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Abstract

Memory allocation represents significant compute cost at

the warehouse scale and its optimization can yield consid-

erable cost savings. One classical approach is to increase

the efficiency of an allocator to minimize the cycles spent in

the allocator code. However, memory allocation decisions

also impact overall application performance via data place-

ment, offering opportunities to improve fleetwide productivity

by completing more units of application work using fewer

hardware resources. Here, we focus on hugepage coverage.

We present TEMERAIRE, a hugepage-aware enhancement

of TCMALLOC to reduce CPU overheads in the applica-

tion’s code. We discuss the design and implementation of

TEMERAIRE including strategies for hugepage-aware mem-

ory layouts to maximize hugepage coverage and to minimize

fragmentation overheads. We present application studies for

8 applications, improving requests-per-second (RPS) by 7.7%

and reducing RAM usage 2.4%. We present the results of

a 1% experiment at fleet scale as well as the longitudinal

rollout in Google’s warehouse scale computers. This yielded

6% fewer TLB miss stalls, and 26% reduction in memory

wasted due to fragmentation. We conclude with a discussion

of additional techniques for improving the allocator develop-

ment process and potential optimization strategies for future

memory allocators.

1 Introduction

The datacenter tax [23, 41] within a warehouse-scale com-

puter (WSC) is the cumulative time spent on common service

overheads, such as serialization, RPC communication, com-

pression, copying, and memory allocation. WSC workload

diversity [23] means that we typically cannot optimize sin-

gle application(s) to strongly improve total system efficiency,

as costs are borne across many independent workloads. In

contrast, focusing on the components of datacenter tax can

realize substantial performance and efficiency improvements

∗Work performed while at Google.

in aggregate as the benefits can apply to entire classes of appli-

cation. Over the past several years, our group has focused on

minimizing the cost of memory allocation decisions, to great

effect; realizing whole system gains by dramatically reducing

the time spent in memory allocation. But it is not only the cost

of these components we can optimize. Significant benefit can

also be realized by improving the efficiency of application

code by changing the allocator. In this paper, we consider

how to optimize application performance by improving the

hugepage coverage provided by memory allocators.

Cache and Translation Lookaside Buffer (TLB) misses are

a dominant performance overhead on modern systems. In

WSCs, the memory wall [44] is significant: 50% of cycles are

stalled on memory in one analysis [23]. Our own workload

profiling observed approximately 20% of cycles stalled on

TLB misses.

Hugepages are a processor feature that can significantly

reduce the number, and thereby the cost, of TLB misses [26].

The increased size of a hugepage enables the same number of

TLB entries to map a substantially larger range of memory.

On the systems under study, hugepages also allow the total

stall time for a miss+fill to be reduced as their page-table

representation requires one fewer level to traverse.

While an allocator cannot modify the amount of memory

that user code accesses, or even the pattern of accesses to

objects, it can cooperate with the operating system and con-

trol the placement of new allocations. By optimizing huge-

page coverage, an allocator may reduce TLB misses. Memory

placement decisions in languages such as C and C++ must

also deal with the consequence that their decisions are final:

Objects cannot be moved once allocated [11]. Allocation

placement decisions can only be optimized at the point of

allocation. This approach ran counter to our prior work in

this space, as we can potentially increase the CPU cost of an

allocation, increasing the datacenter tax, but make up for it

by reducing processor stalls elsewhere. This improves appli-

cation metrics1 such as requests-per-second (RPS).

1While reducing stalls can improve IPC, IPC alone is a poor proxy [3] for

how much useful application work we can accomplish with a fixed amount
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Our contributions are as follows:

• The design of TEMERAIRE, a hugepage-aware enhance-

ment of TCMALLOC to reduce CPU overheads in the

rest of the application’s code. We present strategies for

hugepage-aware memory layouts to maximize hugepage

coverage and to minimize fragmentation overheads.

• An evaluation of TEMERAIRE in complex real-world ap-

plications and scale in WSCs. We measured a sample of

8 applications running within our infrastructure observed

requests-per-second (RPS) increased by 7.7% and RAM

usage decreased by 2.4%. Applying these techniques

to all applications within Google’s WSCs yielded 6%

fewer TLB miss stalls, and 26% reduction in memory

wasted due to fragmentation.

• Strategies for optimizing the development process of

memory allocator improvements, using a combination

of tracing, telemetry, and experimentation at warehouse-

scale.

2 The challenges of coordinating Hugepages

Virtual memory requires translating user space addresses to

physical addresses via caches known as Translation Looka-

side Buffers (TLBs) [7]. TLBs have a limited number of

entries, and for many applications, the entire TLB only covers

a small fraction of the total memory footprint using the default

page size. Modern processors increase this coverage by sup-

porting hugepages in their TLBs. An entire aligned hugepage

(2MiB is a typical size on x86) occupies just one TLB entry.

Hugepages reduce stalls by increasing the effective capacity

of the TLB and reducing TLB misses [5, 26].

Traditional allocators manage memory in page-sized

chunks. Transparent Huge Pages (THP) [4] provide an oppor-

tunity for the kernel to opportunistically cover consecutive

pages using hugepages in the page table. A memory allocator,

superficially, need only allocate hugepage-aligned and -sized

memory blocks to take advantage of this support.

A memory allocator that releases memory back to the OS

(necessary at the warehouse scale where we have long running

workloads with dynamic duty cycles) has a much harder chal-

lenge. The return of non-hugepage aligned memory regions

requires that the kernel use smaller pages to represent what re-

mains, defeating the kernel’s ability to provide hugepages and

imposing a performance cost for the remaining used pages.

