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Abstract We derive generalization bounds for learning algorithms based on their robust-
ness: the property that if a testing sample is “similar” to a training sample, then the testing
error is close to the training error. This provides a novel approach, different from complexity
or stability arguments, to study generalization of learning algorithms. One advantage of the
robustness approach, compared to previous methods, is the geometric intuition it conveys.
Consequently, robustness-based analysis is easy to extend to learning in non-standard setups
such as Markovian samples or quantile loss. We further show that a weak notion of robust-
ness is both sufficient and necessary for generalizability, which implies that robustness is a
fundamental property that is required for learning algorithms to work.

Keywords Generalization · Robust · Non-IID sample · Quantile loss

1 Introduction

The key issue in the task of learning from a set of observed samples is the estimation of
the risk (i.e., generalization error) of learning algorithms. Typically, its empirical measure-
ment (i.e., training error) provides an optimistically biased estimation, especially when the
number of training samples is small. Several approaches have been proposed to bound the
deviation of the risk from its empirical measurement, among which methods based on uni-
form convergence and stability are most widely used.

Uniform convergence of empirical quantities to their mean (Vapnik and Chervonenkis
1974, 1991) provides ways to bound the gap between the expected risk and the empir-
ical risk by the complexity of the hypothesis set. Examples of complexity measures are
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the Vapnik-Chervonenkis (VC) dimension (Vapnik and Chervonenkis 1991; Evgeniou et al.
2000), the fat-shattering dimension (Kearns and Schapire 1994; Alon et al. 1997; Bartlett
1998), and the Rademacher complexity (Koltchinskii 2002; Bartlett and Mendelson 2002;
Bartlett et al. 2005). Another well-known approach is based on stability. An algorithm is sta-
ble if its output remains “similar” for different sets of training samples that are identical up to
removal or change of a single sample. The first results that relate stability to generalizability
track back to Devroye and Wagner (1979a, 1979b). Later, McDiarmid’s concentration in-
equalities (McDiarmid 1989) facilitated new bounds on generalization error (e.g., Bousquet
and Elisseeff 2002; Poggio et al. 2004; Mukherjee et al. 2006).

In this paper we explore a different approach which we term algorithmic robustness.
Briefly speaking, an algorithm is robust if its solution has the following property: it achieves
“similar” performance on a testing sample and a training sample that are “close”. This no-
tion of robustness is rooted in robust optimization (Ben-Tal and Nemirovski 1998, 1999;
Bertsimas and Sim 2004) where a decision maker aims to find a solution x that minimizes
a (parameterized) cost function f (x, ξ) with the knowledge that the unknown true param-
eter ξ may deviate from the observed parameter ξ̂ . Hence, instead of solving minx f (x, ξ̂ )

one solves minx[maxξ̃∈Δ f (x, ξ̃ )], where Δ includes all possible realizations of ξ . Robust
optimization was introduced in machine learning tasks to handle exogenous noise (Bhat-
tacharyya et al. 2004; Shivaswamy et al. 2006; Globerson and Roweis 2006), i.e., the learn-
ing algorithm only has access to inaccurate observation of training samples. Later on, Xu
et al. (2009a, 2010b) showed that both Support Vector Machines (SVMs) and Lasso have
robust optimization interpretation, i.e., they can be reformulated as

min
h∈H

max
(δ1,...,δn)∈Δ

n∑

i=1

l(h, zi + δi),

for some Δ and H. Here zi are the observed training samples and l(·, ·) is the loss func-
tion (hinge-loss for SVMs, and squared loss for Lasso), which means that SVMs and Lasso
essentially minimize the empirical error under the worst possible perturbation in some prop-
erly defined uncertainty set. Indeed, Xu et al. (2009a, 2010b) showed that this reformulation
implies that the loss of a sample “close” to zi is small, which further implies statistical con-
sistency of these two algorithms. In this paper we adopt this approach and study the (finite
sample) generalization ability of learning algorithms by investigating the loss of learned
hypotheses on samples that slightly deviate from training samples.

We emphasize that one advantage of the proposed algorithmic robustness approach is
that it is applicable to a very general setup. The standard setup in machine learning is re-
stricted to the case that all samples are drawn in an IID fashion and the goal of learning is
to minimize the expected loss (or error). Previous approaches critically depend on these as-
sumptions. Extension, if possible, to non-standard setups—setups where either data are not
IID or the minimizing objective is not the expected loss—often requires specifically tailored
analysis (e.g. Gamarnik 2003; Lozano et al. 2006; Zou et al. 2009). In contrast, extension of
robustness-based analysis to non-standard setups is straightforward. Indeed, we provide gen-
eralization bounds for two “non-standard” setups: one where samples are generated accord-
ing to a Markovian chain, and one where the goal of learning is to minimize the quantile loss,
using essentially same analysis as that of the standard setup. These setups arise naturally
from reinforcement learning, time series and learning with outliers (Sutton and Barto 1998;
Klivans et al. 2009).

Of special interest is that robustness is more than just another way to establish general-
ization bounds. Indeed, we show that a weaker notion of robustness is a necessary and suf-
ficient condition of (asymptotic) generalizability of general learning algorithms. While it is
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known that having a finite VC-dimension (Vapnik and Chervonenkis 1991) or equivalently
being CVEEEloo stable (Mukherjee et al. 2006) is necessary and sufficient for Empirical
Risk Minimization (ERM) to generalize, much less is known in the general case. Recently,
Shalev-Shwartz et al. (2009) proposed a weaker notion of stability that is necessary and suf-
ficient for a learning algorithm to be consistent and generalizing, provided that the problem
itself is learnable. However, learnability requires that the convergence rate is uniform with
respect to all distributions, and is hence a fairly strong assumption. In particular, the standard
supervised learning setup where the hypothesis set is the set of measurable functions is not
learnable since no algorithm can achieve a uniform convergence rate (Devroye et al. 1996).
Indeed, as Shalev-Shwartz et al. (2009) stated, in the supervised learning setup, it is known
that requiring the problem to be learnable itself is equivalent to requiring that the ERM al-
gorithm generalizes. As aforementioned, the latter is only possible when the hypothesis set
has finite VC dimensions.

In particular, our main contributions are the following:

1. We propose a notion of algorithmic robustness. Algorithmic robustness is a desired prop-
erty for a learning algorithm since it implies a lack of sensitivity to (small) disturbances
in the training data.

2. Based on the notion of algorithmic robustness, we derive generalization bounds for robust
learning algorithms. Due to the geometric intuition the robust approach conveys, it is
relatively easy to extend the analysis to non-standard setups—setups where the samples
are not IID or the loss function is not the expected loss. In particular, we derived PAC
bounds in the case where samples are drawn according to a Markovian chain, and in
the case where the loss function is the quantile loss. This indicates that the fundamental
nature of the proposed approach.

3. To illustrate the applicability of the notion of algorithmic robustness, we provide some
examples of robust algorithms, including SVM, Lasso, feed-forward neural networks and
PCA.

4. We propose a weaker notion of robustness and show that it is both necessary and suffi-
cient for a learning algorithm to generalize. This implies that robustness is an essential
property needed for a learning algorithm to work.

Note that while stability and robustness are similar on an intuitive level, there is a dif-
ference between the two: stability requires that nearly identical training sets with a single
sample removed lead to similar prediction rules, whereas robustness requires that a predic-
tion rule has comparable performance if tested on a sample close to a training sample.

We remark that in this paper we consider the relationship between robustness and gener-
alizability. An equally important property of learning algorithms is consistency: the property
that a learning algorithm guarantees to recover the global optimal solution as the number of
training data increases. While it is straightforward that if an algorithm minimizes the em-
pirical error asymptotically and also generalizes (or equivalently is weakly robust), then it is
consistent, much less is known for a necessary condition for an algorithm to be consistent.
It is certainly interesting to investigate the relationship between consistency and robustness,
and in particular whether robustness is necessary for consistency, at least for algorithms that
asymptotically minimize the empirical error.

A preliminary version of this paper has appeared in COLT 2010 (Xu and Mannor 2010).
In the current version, we provide all proofs omitted in the conference version due to space
constraints. More importantly, the current version extends the conference version in three
directions. First, we discuss the relationship between robust optimization and generalization,
which provides a method to construct learning algorithms with good generalization ability.
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Second, we presents robustness-based generalization bounds for the case where samples are
Markovian. Finally, we provide a detailed comparison of the proposed robustness-approach
with existing approaches.

This paper is organized as follows. We define the notion of robustness in Sect. 2, and
prove generalization bounds for robust algorithms in Sect. 3. In Sect. 5 we propose a re-
laxed notion of robustness, which is termed as pseudo-robustness, and show corresponding
generalization bounds. Examples of learning algorithms that are robust or pseudo-robust are
provided in Sect. 6. We further compare the proposed approach with previous approaches in
Sect. 7. Finally, we show that robustness is necessary and sufficient for generalizability in
Sect. 8.

1.1 Preliminaries

We consider the following general learning model: a set of training samples are given, and
the goal is to pick a hypothesis from a hypothesis set. Unless otherwise mentioned, through-
out this paper the size of training set is fixed as n. Therefore, we drop the dependence of
parameters (that quantify the robustness of an algorithm) on the number of training samples,
while it should be understood that these parameters may vary with the number of training
samples. We use Z and H to denote the set from which each sample is drawn, and the hy-
pothesis set, respectively. Throughout the paper we use s to denote the training sample set
consists of n training samples (s1, . . . , sn). A learning algorithm A is thus a mapping from
Z n to H. We use As to represent the hypothesis learned (given training set s). For each hy-
pothesis h ∈ H and a point z ∈ Z , there is an associated loss l(h, z). We ignore the issue of
measurability and further assume that l(h, z) is non-negative and upper-bounded uniformly
by a scalar M .1

In the special case of supervised learning, the sample space can be decomposed as Z =
Y × X , and the goal is to learn a mapping from X to Y , i.e., to predict the y-component given
x-component. We hence use As(x) to represent the prediction of x ∈ X if trained on s. We
call X the input space and Y the output space. The output space can either be Y = {−1,+1}
for a classification problem, or Y = R for a regression problem. We use (x) and (y) to denote
the x-component and y-component of a point. For example, s

(x)
i is the x-component of si .

To simplify notations, for a scalar c, we use [c]+ to represent its non-negative part, i.e.,
[c]+ � max(0, c).

