both the OS and hardware

- Implementing all in a system is a daunting prospect

19

Prior Works

• Optimizations that alleviate the overheads of
the conventional virtual memory framework

Shortcomings:

• Based on specific system or workload characteristics

- Are applicable to only limited problems or applications

• Require specialized and not necessarily compatible
changes to both the OS and hardware

- Implementing all in a system is a daunting prospect

20

We need a holistic solution that efficiently supports
increasingly diverse system configurations

Design an alternative virtual memory framework that

• Efficiently and flexibly supports increasingly diverse
system configurations

• Provides the key features of conventional virtual memory
framework while eliminating its key inefficiencies

Our Goal

21

Motivation

Outline

22

VBI: Virtual Block Interface
Key Idea & Guiding Principles
Design Overview
Optimizations Enabled by VBI

Methodology

Results

Summary

Review

Discussion

Virtual Block Interface (VBI)

VBI is an alternative virtual memory framework

Key idea:

Delegate physical memory management to dedicated
hardware in the memory controller

23

VBI: Guiding Principles

• Size virtual address spaces appropriately for processes
- Mitigates translation overheads of unnecessarily large

address spaces

• Decouple address translation from access protection
- Defers address translation until necessary to access memory

- Enables the flexibility of managing translation and protection
using separate structures

• Communicate data semantics to the hardware
- Enables intelligent resource management

24

Addresses the rigidness and lack of information in
current frameworks, to reduce large overheads

Motivation

Outline

25

VBI: Virtual Block Interface
Key Idea & Guiding Principles
Design Overview
Optimizations Enabled by VBI

Methodology

Results

Summary

Review

Discussion

VBI: Overview

26

Virtual Address Space (VAS)

P1

VAS 1

P2 Pn

Page Tables

managed by the OS

Physical Memory

VAS 2 VAS n

. . .
Processes

VBIConventional Virtual Memory

VBI Address Space

P1

VB 1

P2 Pn

Memory Translation Layer

in the memory controller

Physical Memory

VB 2 VB 3 VB 4

. . .
Processes

Virtual Blocks

VBI Address Space

P1

VB 1

P2 Pn

Memory Translation Layer

in the memory controller

Physical Memory

VB 2 VB 3 VB 4

. . .
Processes

• Globally-visible VBI address space

27

Virtual Blocks

VBI Address Space

P1

VB 1

P2 Pn

Memory Translation Layer

in the memory controller

Physical Memory

VB 2 VB 3 VB 4

. . .
Processes

• Globally-visible VBI address space
- Consists of a set of virtual blocks (VBs)

of different sizes

• Example size classes: 4 KB, 128 KB, 4 MB,
128 MB, 4 GB, 128 GB, 4 TB, 128 TB

28

Virtual Blocks

VBI Address Space

P1

VB 1

P2 Pn

Memory Translation Layer

in the memory controller

Physical Memory

VB 2 VB 3 VB 4

. . .
Processes

• Globally-visible VBI address space
- Consists of a set of virtual blocks (VBs)

of different sizes

• Example size classes: 4 KB, 128 KB, 4 MB,
128 MB, 4 GB, 128 GB, 4 TB, 128 TB

• All VBs are visible to all processes

29

Virtual Blocks

VBI Address Space

P1

VB 1

P2 Pn

Memory Translation Layer

in the memory controller

Physical Memory

VB 2 VB 3 VB 4

. . .
Processes

• Globally-visible VBI address space
- Consists of a set of virtual blocks (VBs)

of different sizes

• Example size classes: 4 KB, 128 KB, 4 MB,
128 MB, 4 GB, 128 GB, 4 TB, 128 TB

• All VBs are visible to all processes

• Processes map each semantically
meaningful unit of information

to a separate VB
- e.g., a data structure, a shared library

30

Inherently Virtual Caches

• VBI address space provides
system-wide unique
VBI addresses which are also
visible to caches

• VBI addresses are directly used
to access on-chip caches

- No longer require address translation

• Pros:
- Enables inherently virtual caches

• no synonyms and homonyms

31

VBI Address Space

P1

VB 1

P2 Pn

Memory Translation Layer

in the memory controller

Physical Memory

VB 2 VB 3 VB 4

. . .
Processes

synonym = different addresses for the same data
homonym = same address for different data

Hardware-Managed Memory

• Memory management is delegated
to the Memory Translation Layer
(MTL) in the memory controller

- Address translation

- Physical memory allocation

• Pros: Many benefits, including

- Physical memory is allocated only
when the location needs to be written
to memory