Alternatively, an allocator may wait for an entire hugepage

to become free before returning it to the OS. This preserves

hugepage coverage, but can contribute significant amplifica-

tion relative to true usage, leaving memory idle. DRAM is a

significant cost the deployment of WSCs [27]. The manage-

ment of external fragmentation, unused space in blocks too

of hardware. A busy-looping spinlock has extremely high IPC, but does little

useful work under contention.

allocate. . .

free some. . .

used used used used

used used

Figure 1: Allocation and deallocation patterns leading to frag-

mentation

small to be used for requested allocations, by the allocator is

important in this process. For example consider the alloca-

tions in Figure 1. After this series of allocations there are 2

units of free space. The choice is to either use small pages,

which result in lower fragmentation but less efficient use of

TLB entries, or hugepages, which are TLB-efficient but have

high fragmentation.

A user-space allocator that is aware of the behavior pro-

duced by these policies can cooperate with their outcomes

by densely aligning the packing of allocations with hugepage

boundaries, favouring the use of allocated hugepages, and

(ideally) returning unused memory at the same alignment2.

A hugepage-aware allocator helps with managing memory

contiguity at the user level. The goal is to maximally pack

allocations onto nearly-full hugepages, and conversely, to min-

imize the space used on empty (or emptier) hugepages, so that

they can be returned to the OS as complete hugepages. This

efficiently uses memory and interacts well with the kernel’s

transparent hugepage support. Additionally, more consistently

allocating and releasing hugepages forms a positive feedback

loop: reducing fragmentation at the kernel level and improv-

ing the likelihood that future allocations will be backed by

hugepages.

3 Overview of TCMALLOC

TCMALLOC is a memory allocator used in large-scale appli-

cations, commonly found in WSC settings. It shows robust

performance [21]. Our design builds directly on the structure

of TCMALLOC.

Figure 2 shows the organization of memory in TCMALLOC.

Objects are segregated by size. First, TCMALLOC partitions

memory into spans, aligned to page size3.

TCMALLOC’s structure is defined by its answer to the

same two questions that drive any memory allocator.

1. How do we pick object sizes and organize metadata to

2This is important as the memory backing a hugepage must be physically

contiguous. By returning complete hugepages we can actually assist the

operating system in managing fragmentation.
3Confusingly, TCMALLOC’s “page size” parameter is not necessarily the

system page size. The default configuration is to use an 8 KiB TCMALLOC

“page”, which is two (small) virtual memory pages on x86.
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requested from OS

2 MiB

200 KiB

25 KiB

Figure 2: Organization of memory in TCMALLOC. System-

mapped memory is broken into (multi-)page spans, which are

sub-divided into objects of an assigned, fixed sizeclass, here

25 KiB.

minimize space overhead and fragmentation?

2. How do we scalably support concurrent allocations?

Sufficiently large allocations are fulfilled with a span con-

taining only the allocated object. Other spans contain multiple

smaller objects of the same size (a sizeclass). The “small” ob-

ject size boundary is 256 KiB. Within this “small” threshold,

allocation requests are rounded up to one of 100 sizeclasses.

TCMALLOC stores objects in a series of caches, illustrated in

OS pageheap

mmap

release

central

8 bytes

central

256KiBsp
an

s spans

central

. . .

transfer transfertransfer

. . .

CPU 0 cache CPU 9 cacheCPU. . .

malloc() free()

(large) malloc()

(large) free()

Figure 3: The organization of caches in TCMALLOC; we see

memory allocated from the OS to the pageheap, distributed

up into spans given to the central caches, to local caches. This

paper focuses on a new implementation for the pageheap.

Figure 3. Spans are allocated from a simple pageheap, which

keeps track of all unused pages and does best-fit allocation.

The pageheap is also responsible for returning no-longer-

needed memory to the OS when possible. Rather than do-

ing this on the free() path, a dedicated release-memory

method is invoked periodically, aiming to maintain a con-

figurable, steady rate of release in MB/s. This is a heuristic.

TCMALLOC wants to simultaneously use the least memory

possible in steady-state, avoiding expensive system alloca-

tions that could be elided by using previously provisioned

memory. We discuss handling this peak-to-trough allocation

pattern in more detail in Section 4.3.

Ideally, TCMALLOC would return all memory that user

code will not need soon. Memory demand varies unpre-

dictably, making it challenging to return memory that will

go unused while simultaneously retaining memory to avoid

syscalls and page faults.. Better decisions about memory re-

turn policies have high value and are discussed in section 7.

TCMALLOC will first attempt to serve allocations from a

“local” cache, like most modern allocators [9,12,20,39]. Orig-

inally these were the eponymous per-Thread Caches, storing

a list of free objects for each sizeclass. To reduce stranded

memory and improve re-use for highly threaded applications,

TCMALLOC now uses a per-hyperthread local cache. When

the local cache has no objects of the appropriate sizeclass to

serve a request (or has too many after an attempt to free()),

requests route to a single central cache for that sizeclass. This

has two components–a small fast, mutex-protected transfer

cache (containing flat arrays of objects from that sizeclass)

and a large, mutex-protected central freelist, containing every

span assigned to that sizeclass; objects can be fetched from,

or returned to these spans. When all objects from a span have

been returned to a span held in the central freelist, that span

is returned to the pageheap.

In our WSC, most allocations are small (50% of allocated

space is objects ≤ 8192 bytes), as depicted in Figure 4. These

are then aggregated into spans. The pageheap primarily al-

locates 1- or 2-page spans, as depicted in Figure 5. 80% of

spans are smaller than a hugepage.

The design of “stacked” caches make the system usefully

modular, and there are several concomitant advantages:

• Clean abstractions are easier to understand and test.

• It’s reasonably direct to replace any one level of the

cache with a totally new implementation.