We recall the following standard notion of covering number (Kolmogorov and Tihomirov
2002).

Definition 1 For a metric space S,ρ and T ⊂ S we say that T̂ ⊂ S is an ε-cover of T , if
∀t ∈ T , ∃t̂ ∈ T̂ such that ρ(t, t̂) ≤ ε. The ε-covering number of T is

N (ε, T ,ρ) = min{|T̂ | : T̂ is an ε − cover of T }.

2 Robustness of learning algorithms

Before providing a precise definition of what we mean by “robustness” of an algorithm, we
provide a couple of motivating examples that share a common property: if a testing sample

1Note that if all samples are IID following a distribution μ, then we can replace the boundedness assumption
by a weaker assumption of the existence an integrable envelop function, i.e., there exist l(·) : Z �→ R such
that l(h, z) ≤ l(z) for all h ∈ H and z ∈ Z , and that

∫
Z l(z)μ(dz) < +∞.
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and a training sample are close to each other, then their associated losses are also close,
a property we will later formalize as “robustness.”

We first consider large-margin classifiers: Let X be a subset of a metric space equipped
with a metric ρ, and the loss function be l(As, z) = 1(As(z

(x)) 
= z(y)). Fix γ > 0. An algo-
rithm A has a margin γ on training set s if for j = 1, . . . , n

As(x) = As(s
(x)
j ); ∀x : ρ(x, s

(x)
j ) < γ.

That is, any training sample is at least γ away from the classification boundary.

Example 1 Fix γ > 0 and let K = 2N (γ /2, X , ρ). If As has a margin γ , then Z can be
partitioned into K disjoint sets, denoted by {Ci}K

i=1, such that if sj and z ∈ Z belong to a
same Ci , then |l(As, sj ) − l(As, z)| = 0.

Proof By definition of covering number, we can partition X into N (γ /2, X , ρ) subsets
(denoted X̂i ) such that each subset has a diameter less or equal to γ . Further, Y can be
partitioned to {−1} and {+1}. Thus, we can partition Z into 2N (γ /2, X , ρ) subsets such
that if z1, z2 belong to a same subset, then z

(y)

1 = z
(y)

2 and ρ(z
(x)

1 , z
(x)

2 ) ≤ γ . By definition of
margin, this guarantees that if sj and z ∈ Z belong to a same Ci , then |l(As, sj )− l(As, z)| =
0. �

The next example is a linear regression algorithm. Let the loss function be l(As, z) =
|z(y) − As(z

(x))|, and let X be a bounded subset of R
m and fix c > 0. The norm-constrained

linear regression algorithm is

As = arg min
w∈Rm:‖w‖2≤c

n∑

i=1

|s(y)

i − w�s
(x)
i |, (1)

i.e., minimizing the empirical error among all linear classifiers whose norm is bounded.

Example 2 Fix ε > 0 and put K = N (ε/2, X ,‖ · ‖2) × N (ε/2, Y, | · |). Consider the algo-
rithm as in (1). The set Z can be partitioned into K disjoint sets, such that if sj and z ∈ Z
belong to a same Ci , then

|l(As, sj ) − l(As, z)| ≤ (c + 1)ε.

Note that we can generalize this example to the case where Z is a compact subset of an
arbitrary Hilbert space.

Proof Denote As by w. Similarly to the previous example, we can partition Z to
N (ε/2, X ,‖ · ‖2) × N (ε/2, Y, | · |) subsets, such that if z1, z2 belong to a same Ci , then
‖z(x)

1 − z
(x)

2 ‖2 ≤ ε, and |z(y)

1 − z
(y)

2 | ≤ ε. Since ‖w‖2 ≤ c, we have

|l(w, z1) − l(w, z2)| = ∣∣∣∣z(y)

1 − w�z
(x)

1

∣∣ − ∣∣z(y)

2 − w�z
(x)

2

∣∣∣∣

≤ |(z(y)

1 − w�z
(x)

1 ) − (z
(y)

2 − w�z
(x)

2 )|
≤ |z(y)

1 − z
(y)

2 | + ‖w‖2‖z(x)

1 − z
(x)

2 ‖2

≤ (1 + c)ε,

whenever z1, z2 belong to a same Ci . �
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The two motivating examples both share a property: we can partition the sample set into
finite subsets, such that if a new sample falls into the same subset as a testing sample, then
the loss of the former is close to the loss of the latter. We call an algorithm having this
property “robust.”

Definition 2 Algorithm A is (K, ε(·)) robust, for K ∈ N and ε(·) : Z n �→ R, if Z can be
partitioned into K disjoint sets, denoted by {Ci}K

i=1, such that the following holds for all
s ∈ Z n:

∀s ∈ s, ∀z ∈ Z, ∀i = 1, . . . ,K : if s, z ∈ Ci , then |l(As, s) − l(As, z)| ≤ ε(s). (2)

The parameters K and ε(·) quantify the robustness of an algorithm. Since ε(·) is a func-
tion of training samples, for different training samples an algorithm may exhibit different
robustness property. For example, a classification algorithm is more robust to a training set
with a larger margin. Because (2) involves both the trained solution As and the training set s,
robustness is a property of the learning algorithm, rather than the property of the “effective
hypothesis space,” i.e., all the hypotheses that can be output by the algorithm.

Note that the definition of robustness requires that (2) holds for every training sample.
Indeed, we can relax the definition, so that the condition needs only hold for a subset of
training samples. We call an algorithm having this property “pseudo robust.” See Sect. 5 for
details.

3 Generalization of robust algorithms: the standard setup

We now investigate generalization property of robust algorithms, by establishing PAC
bounds for different setups. This section is devoted to the standard learning setup, i.e., the
sample set s consists of n i.i.d. samples generated by an unknown distribution μ, and the
goal of learning is to minimize expected test loss. Let L(·) and lemp(·) denote the expected
error and the training error, i.e.,

L(As) � Ez∼μl(As, z); lemp(As) � 1

n

∑

si∈s

l(As, si).

Recall that the loss function l(·, ·) is upper bounded by M .

Theorem 1 If a learning algorithm A is (K, ε(·))-robust, and the training sample set s is
generated by n IID draws from μ, then for any δ > 0, with probability at least 1 − δ we have

|L(As) − lemp(As)| ≤ ε(s) + M

√
2K ln 2 + 2 ln(1/δ)

n
.

Proof Let Ni be the set of index of points of s that fall into the Ci . Note that (|N1|, . . . , |NK |)
is an IID multinomial random variable with parameters n and (μ(C1), . . . ,μ(CK)).
The following holds by the Breteganolle-Huber-Carol inequality (see Proposition A6.6
of van der Vaart and Wellner 2000):

Pr

{
K∑

i=1

∣∣∣∣
|Ni |
n

− μ(Ci)

∣∣∣∣ ≥ λ

}
≤ 2K exp

(−nλ2

2

)
.
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Hence, the following holds with probability at least 1 − δ,

K∑

i=1

∣∣∣∣
|Ni |
n

− μ(Ci)

∣∣∣∣ ≤
√

2K ln 2 + 2 ln(1/δ)

n
. (3)

We have

|L(As) − lemp(As)|

=
∣∣∣∣∣

K∑

i=1

Ez∼μ(l(As, z)|z ∈ Ci)μ(Ci) − 1

n

n∑

i=1

l(As, si)

∣∣∣∣∣

(a)≤
∣∣∣∣∣

K∑

i=1

Ez∼μ(l(As, z)|z ∈ Ci)
|Ni |
n

− 1

n

n∑

i=1

l(As, si)

∣∣∣∣∣

+
∣∣∣∣∣

K∑

i=1

Ez∼μ(l(As, z)|z ∈ Ci)μ(Ci) −
K∑

i=1

Ez∼μ(l(As, z)|z ∈ Ci)
|Ni |
n

∣∣∣∣∣

(b)≤
∣∣∣∣∣
1

n

K∑

i=1

∑

j∈Ni

max
z2∈Ci

|l(As, sj ) − l(As, z2)|
∣∣∣∣∣ +

∣∣∣∣∣max
z∈Z

|l(As,z)|
K∑

i=1

∣∣∣∣
|Ni |
n

− μ(Ci)

∣∣∣∣

∣∣∣∣∣

(c)≤ ε(s) + M

K∑

i=1

∣∣∣∣
|Ni |
n

− μ(Ci)

∣∣∣∣, (4)

where (a), (b), and (c) are due to the triangle inequality, the definition of Ni , and the defi-
nition of ε(s) and M , respectively. Note that the right-hand-side of (4) is upper-bounded by

ε(s) + M

√
2K ln 2+2 ln(1/δ)

n
with probability at least 1 − δ due to (3). The theorem follows. �

Theorem 1 requires that we fix a K a priori. However, it is often worthwhile to con-
sider adaptive K . For example, in the large-margin classification case, typically the margin
is known only after s is realized. That is, the value of K depends on s. Because of this
dependency, we need a generalization bound that holds uniformly for all K .

Corollary 1 If a learning algorithm A is (K, εK(·))-robust for all K ≥ 1, and the training
sample s is generated by n IID draws from μ, then for any δ > 0, with probability at least
1 − δ,

|L(As) − lemp(As)| ≤ inf
K≥1

[
εK(s) + M

√
2K ln 2 + 2 ln K(K+1)

δ

n

]
.

Proof Let

E(K) �
{

|L(As) − lemp(As)| > εK(s) + M

√
2K ln 2 + 2 ln K(K+1)

δ

n

}
.
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From Theorem 1 we have Pr(E(K)) ≤ δ/(K(K + 1)) = δ/K − δ/(K + 1). By the union
bound we have

Pr

{⋃

K≥1

E(K)

}
≤

∑

K≥1

Pr(E(K)) ≤
∑

K≥1

[
δ

K
− δ

K + 1

]
= δ,

and the corollary follows. �

If ε(·) is a constant, i.e., εK(s) � εK for all s, then we can sharpen the bound given in
Corollary 1.

Corollary 2 If a learning algorithm A is (K, εK)-robust for all K ≥ 1, and the training
sample s is generated by n IID draws from μ, then for any δ > 0, with probability at least
1 − δ,

|L(As) − lemp(As)| ≤ inf
K≥1

[
εK + M

√
2K ln 2 + 2 ln 1

δ

n

]
.