- No need for 2D page walks in
virtual machines

- Enabling flexible translation structures
32

VBI Address Space

P1

VB 1

P2 Pn

Memory Translation Layer

in the memory controller

Physical Memory

VB 2 VB 3 VB 4

. . .
Processes

OS-Managed Access Permissions

VBI Address Space

P1

VB 1

P2 Pn

Memory Translation Layer

in the memory controller

Physical Memory

VB 2 VB 3 VB 4

. . .
Processes• OS controls which processes

access which VBs

• Each process has its own
permissions (read/write/execute)
when attaching to a VB

• OS maintains a list of VBs attached
to each process

- Stored in a per-process table

- Used during permission checks

33

Virtual Address Space (VAS)

P1

VAS 1

P2 Pn

Page Tables

managed by the OS

Physical Memory

VAS 2 VAS n

. . .
Processes

Process Address Space in VBI

VBI Address Space

P1

VB 1

P2 Pn

Memory Translation Layer

in the memory controller

Physical Memory

VB 2 VB 3 VB 4

. . .
Processes• Any process can attach to any VB

• A process' VBs define its
address space

- Address space size is determined by
the actual needs of the process

the address space of
process P1

34

Process Address Space in VBI

VBI Address Space

P1

VB 1

P2 Pn

Memory Translation Layer

in the memory controller

Physical Memory

VB 2 VB 3 VB 4

. . .
Processes• Any process can attach to any VB

• A process' VBs define its
address space

- Address space size is determined by
the actual needs of the process

the address space of
process P1

35

First guiding principle:

Appropriately-sized virtual address spaces

Decoupled Protection and Translation

Address mapping
managed by OS

36

Virtual Address Space (VAS)

P1

VAS 1

P2 Pn

Page Tables

managed by the OS

Physical Memory

VAS 2 VAS n

. . .
Processes

Access permissions
managed by OS

VBI Address Space

P1

VB 1

P2 Pn

Memory Translation Layer

in the memory controller

Physical Memory

VB 2 VB 3 VB 4

. . .
Processes

Access permissions
managed by OS

Address mapping
managed by the MTL

Conventional virtual memoryVBI

Decoupled Protection and Translation

Address mapping
managed by OS

37

Access permissions
managed by OS

VBI Address Space

P1

VB 1

P2 Pn

Memory Translation Layer

in the memory controller

Physical Memory

VB 2 VB 3 VB 4

. . .
Processes

Access permissions
managed by OS

Address mapping
managed by the MTL

Second guiding principle:

Decoupling address translation from access protection

VBI

Address Translation Structures in VBI

VBI Address Space

P1

VB 1

P2 Pn

Memory Translation Layer

in the memory controller

Physical Memory

VB 2 VB 3 VB 4

. . .
Processes

38

• Translation structures are
not shared with the OS

- Separate structures for translation
and permission information

- Allows flexible translation structures

- Per-VB translation structure tuned to
the VB’s characteristics
e.g., single-level tables for small VBs

• Pros:
- Lowers overheads and allows for

customization

VB Information

VBI Address Space

P1

VB 1

P2 Pn

Memory Translation Layer

in the memory controller

Physical Memory

VB 2 VB 3 VB 4

. . .
Processes

VB

Enable

Reference
Counter

Properties

Size

• Each VB is associated with
- System-wide unique ID
- Size

i.e., which size class

- Enable bit
- Reference counter

number of processes attached to the VB

- Properties bit vector
semantic information about VB contents,
e.g., access pattern, latency sensitive vs. bandwidth sensitive

X

39

VB Information

VBI Address Space

P1

VB 1

P2 Pn

Memory Translation Layer

in the memory controller

Physical Memory

VB 2 VB 3 VB 4

. . .
Processes

VB

Enable

Reference
Counter

Properties

Size

• Each VB is associated with
- System-wide unique ID
- Size

i.e., which size class

- Enable bit
- Reference counter

number of processes attached to the VB

- Properties bit vector
semantic information about VB contents,
e.g., access pattern, latency sensitive vs. bandwidth sensitive

X

40

Third guiding principle:

Communicating data semantics to the hardware

Implementing VBI

• Please refer to our paper

- Detailed reference implementation and microarchitecture

41

Memory Controller

Memory Translation Layer (MTL)

L1

miss
VBUID offset

L2

Last-Level
Cache
(LLC)

index =

request_vb(...);

x = malloc(index, size);

.

.