• When desired, cache implementations can be selected at

runtime, with benefits to operational rollout and experi-

mentation.

TCMALLOC’s pageheap has a simple interface for manag-

ing memory.

• New(N) allocates a span of N pages

• Delete(S) returns a New’d span (S) to the allocator.

• Release(N) gives >= N unused pages cached by the

page heap back to the OS
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Figure 4: CDF of allocation sizes from WSC applications,

weighted by bytes.

4 TEMERAIRE’s approach

TEMERAIRE, this paper’s contribution to TCMALLOC, re-

places the pageheap with a design that attempts to maximally

fill (and empty) hugepages. The source code is on Github

(see Section 9). We developed heuristics that pack allocations

densely onto highly-used hugepages and simultaneously form

entirely unused hugepages for return to the OS.

We refer to several definitions. Slack is the gap between an

allocation’s requested size and the next whole hugepage. Vir-

tual address space allocated from the OS is unbacked without

reserving physical memory. On use, it is backed, mapped by

the OS with physical memory. We may release memory to

the OS once again making it unbacked. We primarily pack

within hugepage boundaries, but use regions of hugepages for

packing allocations across hugepage boundaries.

From our telemetry of malloc usage and TCMALLOC

internals, and knowledge of the kernel implementation, we

developed several key principles that motivate TEMERAIRE’s

choices.

1. Total memory demand varies unpredictably with

time, but not every allocation is released. We have

no control over the calling code, and it may rapidly (and

repeatedly) modulate its usage; we must be hardened to

this. But many allocations on the pageheap are immortal

(and it is difficult to predict which they are [30]); any

particular allocation might disappear instantly or live

forever, and we must deal well with both cases.
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Figure 5: CDF of TCMALLOC span sizes from WSC appli-

cations, weighted by bytes.

2. Completely draining hugepages implies packing

memory at hugepage granularity. Returning huge-

pages that aren’t nearly-empty to the OS is costly (see

section 2). Generating empty/nearly-empty hugepages

implies densely packing the other hugepages in our bi-

nary. Our design must enable densely packing alloca-

tions into as few, saturated, bins as possible.

While we aim to use exclusively hugepage-sized bins,

malloc must support allocation sizes larger than a sin-

gle hugepage. These can be allocated normally, but we

place smaller allocations into the slack of the allocation

to achieve high allocation density. Only when small al-

locations are dominated by slack do we need to place

large allocations end on end in regions.

3. Draining hugepages gives us new release decision

points. When a hugepage becomes completely empty,

we can choose whether to retain it for future memory

allocations or return it to the OS. Retaining it until re-

leased by TCMALLOC’s background thread carries a

higher memory cost. Returning it reduces memory us-

age, but comes at a cost of system calls and page faults

if reused. Adaptively making this decision allows us to

return memory to the OS faster than the background

thread while simultaneously avoiding extra system calls.

4. Mistakes are costly, but work is not. Very few alloca-

tions directly touch the pageheap, but all allocations are

backed via the pageheap. We must only pay the cost of al-

location once; if we make a bad placement and fragment
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a hugepage, we pay either that space or the time-cost

of breaking up a hugepage for a long time. It is worth

slowing down the allocator, if doing so lets it make better

decisions.

Our allocator implements its interface by delegating to

several subcomponents, mapped in Figure 6. Each component

is built with the above principles in mind, and each specializes

its approximation for the type of allocation it handles best. As

per principle #4, we emphasize smart placement over speed4.

While the particular implementation of TEMERAIRE is

tied to TCMALLOC internals, most modern allocators share

similar large backing allocations of page (or higher) granu-

larity, like TCMALLOC’s spans: compare jemalloc’s “ex-

tents” [20], Hoard’s “superblocks” [9], and mimalloc’s

“pages” [29]. Hoard’s 8KB superblocks are directly allo-

cated with ‘mmap‘, preventing hugepage contiguity. Those

superblocks could instead be densely packed onto hugepages.

mimalloc places its 64KiB+ “pages” within “segments,” but

these are maintained per-thread which hampers dense pack-

ing across the segments of the process. Eagerly returning

pages to the OS minimizes the RAM cost here, but breaks

up hugepages. These allocators could also benefit from a

TEMERAIRE-like hugepage aware allocator5.

HugeAllocator

HugeCache

unbacked hugepages

HugeFiller

backed hugepages

small requests

(< 1 MiB)

large requests

(≥ 1 GiB)

medium requests

(1 MiB - 1 GiB)

HugeRegion

sometimes

Figure 6: TEMERAIRE’s components. Arrows represent the

flow of requests to interior components.

4.1 The overall algorithm

We will briefly sketch the overall approach and each com-

ponent’s role, then describe each component in detail. Our

goal is to minimize generated slack, and if we do generate

slack, to reuse it for other allocations (as with any page-level

fragmentation.)

4As each operation holds an often-contended mutex, we do maintain

reasonable efficiency: most operations are O(1), with care taken to optimize

constant factors.
5Indeed, jemalloc is doing so, based on TEMERAIRE.

Span New(N) {

// Slack is too small to matter

if (N >= 1 GiB) return HugeCache.New(N);

// Help bin-pack a single hugepage

if (N <= 1 MiB) return HugeFiller.New(N);

if (N < 2 MiB) {

// If we can reuse empty space, do so

Span s = HugeFiller.TryAllocate(N);

if (s != NULL) return s;

}

// If we have a region, use it

Span s = HugeRegion.TryAllocate(N);

if (s != NULL) return s;

// We need a new hugepage.

s = HugeCache.New(N);

HugeFiller.DonateTail(s);

return s;

}

Figure 7: Allocation flow for subcomponents. Hugepage size

is 2 MiB.