Proof The right hand side does not depend on s, and hence the optimal K∗. Therefore,
plugging K∗ into Theorem 1 establishes the corollary. �

Let us comment on the dependence of K and ε on the training set, particularly on the
number of training samples n. As we remarked in Sect. 1.1, we drop the dependence of the
parameters on n because we are interested in finite-sample bounds as opposed to asymptotic
rates, and because results in this section are general, and hold for all robust algorithms.
However, the dependence of the parameters on n becomes explicit when studying individual
robust algorithms (see Sect. 6 for detail). Specifically, combining results from Sect. 6 and the
main theorems presented in this section, it is straight-forward to derive both finite-sample
bounds and asymptotic rates for individual robust algorithms; see Sect. 7 for an example.

Generalization and robust optimization

Following a similar line as the proof of Theorem 1, one can easily show the following result.

Corollary 3 Let C1, . . . ,CK be a partition of Z , and write z1 ∼ z2 if z1, z2 fall into the
same Ck . If the training sample s is generated by n IID draws from μ, then for any δ > 0,
with probability at least 1 − δ, the following holds uniformly over h ∈ H

lemp(h) ≤ 1

n

n∑

i=1

max
ŝi∼si

l(h, ŝi ) + M

√
2K ln 2 + 2 ln(1/δ)

n
.

Corollary 3 suggests that one can use robust optimization to construct learning algo-
rithms. Note that to make the empirical error small, we can minimize its upper bound—the
right hand side, i.e., to solve the following robust optimization problem:

Minimize
h∈H

1

n

n∑

i=1

max
ŝi∼si

l(h, ŝi ).
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In the recent years, robust optimization has been extensively used in machine learn-
ing (Bhattacharyya et al. 2004; Globerson and Roweis 2006; Lanckriet et al. 2003;
Shivaswamy et al. 2006; Xu et al. 2009a, 2009b, 2010b, and many others); see Carama-
nis et al. (2011) for a comprehensive survey. It was observed that robust optimization based
algorithms not only are robust to observation noise or disturbance, and often exhibit desir-
able generalization properties, as shown by Corollary 3.

4 Generalization of robust algorithms: non-standard setups

In this section we derive PAC bounds for robust algorithms under learning setups that are
less extensively investigated, which includes: (1) The learning goal is to minimize quantile
loss. (2) The samples are generated according to a (Doeblin) Markovian chain. Indeed, the
fact that we can provide results in non-standard learning setups indicates the fundamental
nature of robustness as a property of learning algorithms.

4.1 Quantile loss

As opposed to the standard expected loss setup, we consider some less extensively investi-
gated loss functions, namely quantile value and truncated expectation (see below for precise
definitions). These loss functions are of interest, and have been applied in many areas in-
cluding ecology (Cade and Noon 2003), medicine (Cole 1988) and finance (Koenker and
Bassett 1978), because they are less sensitive to the presence of outliers than the standard
average loss (Huber 1981).

Learning from samples with outliers has attracted increasing attention in the recent
decade (Klivans et al. 2009; Xu et al. 2010a; Yu et al. 2011, and many others). When a sam-
ple set contains a non-negligible fraction of data corrupted in an arbitrary or even adversary
manner, the average or expected loss ceases to be a good measurement of the desirability
of a solution. Instead, quantile measurements such as the median loss become more appro-
priate in this setup. However, generalization w.r.t. loss functions different than the expected
loss is largely unexplored, partly due to the fact that classical approaches heavily rely on
techniques (e.g., symmetrization, see Bartlett and Mendelson 2002; Bousquet et al. 2005;
van der Vaart and Wellner 2000 for examples) that are built for, and hard to extend beyond,
the expected loss case.

Definition 3 For a non-negative random variable X, the β-quantile value is

Q
β(X) � inf{c ∈ R : Pr(X ≤ c) ≥ β}.

The β-truncated mean is

T
β(X) �

{
E[X · 1(X < Q

β(X))] if Pr[X = Q
β(X)] = 0;

E[X · 1(X < Q
β(X))] + β−Pr[X<Q

β (X)]
Pr[X=Qβ (X)] Q

β(X) otherwise.

In words, the β-quantile loss is the smallest value that is larger or equal to X with prob-
ability at least β . The β-truncated mean is the contribution to the expectation of the left-
most β fraction of the distribution. For example, suppose X is supported on {c1, . . . , c10}
(c1 < c2 < · · · < c10) and the probability of taking each value equals 0.1. Then the 0.63-
quantile loss of X is c7, and the 0.63-truncated mean of X equals 0.1(

∑6
i=1 ci + 0.3c7).
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Given h ∈ H, β ∈ (0, 1), and a probability measure μ on Z , let

Q(h,β,μ) � Q
β(l(h, z)); where: z ∼ μ;

and

T (h,β,μ) � T
β(l(h, z)); where: z ∼ μ;

i.e., the β-quantile value and β-truncated mean of the (random) testing error of hypothesis h

if the testing sample follows distribution μ. We have the following theorem that is a special
case of Theorem 5 below, hence we omit the proof.

Theorem 2 (Quantile value & truncated mean) Suppose the training sample s is gener-
ated by n IID draws from μ, and denote the empirical distribution of s by μemp. Let

λ0 =
√

2K ln 2+2 ln(1/δ)

n
. If 0 ≤ β − λ0 ≤ β + λ0 ≤ 1 and A is (K, ε(·)) robust, then with prob-

ability at least 1 − δ, the followings hold

(I) Q(As, β − λ0,μemp) − ε(s) ≤ Q(As, β,μ) ≤ Q(As, β + λ0,μemp) + ε(s);
(II) T (As, β − λ0,μemp) − ε(s) ≤ T (As, β,μ) ≤ T (As, β + λ0,μemp) + ε(s).

In words, Theorem 2 essentially means that with high probability, the β-quantile
value/truncated mean of the testing error (recall that the testing error is a random variable)
is (approximately) bounded by the (β ± λ0)-quantile value/truncated mean of the empirical
error, thus providing a way to estimate the quantile value/truncated expectation of the testing
error based on empirical observations.

4.2 Markovian samples

The robustness approach is not restricted to the IID setup. In many applications of interest,
such as reinforcement learning and time series forecasting, the IID assumption is violated.
In such applications there is a time driven process that generates samples that depend on
the previous samples (e.g., the observations of a trajectory of a robot). Such a situation can
be modeled by stochastic process such as a Markov process. In this section we establish a
result similar to the IID case for samples that are drawn from a Markov chain. Such setup
has been proposed in Gamarnik (2003) for a finite and countable state space in the context
of additive loss. Instead, we consider the case where the state space can be general, i.e.,
it is not necessarily finite or countable. Thus, a certain ergodic structure of the underlying
Markov chain is needed. We focus on chains that converge to equilibrium exponentially
fast and uniformly in the initial condition. It is known that this is equivalent to the class
of Doeblin chains (Meyn and Tweedie 1993). Thus, it easy to see that all finite Markovian
chains are Doeblin Chains. Recall the following definition (Meyn and Tweedie 1993; Doob
1953).

Definition 4 A Markov chain {zi}∞
i=1 on a state space Z is a Doeblin chain (with α and T )

if there exists a probability measure ϕ on Z , α > 0, an integer T ≥ 1 such that

Pr(zT ∈ H |z0 = z) ≥ αϕ(H); ∀ measurable H ⊆ Z; ∀z ∈ Z.

The class of Doeblin chains is probably the “nicest” class of general state-space Markov
chains. We notice that such assumption is not overly restrictive, since by requiring that an
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ergodic theorem holds for all bounded functions uniformly in the initial distribution itself
implies that a chain is Doeblin (Meyn and Tweedie 1993). In particular, an ergodic chain
defined on a finite state-space is a Doeblin chain.

Indeed, the Doeblin chain condition guarantees that an invariant measure π exists. Fur-
thermore, we have the following lemma adapted from Theorem 2 of Glynn and Ormoneit
(2002).

Lemma 1 Let {zi} be a Doeblin chain as in Definition 4. Fix a function f : Z → R such
that ‖f ‖∞ ≤ C. Then for n > 2CT/εα the following holds

Pr

(
1

n

n∑

i=1

f (zi) −
∫

Z
f (z)π(dz)s ≥ ε

)
≤ exp

(
−α2(nε − 2CT/α)2

2nC2T 2

)
.

The following is the main theorem of this section that establishes a generalization bound
for robust algorithms with samples drawn according to a Doeblin chain.

Theorem 3 Suppose A is (K, ε(·))-robust. If s = {s1, . . . , sn} is generated as the first n

outputs of a Doeblin chain with α and T such that n > 2T/α, then for any δ > 0, with
probability at least 1 − δ,

|L(As) − lemp(As)| ≤ ε(s) + M

{
2T

αn
+

√
2T 2(K ln 2 + ln(1/δ))

α2n

}
.

The proof of Theorem 3 closely resembles that of Theorem 1, with some additional effort
to handle the fact that training samples are not IID. We hence defer the proof to Appendix A.

5 Pseudo robustness

In this section we propose a relaxed definition of robustness that accounts for the case
where (2) holds for most of training samples, as opposed to Definition 3 where (2) holds
for all training samples. Recall that the size of training set is fixed as n.

Definition 5 Algorithm A is (K, ε(·), n̂(·)) pseudo robust, for K ∈ N, ε(·) : Z n �→ R and
n̂(·) : Z n �→ {1, . . . , n}, if Z can be partitioned into K disjoint sets, denoted as {Ci}K

i=1,
such that for all s ∈ Z n, there exists a subset of training samples ŝ with |ŝ| = n̂(s) that the
following holds:

∀s ∈ ŝ, ∀z ∈ Z,∀i = 1, . . . ,K : if s, z ∈ Ci, then |l(As, s) − l(As, z)| ≤ ε(s).

Observe that (K, ε(·))-robust is equivalent to (K, ε(·), n) pseudo robust.
Theorem 1 can be generalized to the pseudo robust case. We defer the detailed proof to

Appendix B.

Theorem 4 If a learning algorithm A is (K, ε(·), n̂(·)) pseudo robust, and the training
sample set s is generated by n IID draws from μ, then for any δ > 0, with probability at
least 1 − δ we have

|L(As) − lemp(As)| ≤ n̂(s)
n

ε(s) + M

(
n − n̂(s)

n
+

√
2K ln 2 + 2 ln(1/δ)

n

)
.
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Similarly, Theorem 2 can be generalized to the pseudo robust case. The proof is lengthy
and hence postponed to Appendix C.

