Using Memory Errors to
Attack a Virtual

Machine

Sudhakar Govindavajhala & Andrew W. Appel
at Princeton University
IEEE S&P in 2003

review by Jerome Brechbuihl

About the Paper

The paper addresses a security breach in type checking systems:

It shows how to exploit memory errors (unwanted bitflips in memory) by writing an attack
program to take over the system

Besides the analysis and successful practical tests of the program, it also provides methods to
inject memory errors

At last it states what mechanisms one could apply to guard against similar attacks

Content

Background

e Attack Program
o Overview

o Pointer as Security Breach

o

Attack Program

O

Enforcing Memory Errors

e Performance
® Protective Measures
e Strengths & Weaknesses

Discussion & Questions

Background

Security & programs

When loading an untrusted program into your system (and memory) you
want to perform a security check. Two common mechanisms are:

Hardware virtual memory managed by operating system
or

as used in the Java Virtual Machine (and in the similar Microsoft .NET
virtual machine), is type checking, done by a bytecode verifier

Background

Type checking

Each object is assigned a type. Operations on object have to be
compatible with its type “well typed” (fmfp typing)

Assign security classes to objects and ensure safety (non-interference)
by checking the information flow (variable with lower security class
cannot influence variable with higher security class)

The type checking model is proven to be sound however does not
consider memory errors (2003)

Background

Memory

Memory errors (unwanted bitflips in memory) are known to occur

Protection given by parity bits (check modulo values) & ECC’s (Error Correcting
Codes)

However these protective mechanisms cause a memory overhead that makes
machines less competitive therefore tend to be left out

Content

Attack Program
o Overview
o Pointer as Security Breach
o Attack Program

o Enforcing Memory Errors

® Analysis & Performance
® Protective Measures
e Strengths & Weaknesses

Discussion & Questions

Thread Model

Attack a virtual machine that uses type checking as its protective mechanism
Basic knowledge about the machine (memory size, etc...)

Granted physical access to hardware

Load the program into memory with security check and run it

No control over data memory of program

Attack Program

Overview

Take over system that uses type-checking as basic protection mechanism
by injecting memory errors
on the attack program

to circumvent the type system with aid of pointers

Attack Program

Overview

to circumvent the type system with aid of pointers

10

Pointer & Security breach

Assume we have two pointer of different type that point to the same location:
type A pointer p & type B pointer q Classes defined as: ~ classA{ classB{
A al; A al;
A p; Aa2; Aa2;
Bq; //p & g pointtosame location (Obj A) due to memory error B b; A a3;
int offset = 6 * 4; //offset of the integer field in A A ad- A a4
void write(int address, int value) { //write value at location address A 5'_ A 5i
p.i = address - offset; // write address into integer field _ a. ’ a2
g.a6.i = value ; //overwrite the target inti; A ab;
} A a7; A a7;
I 2
11

Types & Pointers

This method can write at arbitrary locations and take over the system

By writing machine code and overwriting a virtual method table with address to the machine
code.

or

By overwriting the security manager

12

Attack Program

Overview

to circumvent the type system with aid of pointers

13

Attack Program

Overview

on the attack program

14

|| |

Attack Program

B header

The attack program is built like this:

class A { class B {
Aal; Aal;

A a2; A a2;

B b; A a3;

A a4; A a4;

A a5; A a5;
inti; A ab6;

A a7, A a7,

12 Iy

LSS

One object A, many objects B

A header

All A’s inside all objects point to only A
object

AEdid i AEdEs

B inside the A object points to an B header

>

arbitrary B Now a memory error occurs!

NN \NANWLVS ST

||

Memory layout

Attack Program

ObjectA/B

——

£

28

N

10 2

Whole attack program

/
~

16

Attack Program

5

first case: bitfip ~ Tmepe :

“outside” of object

N ° :

/ \ [i]

32 28 10 2

2i

P

second case: bitflip
“inside” of object

17

Attack Program

.......

Instead of pointing to
A a pointer inside the
object B with a flipped B 2
bit (first case) points to g

.........

2i

an object B

18

Attack Program

~,

—————————

10 2

~~

second case: bitflip

“inside” of object

19

Attack Program

"""""""

Instead of pointing to
A a pointer inside the 2!
object B with a flipped B L7
bit (second case) g

.........

2i

points to an offset of A H

(most likely type B)

20

x@26 %j B header
N

object of

Attack Program

P Al Ak

L

B header

object of

Create pointer q to B field of A class B

NI

A
A
A
A
A
A
A

q has static type B ey -

With bit flip g now points to Object
type A

object of
class A

i

NN\ N \NANWIL JTTTT)

S| >

-

\

X: Address of the A object

®: Xor/flipped Bit location

x®25
Take over system as explained

obiect of offset: offset of the B field in the A object

class B

LA rdrdrdrars

LU

Attack Program

Overview

by injecting memory errors

22

Memory Errors

In general

Hard memory errors:
Permanent damage of the DRAM caused by defects in Silicon or metalisation
Soft memory errors:

“Natural” errors caused by radiation, charged particles or by moving data.
Rewriting solves the error issue

For the attack to rely on natural memory errors it requires a lot of space or
time

23

Enforcing Memory Errors

In the paper are multiple ways presented to
enforce memory errors. The most successful
ones are:

High-energy protons/neutrons
Infrared/heat

First option is very inaccessible therefore heat
was the choice for the experiments in the
paper.