Behind all components is the HugeAllocator, which deals

with virtual memory and the OS. It provides other compo-

nents with unbacked memory that they can back and pass on.

We also maintain a cache of backed, fully-empty hugepages,

called the HugeCache.

We keep a list of partially filled single hugepages (the

HugeFiller) that can be densely filled by subsequent small

allocations. Where binpacking the allocations along hugepage

boundaries would be inefficient, we implement a specialized

allocator (the HugeRegion).

TEMERAIRE directs allocation decisions to its subcompo-

nents based on request size with the algorithm in Figure 7.

Each subcomponent is optimized for different allocation sizes.

Allocations for an exact multiple of hugepage size, or those

sufficiently large that slack is immaterial, we forward directly

to the HugeCache.

Intermediate sized allocations (between 1MiB and 1GiB)

are typically also allocated from the HugeCache, with a final

step of donation for slack. For example, a 4.5 MiB allocation

from the HugeCache produces 1.5 MiB of slack, an unaccept-

ably high overhead ratio. TEMERAIRE donates that slack to

the HugeFiller by pretending that the last hugepage of the

request has a single “leading” allocation on it (Figure 8).

When such a large span is deallocated, the allocator also

marks the fictitious leading allocation as free. If the slack is un-

used, it is returned to the tail hugepage along with the rest. Oth-

erwise the tail hugepage is left behind in the HugeFiller and
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allocation slack

"free"

Figure 8: The slack from a large allocation spanning 3 huge-

pages is “donated” to the HugeFiller. The larger allocation’s

tail is treated as a fictitious allocation.

only the first N −1 hugepages are returned to the HugeCache.

For certain allocation patterns, intermediate-size alloca-

tions produce more slack than we can fill with smaller al-

locations in strict 2MiB bins. For example, many 1.1MiB

allocations will produce 0.9MiB of slack per hugepage (see

Figure 12). When we detect this pattern, the HugeRegion

allocator places allocations across hugepage boundaries to

minimize this overhead.

Small requests (<= 1MiB) are always served from the

HugeFiller. For allocations between 1MiB and a hugepage,

we evaluate several options:

1. We try the HugeFiller: if we have available space there

we use it and are happy to fill a mostly-empty page.

2. If the HugeFiller can’t serve these requests, we next

consider HugeRegion; if we have regions allocated

which can serve the request, we do so. If no region exists

(or they’re all too full) we consider allocating one, but

only, as discussed below, if we’ve measured high ratios

of slack to small allocations.

3. Otherwise, we allocate a full hugepage from the

HugeCache. This generates slack, but we anticipate that

it will be filled by future allocations.

We make a design choice in TEMERAIRE to care about

external fragmentation up to the level of a hugepage, but

essentially not at all past it (but see Section 4.5 for an excep-

tion.) For example, a system with a single 1 GiB free range

and one with 512 discontiguous free hugepages is handled

equally well by TEMERAIRE. In either case, the allocator

will (typically) return all of the unused space to the OS; a

fresh allocation of 1 GiB will require faulting in memory in

either case. In the fragmented scenario, we will need to do

so on fresh virtual memory. Waste of virtual address range

unoccupied by live allocations and not consuming physical

memory is not a concern, since with 64-bit address spaces,

virtual memory is practically free.

while (true) {

Delete(New(512KB))

}

Figure 9: Program which repeatedly drains a single hugepage.

4.2 HugeAllocator

HugeAllocator tracks mapped virtual memory. All OS map-

pings are made here. It stores hugepage-aligned unbacked

ranges (i.e. those with no associated physical memory.) Vir-

tual memory is nearly free, so we aim for simplicity and rea-

sonable speed. Our implementation tracks unused ranges with

a treap [40]. We augment subtrees with their largest contained

range, which lets us quickly select an approximate best-fit.

4.3 HugeCache

The HugeCache tracks backed ranges of memory at full huge-

page granularity. A consequence of the HugeFiller filling

and draining whole hugepages is that we need to decide when

to return empty hugepages to the OS. We will regret returning

memory we will need again, and equally regret not returning

memory that will languish in the cache. Returning memory

eagerly means we make syscalls to return the memory and

take page faults to reuse it. Releasing memory only at the rate

requested by TCMALLOC’s periodic release thread means

memory is held unused.

Consider the artificial program in Figure 9 with no addi-

tional heap allocations. On each iteration of the loop, ‘New‘

requires a new hugepage and places it with the HugeFiller.

‘Delete‘ removes the allocation and the hugepage is now com-

pletely free. Returning eagerly would require a syscall every

iteration for this simple, but pathological program.

We track periodicity in the demand over a 2-second slid-

ing window and calculate the minimum and maximum seen

(demandmin,demandmax). Whenever memory is returned to

the HugeCache, we return hugepages to the OS if the cache

would be larger than demandmax −demandmin. We also tried

other algorithms, but this one is simple and suffices to capture

the empirical dynamics we’ve seen. The cache is allowed

to grow as long as our windowed demand has seen a need

for the new size. In oscillating usage, this will (incorrectly)

free memory once, then (correctly) keep it from then on. Fig-

ure 10 shows our cache size for a Tensorflow workload which

rapidly oscillates usage by a large fraction; we track the actu-

ally needed memory tightly.

4.4 HugeFiller

The HugeFiller satisfies smaller allocations that each fit

within a single hugepage. This satisfies the majority of allo-

cations (78% of the pageheap is backed by the HugeFiller
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Figure 10: Tensorflow’s demand on the HugeCache over time,

plotted with the cache limit (+demand). Notice that we tightly

track their saw-toothed demand the first time it drops. After

that, we recognize the pattern and keep the peak demand in

cache.

on average across the fleet) and is the most important–and

most optimized–component of our system. Within a given

hugepage, we use a simple (and fast) best-fit algorithm to

place an allocation; the challenging part is deciding which

hugepage to place an allocation on.