Theorem 5 (Quantile value & truncated expectation) Suppose s has n samples drawn i.i.d.

according to μ, and denote the empirical distribution of s by μemp. Let λ0 =
√

2K ln 2+2 ln(1/δ)

n
.

Suppose that 0 ≤ β − λ0 − (n − n̂)/n ≤ β + λ0 + (n − n̂)/n ≤ 1 and A is (K, ε(·), n̂(·))
pseudo robust. Then with probability at least 1 − δ, the following holds

(I) Q
(

As, β − λ0 − n − n̂(s)
n

,μemp

)
− ε(s)

≤ Q(As, β,μ) ≤ Q
(

As, β + λ0 + n − n̂(s)
n

,μemp

)
+ ε(s);

(II) T
(

As, β − λ0 − n − n̂(s)
n

,μemp

)
− ε(s)

≤ T (As, β,μ) ≤ T
(

As, β + λ0 + n − n̂(s)
n

,μemp

)
+ ε(s).

Generalizing the concept of pseudo robustness to the Markovian setup is straightforward,
and hence we omit the details.

6 Examples of robust algorithms

In this section we provide some examples of robust algorithms. The proofs of the examples
can be found in Appendices D–I. Our first example is Majority Voting (MV) classification
(see Sect. 6.3 of Devroye et al. 1996) that partitions the input space X and labels each
partition set according to a majority vote of the training samples belonging to it.

Example 3 (Majority voting) Let Y = {−1,+1}. Partition X to C1, . . . , CK , and use C(x) to
denote the set to which x belongs. A new sample xa ∈ X is labeled by

As(xa) �
{

1, if
∑

si∈C(xa) 1(s
(y)

i = 1) ≥ ∑
si∈C(xa) 1(s

(y)

i = −1);
−1, otherwise.

If the loss function is l(As , z) = f (z(y), As(z
(x))) for some function f , then MV is (2K,0)

robust.

MV algorithm has a natural partition of the sample space that makes it robust. Another
class of robust algorithms are those that have approximately the same testing loss for testing
samples that are close (in the sense of geometric distance) to each other, since we can parti-
tion the sample space with norm balls. The next theorem states that an algorithm is robust if
two samples being close implies that they have similar testing error.

Theorem 6 Fix γ > 0 and metric ρ of Z . Suppose A satisfies

|l(As, z1) − l(As, z2)| ≤ ε(s), ∀z1, z2 : z1 ∈ s, ρ(z1, z2) ≤ γ,

and N (γ /2, Z, ρ) < ∞. Then A is (N (γ /2, Z, ρ), ε(s))-robust.
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Proof Let {c1, . . . , cN (γ /2,Z,ρ)} be a γ /2-cover of Z . whose existence is guaranteed by the
definition of covering number. Let Ĉi = {z ∈ Z|ρ(z, ci) ≤ γ /2}, and Ci = Ĉi ∩ (

⋃i−1
j=1 Ĉj )

c .
Thus, C1, . . . ,CN (γ /2,Z,ρ) is a partition of Z , and satisfies

z1, z2 ∈ Ci =⇒ ρ(z1, z2) ≤ ρ(z1, ci) + ρ(z2, ci) ≤ γ.

Therefore,

|l(As, z1) − l(As, z2)| ≤ ε(s), ∀z1, z2 : z1 ∈ s, ρ(z1, z2) ≤ γ,

implies

z1 ∈ s z1, z2 ∈ Ci =⇒ |l(As, z1) − l(As, z2)| ≤ ε(s),

and the theorem follows. �

Theorem 6 immediately leads to the next example: if the testing error given the output of
an algorithm is Lipschitz continuous, then the algorithm is robust.

Example 4 (Lipschitz continuous functions) If Z is compact w.r.t. metric ρ, l(As, ·) is Lip-
schitz continuous with Lipschitz constant c(s), i.e.,

|l(As, z1) − l(As, z2)| ≤ c(s)ρ(z1, z2), ∀z1, z2 ∈ Z,

then A is (N (γ /2, Z, ρ), c(s)γ )-robust for all γ > 0.

Theorem 6 also implies that SVM, Lasso, feed-forward neural network and PCA are
robust, as stated in Examples 5 to 8. The proofs are deferred to Appendix E to H.

Example 5 (Support vector machine) Let X be compact. Consider the standard SVM for-
mulation (Cortes and Vapnik 1995; Schölkopf and Smola 2002)

Minimize
w,d,ξ1,...,ξn

c‖w‖2
H

+ 1

n

n∑

i=1

ξi

s.t. 1 − s
(y)

i [〈w, φ(s
(x)
i )〉 + d] ≤ ξi;

ξi ≥ 0.

Here φ(·) is a feature mapping to a kernel space H, ‖ · ‖H is the norm function of
H, and k(·, ·) is the kernel function.2 Let l(·, ·) be the hinge-loss, i.e., l((w,d), z) =
[1 − z(y)(〈w,φ(z(x))〉 + d)]+, and define fH(γ ) � maxa,b∈X ,‖a−b‖2≤γ (k(a,a) + k(b,b) −
2k(a,b)). If k(·, ·) is continuous, then for any γ > 0, fH(γ ) is finite, and SVM is
(2N (γ /2, X ,‖ · ‖2),

√
fH(γ )/c) robust.

2More precisely, let H be a Hilbert space, equipped with an inner product operator 〈·, ·〉. A feature mapping
φ(·) is a continuous mapping from X to H. The norm ‖ · ‖H : H �→ R is defined as ‖w‖H = 〈w,w〉, for all
w ∈ H. The kernel function k : X × X �→ R is defined as k(x1, x2) = 〈φ(x1), φ(x2)〉.
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Example 6 (Lasso) Let Z be a compact subset of R
m+1, and the loss function be l(As, z) =

|z(y) − As(z
(x))|. Lasso (Tibshirani 1996), which is the following regression formulation:

min
w

1

n

n∑

i=1

(s
(y)

i − w�s
(x)
i )2 + c‖w‖1, (5)

is (N (γ /2, Z,‖ · ‖∞), (Y (s)/c + 1)γ )-robust for all γ > 0, where Y (s) � 1
n

∑n

i=1[s(y)

i ]2.

A close examination of the robustness result of SVM and Lasso shows that the result-
ing generalization bound is not tight compared to standard methods such as VC-dimension
based results. More specifically, robustness based results depend exponentially on the di-
mension of Z , while the VC-dimension based results depend linearly on the dimension
of Z . The reason is that the solution of SVM or Lasso belongs to the set of linear de-
cision boundaries—a rather restrictive hypothesis set that in particular has a small VC
dimensionality—leading to a favorable bound using VC-dimension approach. However, the
robustness based approach only exploits the Liptschitz continuity, but not the linearity of
these algorithms, which results in an inferior result. To close this gap, we suspect that an
adaptive partition scheme may help. See Sect. 9 for a detailed discussion.

Example 7 (Feed-forward neural networks) Let Z be a compact subset of R
m+1 and the loss

function be l(As, z) = |z(y) − As(z
(x))|. Consider the d-layer neural network, which is the

following predicting rule given an input x ∈ X :

x0 := z(x)

∀v = 1, . . . , d − 1 : xv
i := σ

(
Nv−1∑

j=1

wv−1
ij (s) · xv−1

j

)
; i = 1, . . . ,Nv;

As(x) := σ

(
Nd−1∑

j=1

wd−1
j (s) · xd−1

j

)
,

where weights wv
ij (·) are trained using a learning algorithm A (e.g., backward propagation).

Define α(·) : Z n �→ R and constant β as,

α(s) � max
v∈[1:d] i∈[1:Nv ]

Nv−1∑

j=1

|wv−1
ij (s)|, ∀s ∈ Z n; β � max

a,b∈R,a 
=b

|σ(a) − σ(b)|
|a − b| ,

then A is (N (γ /2, Z,‖ · ‖∞), α(·)dβdγ )-robust, for all γ > 0.

Remark 1 In the classification case, where Y = {−1,+1}, the real-valued output prediction
As(x) can be convert into a binary output Âs(x) via

Âs(x) = sign(As(x)).

Observe that for all v ∈ R and w ∈ {−1,+1}, one has that 1(sign(v) 
= w) ≤ |v − w|.
Hence, since y ∈ {−1,+1}, we can upper-bound the expected classification error using
E(x,y)∼μ1(Âs(x)) 
= y) ≤ L(As).
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It is worthwhile noticing that in Example 7, the number of hidden units in each layer
has no effect on the robustness of the algorithm and consequently the bound on the testing
error. This indeed agrees with Bartlett (1998), where the author showed (using a different
approach based on fat-shattering dimension) that for neural networks, the weight plays a
more important role than the number of hidden units.

The next example considers an unsupervised learning algorithm, namely the principal
component analysis. We show that it is robust if the sample space is bounded. Note that,
this does not contradict with the well known fact that the principal component analysis is
sensitive to outliers which are far away from the origin.

Example 8 (Principal component analysis (PCA)) Let Z ⊂ R
m, such that maxz∈Z ‖z‖2 ≤ B .

If the loss function is l((w1, . . . ,wd), z) = ∑d

k=1(w
�
k z)2, then finding the first d principal

components, which solves the following optimization problem of w1, . . . ,wd ∈ R
m,

Maximize
n∑

i=1

d∑

k=1

(w�
k si)

2

s.t. ‖wk‖2 = 1, k = 1, . . . , d;
w�

i wj = 0, i 
= j.

is (N (γ /2, Z,‖ · ‖2),2dγB)-robust.

The last example is large-margin classification, which is a generalization of Example 1.
We need the following standard definition (e.g., Bartlett 1998) of the distance of a point to a
classification rule.

Definition 6 Fix a metric ρ of X . Given a classification rule Δ and x ∈ X , the distance of
x to Δ is

D(x,Δ) � inf{c ≥ 0|∃x ′ ∈ X : ρ(x, x ′) ≤ c,Δ(x) 
= Δ(x ′)}.

A large margin classifier is a classification rule such that most of the training samples are
“far away” from the classification boundary. More precisely, the following example quanti-
fies the robustness of an arbitrary classification based on its margin.