.

y = (*x); Virtual
Address

Application

index offset

miss

VBI
Address

CPU Physical Memory

VITs

CVTs

enable_vb attach

CVT

(Client–VB Table)

Cache Translation

Structures

Data

Translation

Walker

Physical AddressTLB

miss

hit

VIT

(VB Info Table)

Cache

Motivation

Outline

42

VBI: Virtual Block Interface
Key Idea & Guiding Principles
Design Overview
Optimizations Enabled by VBI

Methodology

Results

Summary

Review

Discussion

• Many optimizations not easily attainable before

• Examples:

- Appropriately sized process address space

- Flexible address translation structures

- Communicating data semantics to the hardware

- Delayed physical memory allocation

- Eliminating 2D page walks in virtual machines

- Inherently virtual caches

- Early memory reservation mechanism

Optimizations Naturally Enabled by VBI

43

Achieved
through
guiding

principles

Covered in our
paper

Covered
next

• Delayed physical memory allocation

• Eliminating 2D page walks in virtual machines

Example Optimizations

44

miss
page walk

In VBI
virtually-indexed physically-tagged (VIPT)

In Conventional Virtual Memory

Delayed Physical Memory Allocation

45

VIPT
Cache

Core

Physical Memory

TLB

virtual
address

hit

physical
address

VBI
Cache

Core

Physical Memory

MTL

VBI
address

miss

no memory
allocated

miss
zeroed

cache line
actual

cache line

miss
page walk

46

VIPT
Cache

Core

Physical Memory

TLB

virtual
address

hit

physical
address

VBI
Cache

Core

Physical Memory

MTL

VBI
address

write
back

allocates
memory

actual
cache line

miss

virtually-indexed physically-tagged (VIPT)

In Conventional Virtual Memory In VBI

Delayed Physical Memory Allocation

47

VBI
Cache

Core

Physical Memory

MTL

VBI
address

write
back

allocates
memory

• No address translation for accesses
to regions with no allocation

• No memory accesses to regions with
no allocation yet

• No memory allocation
for VBs that never leave the cache
during their lifetime

In VBI

Delayed Physical Memory Allocation

In VBI

48

VBI
Cache

Core

Physical Memory

MTL

VBI
address

write
back

Allocates
memory

• No address translation for accesses
to regions with no allocation

• No memory access to regions with
no allocation yet

• No memory allocation for VBs that
never leave the cache during their
lifetime

VBI reduces address translation overhead,
improves overall performance,

and reduces memory consumption

Delayed Physical Memory Allocation

• Inherently virtual caches

• Eliminating 2D page walks in virtual machines

Example Optimizations

49

Guest OS

50

Host Virtual Address Space

Host OS

Process 2

Host Page Tables

Physical Memory

---- virtualization layer ----

Eliminating 2D Page Walks in Virtual Machines

Guest Virtual Address Space

g VAS

Guest Page Tables

Process 1

VAS 1 VAS 2

Process running on
a virtual machine (VM)

guest virtual
– to –

host virtual

host virtual
– to –

host physical

Conventional virtual memory

Guest OS

51

Host Virtual Address Space

Host OS

Process 2

Host Page Tables

Physical Memory

---- virtualization layer ----

Eliminating 2D Page Walks in Virtual Machines

Guest Virtual Address Space

g VAS

Guest Page Tables

Process 1

VAS 1 VAS 2

Process running on
a virtual machine (VM)

guest virtual
– to –

host virtual

host virtual
– to –

host physical

Guest OS

VBI Address Space

Host OS

Process 1

VB 1

Process 2

Memory Translation Layer

in Memory Controller

Physical Memory

VB 2 VB 3

---- virtualization layer ----

Conventional virtual memory

Guest OS and host OS interact once to
attach Process 2 to its VBs

52

MTL is the only component in the system
that manages address mapping

Eliminating 2D Page Walks in Virtual Machines

Guest OS

VBI Address Space

Host OS

Process 1

VB 1

Process 2

Memory Translation Layer

in Memory Controller

Physical Memory

VB 2 VB 3

---- virtualization layer ----

VBI

Guest OS and host OS interact once to
attach Process 1 to its VBs

53

MTL performs address translation and
memory allocation

Eliminating 2D Page Walks in Virtual Machines

Guest OS

VBI Address Space

Host OS

Process 2

VB 1

Process 1

Memory Translation Layer

in Memory Controller

Physical Memory

VB 2 VB 3

---- virtualization layer ----

By eliminating 2D page walks,
VBI reduces address translation overhead

in virtualized environments

Motivation

Outline

54

VBI: Virtual Block Interface
Key Idea & Guiding Principles
Design Overview
Optimizations Enabled by VBI

Methodology

Results

Summary

Review

Discussion

• Simulator: heavily-modified version of Ramulator
- Models virtual memory components (e.g., TLBs, page tables)