This component solves our binpacking problem: our goal

is to segment hugepages into some that are kept maximally

full, and others that are empty or nearly so. The emptiest

hugepages can be reclaimed (possibly breaking up a huge-

page as needed) while minimizing the impact on hugepage

coverage as the densely-filled pages cover most used memory

with hugepages. But it is challenging to empty out hugepages,

since we cannot rely on any particular allocation disappearing.

A secondary goal is to minimize fragmentation within each

hugepage, to make new requests more likely to be served.

If the system needs a new K-page span and no free ranges

of ≥ K pages are available, we require a hugepage from

the HugeCache. This creates slack of (2MiB−K ∗ pagesize),

wasting space.

These give us two goals to prioritize. Since we want to

maximize the probability of hugepages becoming totally free,

nearly-empty hugepages are precious. Since we need to mini-

mize fragmentation, hugepages with long free ranges are also

precious. Both priorities are satisfied by preserving hugepages

with the longest free range, as longer free ranges must have

fewer in-use blocks. We organize our hugepages into ranked

lists correspondingly, leveraging per-hugepage statistics.

Inside each hugepage, we track a bitmap of used pages;

to fill a request from some hugepage we do a best-fit search

from that bitmap. We also track several statistics:

• the longest free range (L), the number of contiguous

pages not already allocated,

• the total number of allocations (A),

• the total number of used pages (U).

These three statistics determine a priority order of huge-

pages to place allocations. We choose the hugepage with the

lowest sufficient L and the highest A. For an allocation of K

pages, we first consider only hugepages whose longest free

range is sufficient (L ≥ K). This determines whether a huge-

page is a possible allocation target. Among hugepages with

the minimum L ≥ K, we prioritize by fullness. Substantial

experimentation led us to choose A, rather than U .

This choice is motivated by a radioactive decay-type al-

location model [16] where each allocation, of any size, is

equally likely to become free (with some probability p). In

this model a hugepage with 5 allocations has a probability

of becoming free of p5 << p; so we should very strongly

avoid allocating from hugepages with very few allocations.

In particular, this model predicts A is a much better model of

"emptiness" than U : one allocation of size M is more likely

to be deallocated than M allocations of size 1.

The decay model isn’t perfectly true in real applications, but

it is an effective approximation, and experimentation backs up

its primary claim: prioritizing by A empties substantially more

pages than prioritizing by U . (In practice, using U produces

acceptable results, but meaningfully worse ones.)

In some more detail, A is used to compute a chunk index C,

given by min(0,Cmax − log2(A)). We compute our chunk in-

dex so that our fullest pages have C = 0 and the emptiest have

C =Cmax−1. In practice, we have found that Cmax = 8 chunks

are sufficient to avoid allocation from almost-empty pages.

Distinguishing hugepages with large counts is less important:

For example, we predict a hugepage with 200 allocations and

one with 150 as both very unlikely to completely drain. This

scheme prioritizes distinguishing gradations among pages

that might become empty.

We store hugepages in an array of lists, where each huge-

page is stored on the list at index I = Cmax ∗ L+C. Since

a K-page allocation is satisfiable from any hugepage with

L >= K, the hugepages which can satisfy an allocation are ex-

actly those in lists with I >=Cmax ∗K. We pick an (arbitrary)

hugepage from the least such nonempty list, accelerating that

to constant time with a bitmap of nonempty lists.

Our strategy differs from best fit. Consider a hugepage X

with a 3 page gap and a 10 page gap and another hugepage

Y with a 5 page gap. Best fit would prefer X . Our strategy

prefers Y . This strategy works since we are looking to allocate

on the most fragmented page, since fragmented pages are less

likely to become entirely free. If we need, say, 3 pages, then

pages which contain at most a gap of 3 available pages are

more likely to be fragmented and therefore good candidates

for allocation. Under the radioactive-decay model, allocations
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Figure 11: HugeFiller with various bin-packing strate-

gies. Best fit is outperformed by prioritizing either fullness or

longest free range (LFR); LFR dominates fullness.

near large gaps are as likely as any other to become free,

which can cause those gaps to substantially grow; they can

then be used for large allocations. We treat that 10-page gap

as precious and avoid allocating near it unless nothing else

works, which allows it to grow.

Figure 11 demonstrates this in a simple case. We plot the

demand on the HugeFiller from a synthetic trace (see Sec-

tion 6.1). We also show the total used memory from three

approaches: HugeFiller’s actual search, a search that priori-

tizes fullness over fragmentation (A over L), and a global best

fit. Note that the trace includes a substantial one-time drop,

to go with random fluctuations in usage. Our LFR-priority

algorithm beats both other approaches. In particular, we see

that after the usage drop, best-fit barely recovers any total

memory, and finishes with close to 100% overhead, whereas

both other algorithms closely match the actual demand.

Surprisingly, this simple strategy substantially outperforms

a global best fit algorithm–placing a request in the single gap

in any hugepage that is closest to its size. Best-fit would be

prohibitively expensive—we cannot search 10-100K huge-

pages for every request, but it’s quite counter-intuitive that it

also produces higher fragmentation. Best-fit being far from

optimal for general fragmentation problems is not a new re-

sult [36], but it’s interesting to see how poor it can be here.

A last important detail is that donated hugepages are less

desirable allocation targets than any non-donated hugepage.