Example 9 (Large-margin classifier) Let γ > 0. Given a classification algorithm A, define
n̂ : Z n �→ R as

n̂(s) �
n∑

i=1

1(D(s
(x)
i , As) > γ ), ∀s ∈ Z n,

then algorithm A is (2N (γ /2, X , ρ),0, n̂(·)) pseudo robust, provided that N (γ /2, X , ρ) <

∞.

Remark 2 In all examples except the first one, we assume that the sample space Z is com-
pact, so that it can be covered by a finite number of subsets with bounded diameters. Note
that as in previous works (e.g., Steinwart 2006), this assumption is mainly introduced to sim-
plify the exposition. Indeed, to extend our analysis to a non-compact Z , for any η > 0 we
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can pick Ẑ ⊆ Z which is a compact subset satisfying μ(Ẑ) > 1 − η. Suppose an algorithm
is (K, ε) robust if restricted on Ẑ , then on Z we have with probability at least 1 − δ − η,

|L(As) − lemp(As)| ≤ ε(s) + M

√
2K ln 2 + 2 ln(1/δ)

n
.

Remark 3 Combining results presented in this section with Theorem 1 (or Theorem 4), it
is easy to obtain generalization bounds for individual learning algorithms. It is of interest
to understand the quality of robustness-based generalization bounds. For some learning al-
gorithm, for example SVM and Lasso, the robustness bounds are indeed sub-optimal as
it depends polynomially with respect to the covering number, while the bounds based on
previous approaches typically depends polynomially with respect to the logarithm of the
covering number. On the other hand, for some learning algorithms, the robustness based
bound are indeed optimal. Example 3 is such a case, as it is known that its minimax ex-
cess error is of the order

√
K/n (e.g., Devroye et al. 1996). Such noticeable difference can

be attributed to the fact that in Lasso and SVM, there are redeeming features (small VC-
dimensionality for Lasso and stability for SVM) that make them amenable to analysis. In
general, when such features—ranging from sparseness to stability to having a small VC-
dimesnionaility—do exist, a specialized analysis exploiting these features may yield tighter
bounds than robustness-based analysis. When such features do not exist, a more generalized
analysis based on robustness may turn to be the best choice.

7 Comparison and contrast with previous approaches

We devote this section to compare and contrast the proposed robustness-based approach
with previously suggested approaches. Our goal is to demonstrate that the concept of ro-
bustness is essentially different from previous concepts, and it is possible to use the robust
approach to derive stronger results than previous approaches in some cases. To this end,
we present three results. First, we show that there are robust algorithms for classes with
an infinite VC dimension. Similarly, we then show that there are robust, but not uniformly
stable algorithms. Finally, we consider larger margin classification and show that robustness
leads to a novel bound that implies a faster convergence rate than standard, fat-shattering
dimension based results.

7.1 Robustness and VC dimension

We first investigate the relationship between robustness and VC-dimension. Indeed, it is easy
to construct a robust algorithm whose solution set Ho = {h ∈ H|∃s : h = As} has infinite VC
dimensions. For example, consider the class of neural networks discussed in Example 7
(more precisely, the classification case as in Remark 1), which is shown to be robust. On
the other hand, it is well-known that the set of neural networks (without a bound on the
number of computational units) has infinite VC dimensions (Bartlett 1998), and hence is not
amenable to VC-dimension based analysis.

7.2 Robustness and stability

We now consider the relationship between robustness and stability. While these notions are
similar on an intuitive level, they are inherently different. To highlight this, we show by
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example that a robust algorithm can be non-stable. This result is adapted from our previous
work (Xu et al. 2010b), which among other things, showed that Lasso is not-stable. For
completeness, we reproduce the results here. Recall the definition of uniform stability from
Bousquet and Elisseeff (2002):

Definition 7 An algorithm L has a uniform stability bound of βn with respect to the loss
function l if the following holds:

∀S ∈ Z n,∀i ∈ {1, . . . , n}, ‖l(LS, ·) − l(LS\i , ·)‖∞ ≤ βn.

Here LS\i stands for the learned solution with the ith sample removed from S.

An algorithm is stable when βn decreases fast enough. Interestingly, Lasso, which is
known to be robust, is non-stable: its uniform stability bound does not decrease at all, as the
following theorem adapted from Xu et al. (2010b) shows.

Theorem 7 Let Z = Y × X be the sample space with m features, where Y ⊆ R, X ⊆ R
m,

0 ∈ Y and 0 ∈ X . Let Ẑ = Y × X × X be the sample space with 2m features. Then the
uniform stability bound of Lasso is lower bounded by bn(Lasso, Z). Here, bn(·, ·), termed
trivial bound, is defined as

bn(L, Z) � max
(b,A)∈Z n,z∈X

l(L(b,A), (0, z)).

Observe that bn(L, Z) ≥ b1(L, Z) since by repeatedly choosing the worst sample (for
b1), the algorithm will yield the same solution. Hence the trivial bound does not diminish
as the number of samples, n, increases. Thus, the uniform stability bound of Lasso does not
decrease, which implies that Lasso is robust but non-stable.

7.3 Improved bounds through robustness

Finally, we show that robustness can lead to tighter generalization bounds. In particular, we
consider generalization bounds of classification algorithms based on the margin achieved,
and show that the robustness based bound is tighter than standard results based on fat-
shattering dimension (Bartlett 1998). A fat-shattering dimension argument leads to the fol-
lowing result, adapted from Corollary 14 of Bartlett (1998):

Corollary 4 Let Y = {−1,+1}. Consider an arbitrary algorithm A. With probability at
least 1 − δ over s ∈ Z n, the following holds

L(As) ≤ 1

n

n∑

i=1

1
(

D(s(x)
i , As) ≤ γ, or As(s

(x)
i ) 
= s(y)

i

)

+
√

2

n
(d ln(34en/d) log2(578n) + ln(4/δ)),

where d = N (γ /16, X , ρ).

On the other hand, combining Example 9 and Theorem 4 we have the following
robustness-based bound.
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Corollary 5 Let Y = {−1,+1}. Consider an arbitrary algorithm A. With probability at
least 1 − δ over s ∈ Z n, the following holds

L(As) ≤ 1

n

n∑

i=1

1
(

D(s(x)
i , As) ≤ γ, or As(s

(x)
i ) 
= s(y)

i

) +
√

2

n
(K ln 2 + ln(1/δ)),

where K = 2N (γ /2, X , ρ).

Since the first terms to both bounds are the same, we only need to compare the second
terms. Neglecting constants, we have that

√
2

n
(K ln 2 + ln(1/δ)) ≤ ε; if n ∼ K/ε2.

As a comparison,
√

2

n
(d ln(34en/d) log2(578n) + ln(4/δ)) ≤ ε; if n ∼ d ln2(1/ε)/ε2.

Note that K ≤ 2d , hence we conclude that for the large margin classification algorithm,
the robustness-based bound is tighter by a logarithmic factor than the fat-shattering based
bound.

Remark 4 We remark that for specific margin-based algorithms, including boosting and
neural networks, the bound in Corollary 4 has been improved using Radamacher complexity
argument (Koltchinskii and Panchenko 2002; Kakade et al. 2009) so that the logn factor was
removed. However, we are not aware of a similar improvement of margin-based bounds for
general classification algorithms.

One advantage of the robustness approach is the geometric intuition it conveys. This
often leads to significantly simplified proofs. For example, for large margin classification,
we derived a bound that is (slightly) better than state-of-art results, with only a half page of
argument. Moreover, and arguably more importantly, the geometric intuition makes it much
easier to extend generalization results to interesting, non-standard learning setups such as
Markovian samples or quantile loss.

8 Necessity of robustness

Thus far we have considered finite sample generalization bounds of robust algorithms.
We now turn to asymptotic analysis. Our setup is as follows. We are given an increasing
set of training samples s = (s1, s2, . . .) and tested on an increasing set of testing samples
t = (t1, t2, . . .), where all samples are generated IID according to an unknown distribution
μ. We use s(n) and t(n) to denote the first n elements of training samples and testing samples
respectively. Therefore, s(n) and t(n) are random variables follow distribution μn, while s
and t follow distribution μ∞. In certain cases, we may fix a sequence of training samples,
which we will denote by s∗. Throughout this section, unless otherwise specified, Pr(·) de-
notes the probability with respect to t.

A learning method A is defined as a sequence of mappings {Ak}k∈N where Ak is a learn-
ing algorithm for a training sample set of size k, i.e.,

Ak : Z k �→ H.
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For succinctness, we suppress the superscript whenever the number of training samples is
clear. We use L(·, ·) to denote the average loss given a set of samples, i.e., for h ∈ H,

L(h, t(n)) ≡ 1

n

n∑

i=1

l(h, ti).

Recall that L(·) denotes the expected loss, i.e.,

L(h) = Ez∼μl(h, z).

We show in this section that robustness is an essential property of successful learning.
In particular, a (weaker) notion of robustness characterizes generalizability, i.e., a learning
algorithm generalizes if and only if it is weakly robust. To make this precise, we define the
notion of generalizability and weak robustness first.

Definition 8 1. Given a sequence of training samples s∗, a learning method A generalizes
w.r.t. s∗ if

lim
n

∣∣L(As∗(n)) − L(As∗(n), s∗(n))
∣∣ = 0.

2. A learning method A generalize w.p. 1 if it generalize w.r.t. almost all s, where s
contains IID samples following distribution μ.

We remark that the proposed notion of generalizability differs slightly from the standard
one in the sense that the latter requires that the empirical risk and the expected risk converge
in mean, while the proposed notion requires convergence w.p. 1. It is straightforward that
the proposed notion implies the standard one.

Definition 9 1. Given a sequence of training samples s∗, a learning method A is weakly
robust w.r.t. s∗ if there exists a sequence of {Dn ⊆ Z n} such that Pr(t(n) ∈ Dn) → 1, and

lim
n

{
max

ŝ(n)∈Dn

∣∣∣L(As∗(n), ŝ(n)) − L(As∗(n), s∗(n))

∣∣∣
}

= 0. (6)

2. A learning method A is a.s. weakly robust if it is robust w.r.t. almost all s.

In (6), ŝ(n) is any n-sample set belonging to Dn, which intuitively can be regarded as
a perturbed copy of the training sample set s∗(n). We briefly comment on the definition of
weak robustness. Recall that the definition of robustness requires that the sample space can
be partitioned into disjoint subsets such that if a testing sample belongs to the same parti-
tioning set of a training sample, then they have similar loss. Weak robustness generalizes
such notion by considering the average loss of testing samples and training samples. That is,
if for a large (in the probabilistic sense) subset of Z n, the testing error is close to the training
error, then the algorithm is weakly robust. It is easy to see, by Breteganolle-Huber-Carol
lemma, that if for any fixed ε > 0 there exists K such that A is (K, ε) robust, then A is
weakly robust.