24

Analysis & Performance
® Protective Measures
e Strengths & Weaknesses

Discussion & Questions

25

Analysis

What errors can we exploit?

L

To keep it simple (for a 32-bit pointer value): 30 28 10

Bits 0-1, 28-31 bring the risk of OS crashing while garbage collecting or
dereferencing

Bits 2-27 safely exploitable

Overall for this example we can exploit 26 single bit errors and the
success probability can be pushed to over 90%

26

Analysis

Estimate the efficiency by fraction of single bit errors that allow the attack so succeed. The

exploitable number of bits in physical memory is given by:

N(s — h)(logy(Ns))
8P

N number of objects,
P bytes of physical memory on the computer,
s is the number of words in an object,

h is the number of words occupied by the header of each object

27

Performance

Practical tests

Attacks against two JVM’s both running on RedHat Linux 7.3:
IBM’s Java 2 Runtime Environment, Standard Edition (build 1.3.1)

Sun’s Java 2 Runtime Environment, Standard Edition (build 1.3.1_02-b02)

28

Performance

For each machine test in 3 different ways: Attack performance

B BM'sJavaTM2 [Sun's Java TM2

80

Software injected in process fault

60

Software injected in physical memory fault

40

Using heat to induce errors

Success rate in %

20

in process in physical memory Heat

29

® Protective Measures
e Strengths & Weaknesses

e Discussion & Questions

30

Protective Measures

ECC (Error Correcting Code): 1, 2 bit errors: 72 bits required to represent 64 bit word, good but

not complete protection (memory capacity overhead of 12.5%)

Error logging to detect patterns to diagnose a problem fast

31

e Strengths & Weaknesses

e Discussion & Questions

Strengths

The paper successfully performs attacks on VM’s and supports them with the according analysis and tests. It
exposes a practical problem and also its source. Gives simple solutions to prevent further attacks.

Often cited paper as it is a good example for memory errors and exploits. It builds a solid foundation for
further research.

Motivates research to improve type checking safety constraints with Control Flow Integrity that guarantees
security even against adversaries that have control over the data memory of the executing program.

Motivates research for security against similar fault injecting hard- and software attacks e.g. by light
detectors, active shields, Execution randomizers, Execution redundancy.

(https://www.hbarel.com/media/blogs/hagai-on-security/Sorcerers_Apprentice_Guide.pdf)

33

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.440.1407&rep=rep1&type=pdf
https://www.hbarel.com/media/blogs/hagai-on-security/Sorcerers_Apprentice_Guide.pdf

VWeaknesses

A somewhat dreamworld performance test that does not reflect reality. Physical access for attacker, 60% of

memory used and going undetected. Very limiting attack conditions for this very general error concept
Protective measures not satisfying

Memory encryption is not considered, or seen as irrelevant. Errors in the encrypted word also result in
errors in the decrypted word.

As research progresses this paper tends to be overshadowed by more recent papers that cover a similar
subject in more detail or with advanced attacks

Although the paper is clear and understandable it is confusing when first reading it as some information is
scattered and repeated

34

Where are we today?

Ongoing research about errors and exploits. With every new generation of hardware and software
new exploits can be found. Exploits get more and more creative as the latest attacks use software to
control voltage and frequency of underlying hardware to inject errors:

Plundervolt (https://plundervolt.com/doc/plundervolt.pdf)(2020)

CLKscrew (https://www.usenix.org/system/files/conference/usenixsecurityl7/secl7-tang.pdf)(2017)

35

https://plundervolt.com/doc/plundervolt.pdf
https://www.usenix.org/system/files/conference/usenixsecurity17/sec17-tang.pdf

Thoughts & Ideas

Copy nature to find a protective measure for memory errors
Evolution optimizes processes in nature so all we need to do is finding a synonym for memory errors

Cancer cells provide similar properties. They scale with size, can be caused by radiation and can
ultimately lead to death.

In fact we see organisms using cells to check the cells condition and destroy it if an “error” is
detected. Does this represent a natural ECC? So are ECC’s the optimal solution to memory errors?
(Discussion)

36

Discussion

Can you think of more “modern” ways of enforcing a memory error?
Hint: Row + Hammer

What might be the problem with that in the year 20037

38

Discussion

For a paper about security do you think it’s enough to outline a theoretically possible attack?

Should we take protective measures against theoretical attacks?

39

Discussion

Why bothering with type checking when we can just use the virtual memory (memory safety)
to separate code? Or so to speak why don’t we just use C++ over Java?

Can you think of a hybrid model?

40

Discussion

What do you think about the statement: “A memory error in a computer is the equivalent to a
cancer cell in the human body”?

Finding solutions to soft and hardware problems in Nature?

41

Type checking - Information Flow

@ Allowed to be read
by nobody

SE = {Q) {A}: {B}: {A:B}}

{A {B}

> = {({A), {A}), ({8}, {B}), ({A,B}, {A,B}), ({AB}, {A}), ({A,B}, {B}), ({A}, 0), ({8}, 0), ({A,B}, 0)}

{A,B} Allowed to be read
by both A and B

if yiay = 1 then Xy gy = 0 else x{A,B*l

source:https://en.wikipedia.org/wiki/Security type system

44

https://en.wikipedia.org/wiki/Security_type_system