Consider the pathological program looping:

while (true) {

// Reserve 51 hugepages + donate tail of last

L = New(100 MiB + 1 page);

// Make a small allocation

S = New(1);

// Delete large allocation

Delete(L);

}

Each iteration only allocates 1 (net) page, but if we always

use the slack from L to satisfy S, we will end up placing

each S on its own hugepage. In practice, simply refusing to

use donated pages if others are available prevents this, while

effectively using slack where it’s needed.

4.5 HugeRegion

HugeCache (and HugeAllocator behind it) suffices for large

allocations, where rounding to a full hugepage is a small

cost. HugeFiller works well for small allocations that can

be packed into single hugepages. HugeRegion helps those

between.

Consider a request for 1.1 MiB of memory. We serve it

from the HugeFiller, leaving 0.9 MiB of unused memory

from the 2MiB hugepage: the slack space. The HugeFiller

assumes that slack will be filled by future small (<1MiB)

allocations, and typically it is: our observed byte ratio of fleet-

wide small allocations to slack is 15:1. In the limit we can

imagine a binary that requests literally nothing but 1.1 MiB

spans in Figure 12.

The HugeRegion deals with this problem, which is to

some extent caused by our own choices. We focus heavily

on packing allocations into hugepage-sized bins with the

HugeFiller, and our desire to do that with donated slack

is catastrophic with some allocation patterns. Most normal

binaries are of course fine without it, but a general purpose

memory allocator needs to handle diverse workloads, even

those dominated by slack-heavy allocations. Clearly, we must

be able to allocate these lying across hugepage boundaries.

HugeRegion neatly eliminates this pathological case.

A HugeRegion is a large fixed-size allocation (currently 1

GiB) tracked at small-page granularity with the same kind

of bitmaps used by individual hugepages in the HugeFiller.

As with those single hugepage ranges, we best-fit any request

across all pages in the region. We keep a list of these re-

gions, ordered by longest free range, for the same reason as

HugeFiller. Allocating from these larger bins immediately

allows large savings in wasted space: rather than losing 0.9

MiB/hugepage in our pessimal load, we lose 0.9 MiB per

a s

Figure 12: Slack (“s”) can accumulate when many allocations

(“a”) are placed on single hugepages. No single slack region

is large enough to accommodate a subsequent allocation of

size “a.”
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HugeRegion, only about 0.1%. (This motivates the large size

of each region.)

Most programs don’t need regions at all. We do not allocate

any region until we’ve accumulated large quantities of slack

that are larger than the total of the program’s small allocations.

Fleetwide, only 8.8% of programs trigger usage of regions,

but the feature is still important: 53.2% of allocations in those

binaries are served from regions. One such workload is a

key-value store that loads long-lived data in large chunks

into memory and makes a small number of short-lived small

allocations for serving requests. Without regions, the request-

related allocations are unable to fill the slack generated by the

larger allocations. This technique prevents this slack-heavy

uncommon allocation pattern from bloating memory use.

4.6 Memory Release

As discussed above, Release(N) is invoked periodically by

support threads at a steady trickle.

To implement our interface’s Release(N) methods,

TEMERAIRE typically just frees hugepage ranges from

HugeCache and possibly shrinks its limit as described above.

Releasing more than the hinted N pages is not a problem; the

support threads use the actual released amount as feedback,

and adjust future calls to target the correct overall rate.

If the HugeCache cannot release N pages of memory, the

HugeFiller will subrelease just the free (small) pages on the

emptiest hugepage.

Returning small pages from partially filled hugepages

(“subreleasing” them) is the last resort for reducing memory

footprints as the process is largely irreversible6. By returning

some but not all small pages on a hugepage, we cause the OS

to replace the single page table entry spanning the hugepage

with small entries for the remaining pages. This one-way op-

eration, through increased TLB misses, slows down accesses

to the remaining memory. The Linux kernel will use small

pagetable entries for the still-used pages, even if we re-use

the released address space later. We make these return deci-

sions in the HugeFiller, where we manage partially filled

hugepages.

The HugeFiller treats the subreleased hugepages sepa-

rately: we do not allocate from them unless no other hugepage

is usable. Allocations placed on this memory will not benefit

from hugepages, so this helps performance and allows these

partially released hugepages to become completely empty.

5 Evaluation of TEMERAIRE

We evaluated TEMERAIRE on Google’s WSC workloads.

The evaluation was concerned with several metrics, includ-

6While the THP machinery may reassemble hugepages, it is non-

deterministic and dependent on system utilization. There is a negative feed-

back loop here where high-utilization scenarios actually compete with and

impede THP progress that might benefit them the most.

ing both CPU and memory savings. We present evaluations

of TEMERAIRE on several key services, measuring 10% of

cycles and 15% of RAM usage in our WSC. In section 6.4

we discuss workload diversity; in this evaluation we examine

data across all workloads using our experimental framework

and fleetwide-profiler telemetry. We’ve argued for prioritizing

workload efficiency over the attributable cost of malloc; we

therefore examine IPC metrics (as a proxy for user through-

put) and where possible, we obtained application-level perfor-

mance metrics to gauge workload productivity (e.g., requests-

per-second per core) on our servers. We present longitudinal

data from the rollout of TEMERAIRE to all TCMALLOC users

in our fleet.

Overall, TEMERAIRE proved a significant win for CPU and

memory.

5.1 Application Case Studies

We worked with performance-sensitive applications to enable

TEMERAIRE in their production systems, and measure the

effect. We summarize the results in Table 1. Where possible,

we measured each application’s user-level performance met-

rics (throughput-per-CPU and latency). These applications

use roughly 10% of cycles and 15% of RAM in our WSC.