We now establish the main result of this section: weak robustness and generalizability
are equivalent.

Theorem 8 Fix a sequence of training samples s∗. A learning method A generalizes w.r.t.
s∗ if and only if it is weakly robust w.r.t. s∗.
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Proof We prove the sufficiency of weak robustness first. When A is weakly robust w.r.t. s∗,
by definition there exists {Dn} such that for any δ, ε > 0, there exists N(δ, ε) such that for
all n > N(δ, ε), Pr(t(n) ∈ Dn) > 1 − δ, and

sup
ŝ(n)∈Dn

∣∣∣L(As∗(n), ŝ(n)) − L(As∗(n), s∗(n))

∣∣∣ < ε. (7)

Therefore, the following holds for any n > N(δ, ε),

∣∣∣L(As∗(n)) − L(As∗(n), s∗(n))

∣∣∣

=
∣∣∣Et(n)(L(As∗(n), t(n))) − L(As∗(n), s∗(n))

∣∣∣

=
∣∣∣Pr(t(n) /∈ Dn)E(L(As∗(n), t(n))|t(n) /∈ Dn)

+ Pr(t(n) ∈ Dn)E(L(As∗(n), t(n))|t(n) ∈ Dn) − L(As∗(n), s∗(n))

∣∣∣

≤ Pr(t(n) /∈ Dn)

∣∣∣E(L(As∗(n), t(n))

∣∣∣t(n) /∈ Dn) − L(As∗(n), s∗(n))

∣∣∣

+ Pr(t(n) ∈ Dn)

∣∣∣E(L(As∗(n), t(n))|t(n) ∈ Dn) − L(As∗(n), s∗(n))

∣∣∣

≤ δM + sup
ŝ(n)∈Dn

∣∣∣L(As∗(n), ŝ(n)) − L(As∗(n), s∗(n))

∣∣∣ ≤ δM + ε.

Here, the first equality holds because the testing samples t(n) consists of n i.i.d. samples
following μ. The second equality holds by conditional expectation. The last inequalities
hold due to the assumption that the loss function is upper bounded by M , as well as (7).

We thus conclude that the algorithm A generalizes for s∗, because ε and δ can be arbi-
trary.

Now we turn to the necessity of weak robustness. First, we establish the following lemma.

Lemma 2 Given s∗, if a learning method A is not weakly robust w.r.t. s∗, then there exists
ε∗, δ∗ > 0 such that the following holds for infinitely many n,

Pr
(∣∣L(As∗(n), t(n)) − L(As∗(n), s∗(n))

∣∣ ≥ ε∗) ≥ δ∗. (8)

Proof We prove the lemma by contradiction. Assume that such ε∗ and δ∗ do not exist. Let
εv = δv = 1/v for v = 1,2, . . . , then there exists a non-decreasing sequence {N(v)}∞

v=1 such
that for all v, if n ≥ N(v) then Pr(|L(As∗(n), t(n)) − L(As∗(n), s∗(n))| ≥ εv) < δv . For each
n, define the following set:

Dv
n � {ŝ(n)| |L(As∗(n), ŝ(n)) − L(As∗(n), s∗(n))| < εv}.

Thus, for n ≥ N(v) we have

Pr(t(n) ∈ Dv
n) = 1 − Pr

(∣∣L(As∗(n), t(n)) − L(As∗(n), s∗(n))
∣∣ ≥ εv

)
> 1 − δv.

For n ≥ N(1), define Dn � Dv(n)
n , where: v(n) � max(v|N(t) ≤ n; v ≤ n). Thus for

all n ≥ N(1) we have that Pr(t(n) ∈ Dn) > 1 − δv(n) and supŝ(n)∈Dn
|L(As∗(n), ŝ(n)) −
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L(As∗(n), s∗(n))| < εv(n). Note that v(n) ↑ ∞, it follows that δv(n) → 0 and εv(n) → 0. There-
fore, Pr(t(n) ∈ Dn) → 1, and

lim
n→∞

{
sup

ŝ(n)∈Dn

∣∣L(As∗(n), ŝ(n)) − L(As∗(n), s∗(n))
∣∣
}

= 0.

That is, A is weakly robust w.r.t. s, which is a desired contradiction. �

We now prove the necessity of weak robustness. Recall that l(·, ·) is uniformly bounded.
Thus by Hoeffding’s inequality we have that for any ε, δ, there exists n∗ such that for any
n > n∗, with probability at least 1− δ, we have | 1

n

∑n

i=1 l(As∗(n), ti)− L(l(As∗(n))| ≤ ε. This
implies that

L(As∗(n), t(n)) − L(As∗(n))
Pr−→ 0. (9)

Since algorithm A is not robust, Lemma 2 implies that (8) holds for infinitely many n. This,
combined with (9) implies that for infinitely many n,

∣∣L(As∗(n), t) − L(As∗(n), s∗(n))
∣∣ ≥ ε∗

2
,

which means that A does not generalize. Thus, the necessity of weak robustness is estab-
lished. �

Theorem 8 immediately leads to the following corollary.

Corollary 6 A learning method A generalizes w.p. 1 if and only if it is a.s. weakly robust.

Remark 5 In Shalev-Shwartz et al. (2009), the authors investigated a closely related prob-
lem, namely, “when is a problem learnable?” More precisely, learnability is defined as fol-
lows.

Definition 10 (Adapted from Shalev-Shwartz et al. 2009) A learning problem defined
through a set of hypothesis H and a loss function l(·, ·) is learnable, if there exists a learning
method A and a monotone decreasing sequence εcons(n) ↓ 0 such that

∀μ : Es(n)∼μn [Ez∼μl(As(n), z) − inf
h∈H

Ez∼μl(h,Z)] ≤ εcons(n).

The authors then showed that learnability can be characterized by a version of stability,
in the general learning setup. It is worthwhile to note the difference between learnability
and generalizability that is investigated in this section, namely, learnability requires the ex-
cess risk to converge uniformly w.r.t. all distributions, while generalizability requires the
generalization gap to converge, but the rate can vary for different distributions. As such,
learnability is a more strict condition. Indeed, as Shalev-Shwartz et al. (2009) noted, for the
supervised learning case (arguably the most common learning setup), classical results stated
that learnability is equivalent to finiteness of the VC dimension of H (Vapnik and Chervo-
nenkis 1974). In contrast, the characterization of the generalizability seems to be an open
question, even in the supervised learning setup. Thus, to the best of our knowledge, weak
robustness provides the very first attempt to answer it.
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Zakai and Ritov (2009) proposed a notion termed localizability and showed that a
supervised-learning algorithm is uniformly consistent if and only if it simultaneously sat-
isfies two conditions: first, the algorithm correctly estimates the true mean asymptotically,
and second, it satisfies a form of localizability. Roughly speaking, an algorithm is localiz-
able if the prediction of a testing sample does not change significantly when the algorithm is
trained on those training samples that are close to the testing sample. Beyond some apparent
difference in the setup (e.g., consistency vs generalizability, supervised learning vs general
learning, etc.), the main difference between localizability and robustness is that localizabil-
ity requires that the outputs of two runs of an algorithm—one on the entire training set and
the other on a subset of training samples—are “close” to each other. In this spirit, localizabil-
ity is a notion close to stability. In contrast, robustness considers performance for different
testing runs for one output solution of an algorithm. Despite these differences though, in
a high-level, it appears that both localizability and robustness are geometric notations that
are critical to the performance of learning algorithms. Therefore, it would be interesting to
investigate the relationship between these two notions. Due to space constraints, a detailed
investigation is out of the scope of this paper.

9 Conclusions and future directions

In this paper we investigated the generalization ability of learning algorithm based on their
robustness: the property that if a testing sample is “similar” to a training sample, then its loss
is close to the training error. This provides a novel approach, different from the complexity or
stability argument, in studying the performance of learning algorithms. We further showed
that a weak notion of robustness characterizes generalizability, which implies that robustness
is a fundamental property for learning algorithms to work.

Before concluding the paper, we outline several directions for future research.

– Adaptive partition: In Definition 2 when the notion of robustness was introduced, we re-
quired that the partitioning of Z into K sets is fixed. That is, regardless of the training
sample set, we partition Z into the same K sets. A natural and interesting question is
what if such fixed partition does not exist, while instead we can only partition Z into K

sets adaptively, i.e., for different training set we will have a different partitioning of Z .
Adaptive partition can be used to study algorithms such as k-NN. Our current proof tech-
nique does not straightforwardly extend to such a setup, and we would like to understand
whether a meaningful generalization bound under this weaker notion of robustness can be
obtained. We note that for the standard learning setup, where samples are IID, robustness-
based argument seems to often lead to generalization bounds not superior than previous
approaches. One important future research direction would be to examine the possibility
of using adaptive partition to obtain tighter bounds.

– Mismatched datasets: One advantage of algorithmic robustness framework is the ability to
handle non-standard learning setups. For example, in Sect. 4.1 we derived generalization
bounds for quantile loss. A problem of the same essence is the mismatched datasets,
also known as domain adaption (e.g., Ben-David et al. 2007; Mansour et al. 2009 and
reference therein). Here the training samples are generated according to a distribution
slightly different from that of the testing samples, e.g., the two distributions may have a
small K-L divergence. Indeed, following a similar argument as the proof of Theorem 1,
one can show that if algorithm A is (K, ε)-robust w.r.t. partition C1, . . . ,CK , the training
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samples are iid following μs , we can bound the error w.r.t. a distribution μt by

Ez∼μt l(As, z) ≤ lemp(As) + ε + M

√
2K ln 2 + 2 ln(1/δ)

n
+

K∑

i=1

|μt(Ci) − μs(Ci)|.

Note that the last term, which bounds the error due to domain adaption, only depends on
the difference of μt and μs over {Ci}. This is upper bounded by, and can be much smaller
than, the total variation of μs and μt defined as

dL1(μs,μt ) = 2 sup
B∈B

|μs(B) − μt(B)|,

where B is the set of all measurable sets in Z . Since the total variation is commonly used
in domain adaption, the algorithmic robustness approach may lead to better generalization
bounds for domain adaption.