- Available at https://github.com/CMU-SAFARI/Ramulator-VBI

• Workloads: SPECspeed 2017, SPEC CPU 2006, TailBench, Graph 500

• System parameters:
- Core: 4-wide issue, OOO, 128-entry ROB

- L1 Cache: 32 KB, 8-way associative, 4 cycles

- L2 Cache: 256 KB, 8-way associative, 8 cycles

- L3 Cache: 8 MB (2 MB per-core), 16-way associative, 31 cycles

- L1 DTLB: - 4 KB pages: 64-entry, fully associative

- 2 MB pages: 32-entry, fully associative

- L2 DTLB: 4 KB and 2 MB pages: 512-entry, 4-way associative

- Page Walk Cache: 32-entry, fully associative

- DRAM: DDR3-1600, 1 channel, 1 rank/channel, 8 banks/rank

- PCM: PCM-800, 1 channel, 1 rank/channel, 8 banks/rank

Methodology

55

https://github.com/CMU-SAFARI/Ramulator-VBI

Motivation

Outline

56

VBI: Virtual Block Interface
Key Idea & Guiding Principles
Design Overview
Optimizations Enabled by VBI

Methodology

Results

Summary

Review

Discussion

• The impact of VBI on reducing the address translation
overhead in both native execution and virtual machines

• Evaluated systems:

- Three baselines:
• Native: applications run natively on an x86-64 system

• Virtual: applications run inside a virtual machine (accelerated using 2D page
walk cache [Bhargava+, ASPLOS’08])

• Perfect TLB: an unrealistic version of Native with no translation overhead

- One VBI configuration:
• VBI-Full: VBI with all the optimizations that it enables

• See our paper for results on more system configurations

Use Case 1: Address Translation

57

0.0

0.5

1.0

1.5

2.0

2.5

Virtual Perfect TLB VBI-Full

Use Case 1: Address Translation

58

Sp
e

ed
u

p

Normalized to Native

0.7x

1
3

.3
8

.9

0.0

0.5

1.0

1.5

2.0

2.5

Virtual Perfect TLB VBI-Full

Use Case 1: Address Translation

59

Sp
e

ed
u

p

Normalized to Native

1.9x

1
3

.3
8

.9

0.0

0.5

1.0

1.5

2.0

2.5

Virtual Perfect TLB VBI-Full

Use Case 1: Address Translation

60

Sp
e

ed
u

p

Normalized to Native

2.4x

1
3

.3
8

.9

0.0

0.5

1.0

1.5

2.0

2.5

Virtual Perfect TLB VBI-Full

Use Case 1: Address Translation

61

Sp
e

ed
u

p

Normalized to Native

4.3x

1
3

.3
8

.9

0.0

0.5

1.0

1.5

2.0

2.5

Virtual Perfect TLB VBI-Full

Use Case 1: Address Translation

62

Sp
e

ed
u

p

Normalized to Native

49%

1
3

.3
8

.9

0.0

0.5

1.0

1.5

2.0

2.5

Virtual Perfect TLB VBI-Full

Use Case 1: Address Translation

63

Sp
e

ed
u

p

Normalized to Native

VBI significantly improves performance
in both native execution and virtual machines

49%

1
3

.3
8

.9

• The benefits of VBI in harnessing the full potential of
heterogeneous memory architectures

- Hybrid PCM–DRAM memory architecture

• Evaluated systems:

- Two baselines:
• Hotness-Unaware PCM–DRAM: unaware of the data hotness

• IDEAL: always maps frequently-accessed data to DRAM

- One VBI configuration:

• VBI PCM–DRAM: VBI maps and migrates frequently-accessed VBs to the
DRAM

Use Case 2: Memory Heterogeneity

64

More in our paper:

• Similar performance improvement for Tiered-Latency-DRAM [Lee+, HPCA’13]

Use Case 2: Memory Heterogeneity

65

0.0

0.5

1.0

1.5

2.0

2.5

VBI PCM-DRAM IDEAL

Normalized to Hotness-Unaware PCM–DRAM

Sp
e

ed
u

p

33%

Use Case 2: Memory Heterogeneity

66

0.0

0.5

1.0

1.5

2.0

2.5

VBI PCM-DRAM IDEAL

Normalized to Hotness-Unaware PCM–DRAM

Sp
e

ed
u

p

33%

VBI enables efficient data mapping and data
migration for heterogeneous memory systems

Motivation

Outline

67

VBI: Virtual Block Interface
Key Idea & Guiding Principles
Design Overview
Optimizations Enabled by VBI