Four of these applications (search1; search2; search3;

and loadbalancer) had previously turned off the periodic

memory release feature of TCMALLOC. This allowed them

to have good hugepage coverage, even with the legacy page-

heap’s hugepage-oblivious implementation, at the expense of

memory. We did not change that setting with TEMERAIRE.

These applications maintained their high levels of CPU per-

formance while reducing their total memory footprint.

With the exception of Redis, all of these applications are

multithreaded. With the exception of search3, these work-

loads run on a single NUMA domain with local data.

• Tensorflow [1] is a commonly used machine learning ap-

plication. It had previously used a high periodic release

rate to minimize memory pressure, albeit at the expense

of hugepages and page faults.

• search1, search2, ads1, ads2, ads4, ads5 receive

RPCs and make subsequent RPCs of their own other

services.

• search3, ads3, ads6 are leaf RPC servers, performing

read-mostly retrieval tasks.

• Spanner [17] is a node in a distributed database. It also

includes an in-memory cache of data read from disk

which adapts to the memory provisioned for the process

and unused elsewhere by the program.

• loadbalancer receives updates over RPC and periodi-

cally publishes summary statistics.
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Application Throughput
Mean

Latency

RSS

(GiB)

RAM

change

IPC dTLB Load Walk (%) malloc (% of cycles) Page Fault (% of cycles)

Before After Before After Before After Before After

Tensorflow [1] +26%

search1 [6, 18]† 8.4 -8.7% 1.33±0.04 1.43±0.02 9.5±0.6 9.0±0.6 5.9±0.09 5.9±0.12 0.005±0.003 0.131±0.071

search2† 3.7 -20% 1.28±0.01 1.29±0.01 10.3±0.2 10.2±0.1 4.37±0.05 4.38±0.02 0.003±0.003 0.032±0.002

search3 † 234 -7% 1.64±0.02 1.67±0.02 8.9±0.1 8.9±0.3 3.2±0.02 3.3±0.04 0.001±0.000 0.005±0.001

ads1 +2.5% -14% 4.8 -6.9% 0.77±0.02 0.84±0.01 38.1±1.3 15.9±0.3 2.3±0.04 2.7±0.05 0.012±0.003 0.011±0.002

ads2 +3.4% -1.7% 5.6 -6.5% 1.12±0.01 1.22±0.01 27.4±0.4 10.3±0.2 2.7±0.03 3.5±0.08 0.022±0.001 0.047±0.001

ads3 +0.5% -0.2% 50.6 -0.8% 1.36±0.01 1.43±0.01 27.1±0.5 11.6±0.2 2.9±0.04 3.2±0.03 0.067±0.002 0.03±0.003

ads4 +6.6% -1.1% 2.5 -1.7% 0.87±0.01 0.93±0.01 28.5±0.9 11.1±0.3 4.2±0.05 4.9±0.04 0.022±0.001 0.008±0.001

ads5 +1.8% -0.7% 10.0 -1.1% 1.16±0.02 1.16±0.02 21.9±1.2 16.7±2.4 3.6±0.08 3.8±0.15 0.018±0.002 0.033±0.007

ads6 +15% -10% 53.5 -2.3% 1.40±0.02 1.59±0.03 33.6±2.4 17.8±0.4 13.5±0.48 9.9±0.07 0.037±0.012 0.048±0.067

Spanner [17] +6.3% 7.0 1.55±0.30 1.70±0.14 31.0±4.3 15.7±1.8 3.1±0.88 3.0±0.24 0.025±0.08 0.024±0.01

loadbalancer† 1.4 -40% 1.38±0.12 1.39±0.28 19.6±1.2 9.5±4.5 11.5±0.60 10.7±0.46 0.094±0.06 0.057±0.062

Average (all WSC apps) +5.2% -7.9% 1.26 1.33 23.3 12.4 5.2 5.0 0.058 0.112

Redis† +0.75%

Redis +0.44%

Table 1: Application experiments from enabling TEMERAIRE. Throughput is normalized for CPU. †: Applications’ periodic

memory release turned off. dTLB load walk (%) is the fraction of cycles spent page walking, not accessing the L2 TLB. malloc

(% of cycles) is the relative amount of time in allocation and deallocation functions. 90%th confidence intervals reported.

• Redis is a popular, open-source key-value store. We

evaluated the performance of Redis 6.0.9 [42] with

TEMERAIRE, using TCMALLOC’s legacy page heap as

a baseline. These experiments were run on servers with

Intel Skylake Xeon processors. Redis and TCMALLOC

were compiled with LLVM built from Git commit

‘cd442157cf‘ using ‘-O3‘. In each configuration, we ran

2000 trials of ‘redis-benchmark‘, with each trial making

1000000 requests to push 5 elements and read those 5

elements.

For the 8 applications with periodic release, we observed a

mean CPU improvement of 7.7% and a mean RAM reduction

of 2.4%. Two of these workloads did not see memory reduc-

tions. TEMERAIRE’s HugeCache design handles Tensorflow’s

allocation pattern well, but cannot affect its bursty demand.

Spanner maximizes its caches up to a certain memory limit,

so reducing TCMALLOC’s overhead meant more application

data could be cached within the same footprint.

5.2 Fleet experiment

We randomly selected 1% of the machines distributed through-

out our WSCs as an experiment group and a separate 1% as

a control group (see section 6.4). We enabled TEMERAIRE

on all applications running on the experiment machines. The

applications running on control machines continued to use

the stock pageheap in TCMALLOC.