– Outlier removal: One possible reason that the training samples is generated differently
from the testing sample is outlier corruption. It is often the case that the training sample
set is corrupted by some outliers. In addition, algorithms designed to be outlier resistent
abound in the literature (e.g., Huber 1981; Rousseeuw and Leroy 1987). The robustness
framework may provide a novel approach in studying both the generalization ability and
the outlier resistent property of these algorithms. In particular, the results reported in
Sect. 4.1 can serve as a starting point of future research in this direction.

– Other robust algorithms: The proposed robust approach considers a general learning
setup. However, except for PCA, the algorithms investigated in Sect. 6 all belong to the
supervised learning setting. One natural extension is to investigate other robust unsuper-
vised and semi-supervised learning algorithms. One difficulty is that compared to super-
vised learning case, the analysis of unsupervised/semi-supervised learning algorithms can
be challenging, due to the fact that many of them are random iterative algorithms (e.g.,
k-means).
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Appendix A: Proof of Theorem 3

For succinctness, let

λ0 � 2T

αn
+

√
2T 2(K ln 2 + ln(1/δ))

α2n
.

Observe that λ0 > 2T/(αn), which leads to

n >
2T

αλ0
.

Let Ni be the set of index of points of s that fall into the Ci . Consider the set of functions
H = {1(x ∈ H)|H = ⋃

i∈I Ci; ∀I ⊆ {1, . . . ,K}}, i.e., the set of indicator functions of all
different unions of Ci . Then |H| = 2K . Furthermore, fix a h0 ∈ H,
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Pr

(
K∑

j=1

∣∣∣∣
|Nj |
n

− π(Cj )

∣∣∣∣ ≥ λ

)
= Pr

{
sup
h∈H

[
1

n

n∑

i=1

h(si) − Eπh(s)

]
≥ λ

}

≤ 2KPr

[
1

n

n∑

i=1

h0(si) − Eπh0(s) ≥ λ

]
.

Since ‖h0‖∞ = 1 and recall n > 2T/λα, we can apply Lemma 1 to get

Pr

[
1

n

n∑

i=1

h0(si) − Eπh0(s) ≥ λ

]
≤ exp

(
−α2(nλ − 2T/α)2

2nT 2

)
.

Substitute in λ0,

Pr

(
K∑

j=1

∣∣∣∣
|Nj |
n

− π(Cj )

∣∣∣∣ ≥ λ0

)
≤ 2K exp

(
−α2(nλ0 − 2T/α)2

2nT 2

)
= δ.

Thus, following an identical argument as the proof of Theorem 1, we have with probability
1 − δ,

|L(As) − lemp(As)| ≤ ε(s) + Mλ0

= ε(s) + M

{
2T

αn
+

√
2T 2(K ln 2 + ln(1/δ))

α2n

}
.

Appendix B: Proof of Theorem 4

Let Ni and N̂i be the set of indices of points of s and ŝ that fall into the Ci , respectively.
Similarly to the proof of Theorem 1, we note that (|N1|, . . . , |NK |) is a multinomial random
variable with parameters n and (μ(C1), . . . ,μ(CK)). And hence due to Breteganolle-Huber-
Carol inequality, the following holds with probability at least 1 − δ,

K∑

i=1

∣∣∣∣
|Ni |
n

− μ(Ci)

∣∣∣∣ ≤
√

2K ln 2 + 2 ln(1/δ)

n
. (10)

Furthermore, we have

|L(As) − lemp(As)|

=
∣∣∣∣∣

K∑

i=1

E(l(As, z)|z ∈ Ci)μ(Ci) − 1

n

n∑

i=1

l(As, si)

∣∣∣∣∣

≤
∣∣∣∣∣

K∑

i=1

E(l(As, z)|z ∈ Ci)
|Ni |
n

− 1

n

n∑

i=1

l(As, si)

∣∣∣∣∣

+
∣∣∣∣∣

K∑

i=1

E(l(As, z)|z ∈ Ci)μ(Ci) −
K∑

i=1

E(l(As, z)|z ∈ Ci)
|Ni |
n

∣∣∣∣∣
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≤
∣∣∣∣∣
1

n

K∑

i=1

[
|Ni | × E(l(As, z)|z ∈ Ci) −

∑

j∈N̂i

l(As, sj ) −
∑

j∈Ni ,j /∈N̂i

l(As, sj )

]∣∣∣∣∣

+
∣∣∣∣∣max

z∈Z
|l(As,z)|

K∑

i=1

∣∣∣∣
|Ni |
n

− μ(Ci)

∣∣∣∣

∣∣∣∣∣.

Note that due to the triangle inequality as well as the assumption that the loss is non-negative
and upper bounded by M , the right-hand side can be upper bounded by

∣∣∣∣∣
1

n

K∑

i=1

∑

j∈N̂i

max
z2∈Ci

|l(As, sj ) − l(As, z2)|
∣∣∣∣∣ +

∣∣∣∣∣
1

n

K∑

i=1

∑

j∈Ni ,j /∈N̂i

max
z2∈Ci

|l(As, sj ) − l(As, z2)|
∣∣∣∣∣

+ M

K∑

i=1

∣∣∣∣
|Ni |
n

− μ(Ci)

∣∣∣∣

≤ n̂(s)
n

ε(s) + n − n̂(s)
n

M + M

K∑

i=1

∣∣∣∣
|Ni |
n

− μ(Ci)

∣∣∣∣,

where the inequality holds due to definition of Ni and N̂i . The theorem follows by apply-
ing (10).

Appendix C: Proof of Theorem 5

We observe the following properties of quantile value and truncated mean:

1. If X is supported on R
+ and β1 ≥ β2, then

Q
β1(X) ≥ Q

β2(X); T
β1(X) ≥ T

β2(X).

2. If Y stochastically dominates X, i.e., Pr(Y ≥ a) ≥ Pr(X ≥ a) for all a ∈ R, then for any
β ,

Q
β(Y ) ≥ Q

β(X); T
β(Y ) ≥ T

β(X).

3. The β-truncated mean of empirical distribution of nonnegative (x1, . . . , xn) is given by

min
α:0≤αi≤1/n,

∑n
i=1 αi≤β

n∑

i=1

αixi .

By definition of pseudo-robustness, Z can be partitioned into K disjoint sets, denoted as
{Ci}K

i=1, and a subset of training samples ŝ with |ŝ| = n̂(s) such that

z1 ∈ ŝ, z1, z2 ∈ Ci, =⇒ |l(As, z1) − l(As, z2)| ≤ ε(s); ∀s.

Let Ni be the set of index of points of s that fall into the Ci . Let E be the event that the
following holds:

K∑

i=1

∣∣∣∣
|Ni |
n

− μ(Ci)

∣∣∣∣ ≤
√

2K ln 2 + 2 ln(1/δ)

n
.
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From the proof of Theorem 1, Pr(E ) ≥ 1 − δ. Hereafter we restrict the discussion to the case
when E holds.

Denote

vj = arg min
z∈Cj

l(As, z).

By symmetry, without loss of generality we assume that 0 ≤ l(As, v1) ≤ l(As, v2) ≤ · · · ≤
l(As, vK) ≤ M . Define a set of samples s̃ as

s̃i =
{

si if si ∈ ŝ;
vj if si /∈ ŝ, si ∈ Cj .

Define discrete probability measures μ̂ and μ̃, supported on {v1, . . . , vK} as

μ̂({vj }) = μ(Cj ); μ̃({vj }) = |Nj |
n

.

Further, let μ̃emp denote the empirical distribution of sample set s̃.
Proof of (I):
Observe that μ stochastically dominates μ̂, hence

Q(As, β, μ̂) ≤ Q(As, β,μ). (11)

Also by definition of Q(·) and μ̂,

Q(As, β, μ̂) = vk∗ ; where: k∗ = min

{
k :

k∑

i=1

μ̂(vi) ≥ β

}
.

Let s be the set of all samples si such that si ∈ ŝ, and si ∈ Cj for some j ≤ k∗. Observe that

∀si ∈ ŝ : l(As, si) ≤ vk∗ + ε(s) = Q(As, β, μ̂) + ε(s). (12)

Note that E implies

1

n

k∗∑

j=1

∑

si∈Cj

1 ≥
k∗∑

j=1

μ(Cj ) − λ0 =
k∑

j=1

μ̂(vj ) − λ0 ≥ β − λ0.

Since As is pseudo robust, we have

1

n

∑

si /∈ŝ

= n − n̂(s)
n

.

Therefore

1

n

k∗∑

j=1

∑

si∈s,si∈Cj

1 ≥ 1

n

k∗∑

j=1

∑

si∈Cj

1 − 1

n

∑

si /∈ŝ

1 ≥ β − λ0 − n − n̂(s)
n

.

Thus, s is a subset of s of at least n(β − λ0 − (n − n̂(s))/n) elements. Thus (11) and (12)
lead to

Q(As, β − λ0 − (n − n̂(s))/n,μemp) ≤ max{si : si ∈ s} ≤ Q(As, β,μ) + ε(s).
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Thus, we establish the left inequality. The proof of the right one is identical and hence
omitted.

Proof of (II):
The proof constitutes four steps.
Step 1: Observe that μ stochastically dominates μ̂, hence

T (As, β, μ̂) ≤ T (As, β,μ).

Step 2: We prove that

T (As, β − λ0, μ̃) ≤ T (As, β, μ̂).

Note that t E implies for all j , we have

μ̃({v1, . . . , vj }) − λ0 ≤ μ̂({v1, . . . , vj }).
Therefore, there uniquely exists a non-negative integer j ∗ and a c∗ ∈ [0,1) such that

μ̂({v1, . . . , vj∗ }) + c∗μ̂({vj∗+1}) = β,

and define

β̂ =
j∗∑

i=1

min(μ̃({vi}), μ̂({vi})) + c∗ min(μ̃({vj∗+1}), μ̂({vj∗+1})), (13)

then we have β̂ ≥ β − λ0, which leads to

T (As, β − λ0, μ̃) ≤ T (As, β̂, μ̃)

(a)≤
j∗∑

i=1

l(As, vi)min(μ̃({vi}), μ̂({vi})) + c∗l(As, vj∗+1)min(μ̃({vj∗+1}), μ̂({vj∗+1}))

≤
j∗∑

i=1

l(As, vi)μ̂({vi}) + c∗l(As, vj∗+1)μ̂({vj∗+1}) = T (As, β, μ̂),

where (a) holds because (13) essentially means that T (As, β̂, μ̃) is a weighted sum with
total weights equals to β̂ , which puts more weights on small terms, and hence is smaller.