Methodology

Results

Summary

Review

Discussion

• Virtual Block Interface (VBI): A new virtual memory framework
- Addresses the challenges in adapting conventional virtual memory to

increasingly diverse system configurations and workloads

• Key Idea: Delegate physical memory management to dedicated
hardware in the memory controller

• Benefits: Not easily attainable in conventional virtual memory
(e.g., inherently virtual caches , delaying physical memory
allocation, and avoiding 2D page walks in virtual machines)

• Evaluation:
- VBI significantly improves performance in both native execution and

virtual machines
- Increases the effectiveness of managing heterogeneous memory

architectures

• Conclusion: VBI is a promising new virtual memory framework
- Can enable several important optimizations
- Increases design flexibility for virtual memory
- A new direction for future work in novel virtual memory frameworks

Summary

68

Questions

69

Motivation

Outline

70

VBI: Virtual Block Interface
Key Idea & Guiding Principles
Design Overview
Optimizations Enabled by VBI

Methodology

Results

Summary

Review

Discussion

Strengths

• Novel and very efficient idea
- General-purpose: solves many problems at once

- Application/OS/hardware developers all profit

• The authors give an implementation proposal
- Stimulates to think creatively!

• Offer proposals/replacements for many OS
functionalities

- C-o-W, MM-I/O, Swapping …

VBI should be the future!

71

Remember RowClone?

• In-memory copy/bulk zeroing

• Goal: Reduce cache pollution, latency, bandwidth and
energy waste

• Extremely fast within subarray (FPM)
- Requires data to be mapped in same subarray

- Maximize by making OS subarray-aware

Thanks to VBI this has become easier!

→ OS does no longer manage physical memory

72

Weaknesses

• Paper is very dense
- I struggled with it

• What is really important? How do you present it?

• High initial investment
- VBI drastically changes all existing software/OS/hardware

designs
• But don’t fall into the rat hole!

• Coordination + standardization
- How to guarantee extensibility of the property bit vector?

• What if future technologies could profit of more detailed software-
provided hints? Where to draw the line?

- Could lead to inconsistencies across implementations
• Think about Intel vs. AMD

73

Motivation

Outline

74

VBI: Virtual Block Interface
Key Idea & Guiding Principles
Design Overview
Optimizations Enabled by VBI

Methodology

Results

Summary

Review

Discussion

Discussion

• Ask me about the implementation proposal …
- Anything you are interested in!

• Changes to you as a software/OS/hardware developer

• What do you think about VBI?
- Do you like/dislike it? Why?

- Do you think modularity is the right step? (vs. integration)
• Any ideas where this also should be used?

- Can even embedded systems profit of VBI?

- Would you want to achieve compatibility to existing OS?
• Can you think of an “easy fix”?

75

The Virtual Block Interface:
A Flexible Alternative to the

Conventional Virtual Memory Framework

Nastaran Hajinazar Pratyush Patel Minesh Patel
Konstantinos Kanellopoulos Saugata Ghose

Rachata Ausavarungnirun Geraldo F. Oliveira Jonathan Appavoo
Vivek Seshadri Onur Mutlu

Presented by Stefan Scholbe

Most slides by Nastaran Hajinazar

ISCA, 2020

Backup Slides

77

2D Page Table Walks

78

Malloc in VBI

index_t request_vb(size_t expectedSize, enum_t hints);

void* malloc(size_t size, index_t vb);

79

Addressing a VB

• Global VBI address is split up

VBUID Offset

SizeID + VBID

80

VB Management

• Stored globally in VB Info Tables (VIT) (per size class)

• Reside in a reserved region of PM

• Implicitly managed by OS

VBID Enabled Flags + Hints RefCount TransStructType TransStructPtr

0 Yes Kernel,
Latency

3 Single-level 0xAA00BB00…

1 No - 0 - -

2 Yes User,
Bandwidth
Compressible

5 Direct-mapped 0xDEADBEEF…

81

Client VB-Table (CVT)

• Per memory client

• Stores the attached VBs

• Implicitly managed by OS

Index VBUID Valid Permissions

0 3 Yes RW

1 12 Yes RX

2 8 No -

82

Addressing a VB now

• Virtual address is split up

• Provide another level of indirection and allows easier
relocation

CVT Index Offset

83

val = *ptr;

CVT Index
+

Offset

Index VBUID V P

VBI Address L1, L2, LLC

C
V

T
 C

ac
h

e

MTL

Client-VB Table

Addressing a VB now (CPU)

84

Addressing a VB now (MTL)

VBI Address

SizeId
+

VBID
+

Offset

VBID E … … Type Ptr

V
IT

 C
ac

h
e

Translation
Walker

TLB

Translation structures

VB Info Table

85