Step 3: We prove that

T (As, β − λ0, μ̃emp) − ε(s) ≤ T (As, β − λ0, μ̃).

Let t̃ be a set of n samples, such that Nj of them are vj for j = 1, . . . ,K . Observe that μ̃

is the empirical distribution of t̃. Further note that there is a one-to-one mapping between
samples in s̃ and that in t̃ such that each pair (say s̃i , t̃i ) of samples belongs to the same Cj .
By definition of s̃ this guarantees that |l(As, s̃i ) − l(As, t̃i )| ≤ ε(s), which implies

T (As, β − λ0, μ̃emp) − ε(s) ≤ T (As, β − λ0, μ̃).

Step 4: We prove that

T
(

As, β − λ0 − n − n̂(s)
n

,μemp

)
≤ T (As, β − λ0, μ̃emp).
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Let I = {i : si = s̃i}), the following holds:

n∑

i=1

αil(As, s̃i ) ≥
∑

i∈I

αil(As, s̃i ) =
∑

i∈I

αil(As, si); ∀α : 0 ≤ αi ≤ 1

n
;

n∑

i=1

αi = β − λ0.

Note that |{i 
∈ I}| = n − n̂(s), then
∑

i∈I
αi ≥ β − λ0 − n−n̂(s)

n
. Thus we have ∀α : 0 ≤ αi ≤

1
n
; ∑n

i=1 αi = β − λ0,

∑

i∈I

αil(As, si) ≥ min
α′ :0≤α′

i
≤ 1

n ,
∑n

i=1 α′
i
≤β−λ0− n−n̂(s)

n

n∑

i=1

α′
i l(As, si) = T (As, β − λ0, μ̃emp).

Therefore,

n∑

i=1

αil(As, s̃i ) ≥ T
(

As, β − λ0 − n − n̂(s)
n

,μemp

)
; ∀α : 0 ≤ αi ≤ 1

n
;

n∑

i=1

αi = β − λ0.

Minimization over α on both side. We proved

T
(

As, β − λ0 − n − n̂(s)
n

,μemp

)
≤ T (As, β − λ0, μ̃emp).

Combining all four steps, we proved the left inequality, i.e.,

T
(

As, β − λ0 − n − n̂(s)
n

,μemp

)
− ε(s) ≤ T (As, β,μ).

The right inequality can be proved identically and hence omitted.

Appendix D: Proof of Example 3

We can partition Z as {−1}× C1, . . . , {−1}× CK, {+1}× C1, . . . , {+1}× CK . Consider za, zb

that belong to a same set, then z
(y)
a = z

(y)

b , and ∃i such that z(x)
a , z

(x)
b ∈ Ci , which by the

definition of Majority Voting algorithm implies that As(z
(x)
a ) = As(z

(x)
b ). Thus, we have

l(As, za) = f (z(y)
a , As(z

(x)
a )) = f (z

(y)

b , As(z
(x)
b )) = l(As, zb).

Hence MV is (2K,0)-robust.

Appendix E: Proof of Example 5

The existence of fH(γ ) follows from the compactness of X and continuity of k(·, ·).
To prove the robustness of SVM, let (w∗, d∗) be the solution given training data s. To

avoid notation clutter, let yi = s
(y)

i and xi = s
(x)
i . Thus, we have (due to optimality of w∗, d∗)

c‖w∗‖2
H

+ 1

n

n∑

i=1

[1−yi(〈w∗, φ(xi)〉+d∗)]+ ≤ c‖0‖2
H

+ 1

n

n∑

i=1

[1−yi(〈0, φ(xi)〉+0)]+ = 1,
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which implies ‖w∗‖H ≤ √
1/c. Let c1, . . . , cN (γ /2,X ,‖·‖2) be a γ /2-cover of X (recall that X

is compact), then we can partition Z as 2N (γ /2, X ,‖ · ‖2) sets, such that if (y1, x1) and
(y2, x2) belongs to the same set, then y1 = y2 and ‖x1 − x2‖2 ≤ γ /2.

Further observe that if y1 = y2 and ‖x1 − x2‖2 ≤ γ /2, then

|l((w∗, d∗), z1) − l((w∗, d∗), z2))|
= |[1 − y1(〈w∗, φ(x1)〉 + d∗)]+ − [1 − y2(〈w∗, φ(x2)〉 + d∗)]+|
≤ |〈w∗, φ(x1) − φ(x2)〉|
≤ ‖w∗‖H

√〈φ(x1) − φ(x2),φ(x1) − φ(x2)〉
≤ √

fH(γ )/c.

Here the last inequality follows from the definition of fH. Hence, the example holds by
Theorem 6.

Appendix F: Proof of Example 6

It suffices to show the following lemma, which establishes that loss of Lasso solution is
Liptschitz continuous.

Lemma 3 If w∗(s) is the solution of Lasso given training set s, then

|l(w∗(s), za) − l(w∗(s), zb)| ≤
[

1

nc

n∑

i=1

[s(y)

i ]2 + 1

]
‖za − zb‖∞.

Proof For succinctness we let yi = s
(y)

i , xi = s
(x)
i for i = 1, . . . , n. Similarly, we let ya =

z
(y)
a , yb = z

(y)

b , xa = z(x)
a and xb = z

(x)
b . Since w∗(s) is the solution of Lasso, we have (due to

optimality)

1

n

n∑

i=1

(yi − x�
i w∗(s))2 + c‖w∗(s)‖1 ≤ 1

n

n∑

i=1

(yi − x�
i 0)2 + c‖0‖1 = 1

n

n∑

i=1

yi
2,

which implies ‖w∗‖1 ≤ 1
nc

∑n

i=1 yi
2. Therefore,

|l(w∗(s), za) − l(w∗(s), zb)| = ||ya − w∗(s)xa| − |yb − w∗(s)xb||
≤ |(ya − w∗(s)xa) − (yb − w∗(s)xb)|
≤ |ya − yb| + ‖w∗(s)‖1‖xa − xb‖∞

≤ (‖w∗(s)‖1 + 1)‖za − zb‖∞

=
[

1

nc

n∑

i=1

yi
2 + 1

]
‖za − zb‖∞.

Here the first two inequalities holds from triangular inequality, and the last inequality holds
due to z = (x, y). �
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Appendix G: Proof of Example 7

To see why the example holds, it suffices to show the following lemma, which establishes
that the neural network mentioned is Lipschitz continuous. For simplicity, we write the
prediction given x ∈ X as NN(x).

Lemma 4 Fixed α,β , if a d-layer neural network satisfying that |σ(a) − σ(b)| ≤ β|a − b|,
and

∑Nv

j=1 |wv
ij | ≤ α for all v, i, then the following holds:

|l(As, z) − l(As, ẑ)| ≤ (1 + αdβd)‖z − ẑ‖∞.

Proof Let xv
i and x̂v

i be the output of the ith unit of the vth layer for samples z and ẑ

respectively. Let xv and x̂v be the vector such that the ith elements are xv
i and x̂v

i respectively.
From

∑Nv

i=1 |wv
i | ≤ α we have

|xv
i − x̂v

i | =
∣∣∣∣∣σ

(
Nv∑

j=1

wv
ij x

v−1
i

)
− σ

(
Nv∑

j=1

wv
ij x̂

v−1
j

)∣∣∣∣∣

≤ β

∣∣∣∣∣

Nv∑

j=1

wv
ij x

v−1
i −

Nv∑

j=1

wv
ij x̂

v−1
j

∣∣∣∣∣

≤ βα‖xv−1 − x̂v−1‖∞.

Here, the first inequality holds from the Lipschitz condition of σ , and the second inequality
holds from

∑Nv

j=1 |wv
ij | ≤ α. Iterating over d layers, we have

|NN(z(x)) − NN(ẑ(x))| = |xd − x̂d | ≤ αdβd‖x − x̂‖∞,

which implies

|l(As, z) − l(As, ẑ)| = ||z(y) − NN(z(x))| − |ẑ(y) − NN(ẑ(x))||
≤ ‖z(y) − ẑ(y)| + |NN(z(x)) − NN(ẑ(x))|
≤ (1 + αdβd)‖z − ẑ‖∞.

This proves the lemma. �

Appendix H: Proof of Example 8

We show that the loss to PCA is Lipschitz continuous, and then apply Theorem 6.
Let (w∗

1(s), . . . ,w
∗
d(s)) be the solution of PCA trained on s. Thus we have

|l((w∗
1(s), . . . ,w

∗
d(s)), za) − l((w∗

1(s), . . . ,w
∗
d(s)), zb)|

=
∣∣∣∣∣

d∑

k=1

(w∗
k (s)

�za)
2 −

d∑

k=1

(w∗
k (s)

�zb)
2

∣∣∣∣∣

≤
d∑

k=1

|[w∗
k (s)

�za − w∗
k (s)

�zb][w∗
k (s)

�za + w∗
k (s)

�zb]| ≤ 2dB‖za − zb‖2,



Mach Learn (2012) 86:391–423 421

where the last inequality holds because ‖w∗
k (s)‖2 = 1 and ‖za‖,‖zb‖ ≤ B . Hence, the ex-

ample holds by Theorem 6.

Appendix I: Proof of Example 9

Let c1, . . . , cN (γ /2,X ,ρ) be a γ /2 cover of X . Thus, we can partition Z to 2N (γ /2, X , ρ)

subsets {Ci}, such that if

z1, z2 ∈ Ci; =⇒ y1 = y2; &ρ(x1, x2) ≤ γ.

Consider an arbitrary s ∈ Z n and set ŝ as

ŝ � {si ∈ s|D(si, As) > γ }.
We then have |ŝ| = n̂(s), and

z1 ∈ ŝ, z1, z2 ∈ Ci; =⇒ y1 = y2; As(x1) = As(x2); =⇒ l(As, z1) = l(As, z2).

By definition, A is (2N (γ /2, X , ρ),0, n̂(·)) pseudo robust.
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