Our fleetwide profiler lets us correlate performance metrics

against the groupings above. We collected data on memory

usage, hugepage coverage, overall IPC, and TLB misses. At

the time of the experiment, application-level performance

metrics (throughput-per-CPU, latency) were not collected. In

our analysis, we distinguish between applications that period-

ically release memory to the OS and those that turn off this

feature to preserve hugepages with TCMALLOC’s prior non-

hugepage-aware pageheap. Figure 13 shows that TEMERAIRE

improved hugepage coverage, increasing the percentage of

heap memory backed by hugepages from 11.8% to 23% for

applications periodically releasing memory and from 44.3%

to 67.3% for applications not periodically releasing memory.
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Figure 13: Percentage of heap memory backed by hugepages

during fleet experiment and 90%th confidence interval. (Error

bars in "release on" condition are too small to cleanly render.)

We observed a strong improvement even in the case that pe-

riodic release was disabled. Since these binaries do not break

up hugepages in either configuration, the benefit is derived

from increased system-wide availability of hugepages (due

to reduced fragmentation in other applications). TEMERAIRE

improves this situation in two ways: since we aggressively re-

lease empty hugepages (where the traditional pageheap does

not), we consume fewer hugepages that we do not need, allow-

ing other applications to more successfully request them, and

other co-located applications are no longer breaking up huge-

pages at the same rate. Even if we map large aligned regions

of memory and do not interfere with transparent hugepages,

the kernel cannot always back these with hugepages [26, 33].

Fragmentation in physical memory can limit the number of

available hugepages on the system.

We next examine the effect this hugepage coverage had
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Periodic

Release

Walk Cycles (%) MPKI

Control Exp. Control Exp.

On 12.5 11.9 (-4.5%) 1.20 1.14 (-5.4%)

Off 14.1 13.4 (-5%) 1.36 1.29 (-5.1%)

Table 2: dTLB load miss page walk cycles as percentage of

application usage and dTLB misses per thousand instructions

(MPKI) without TEMERAIRE (Control) TEMERAIRE enabled

(Exp.)

on TLB misses. Again, we break down between apps that

enable and disable periodic memory release. We measure the

percentage of total cycles spent in a dTLB load stall7.

We see reductions of 4.5-5% of page walk miss cycles

(Table 2). We see in the experiment data that apps not re-

leasing memory (which have better hugepage coverage) have

higher dTLB stall costs, which is slightly surprising. Our dis-

cussions with teams managing these applications is that they

turn off memory release because they need to guarantee per-

formance: on average, they have more challenging memory

access patterns and consequently greater concerns about mi-

croarchitectural variance. By disabling this release under the

prior implementation, they observed better application perfor-

mance and fewer TLB stalls. With TEMERAIRE, we see our

improved hugepage coverage leads to materially lower dTLB

costs for both classes of applications.

For our last CPU consideration, we measured the over-

all impact on IPC8. Fleetwide overall IPC in the control

group was 0.796647919± 4e−9; in the experiment group,

0.806301729± 5e−9 instructions-per-cycle. This 1.2% im-

provement is small in relative terms but is a large absolute

savings (especially when considered in the context of the

higher individual application benefits discussed earlier).

For memory usage, we looked at pageheap overhead: the

ratio of backed memory in the pageheap to the total heap

memory in use by the application. The experiment group

decreased this from 15.0% to 11.2%, again, a significant im-

provement. The production experiments comprise thousands

of applications running continuously on many thousands of

machines, conferring high confidence in a fleetwide benefit.

5.3 Full rollout trajectories

With data gained from individual applications and the

1% experiment, we changed the default9 behavior to use

TEMERAIRE. This rolled out to 100% of our workloads grad-

ually [10, 38].

Over this deployment, we observed a reduction in cycles

stalled on TLB misses (L2 TLB and page walks) from 21.6%

7More precisely cycles spent page walking, not accessing the L2 TLB.
8Our source of IPC data is not segmented by periodic background memory

release status.
9This doesn’t imply, quite, that every binary uses it. We allow opt outs

for various operational needs.
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Figure 14: Stacked line graph showing effect of TEMERAIRE

rollout on TLB miss cycles. We see an overall downward

trend from 21.6% to 20.3% as TEMERAIRE became a larger

fraction of observed usage in our WSC.

to 20.3% (6% reduction) and a reduction in pageheap over-

head from 14.3% to 10.6% (26% reduction). Figure 14 shows

the effect on TLB misses over time: at each point we show

the total percentage of cycles attributable to TLB stalls (load

and store), broken down by pageheap implementation. As

TEMERAIRE rolled out fleetwide, it caused a noticeable down-

ward trend.

Figure 15 shows a similar plot of pageheap overhead. We

see another significant improvement. Hugepage optimization

has a natural tradeoff between space and time here; saving the

maximum memory possible requires breaking up hugepages,

which will cost CPU cycles. But TEMERAIRE outperforms

the previous design in both space and time. We highlight

several conclusions from our data:

Application productivity outpaced IPC. As noted above

and by Alameldeen et al. [3], simple hardware metrics don’t

always accurately reflect application-level benefits. By all

indication, TEMERAIRE improved application metrics (RPS,

latencies, etc.) by more than IPC.

Gains were not driven by reduction in the cost of malloc.

Gains came from accelerating user code, which was some-

times drastic–in both directions. One application (ads2) saw

an increase of malloc cycles from 2.7% to 3.5%, an apparent

regression, but they reaped improvements of 3.42% RPS, 1.7%

latency, and 6.5% peak memory usage.

There is still considerable headroom, and small percent-

ages matter. Even though TEMERAIRE has been successful,

hugepage coverage is still only 67% when using TEMERAIRE
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Figure 15: Stacked line graph showing effect of TEMERAIRE

rollout on pageheap overhead. Total memory overhead goes

from 14.3% to 10.6%, as TEMERAIRE became a larger frac-

tion of observed usage in our WSC by growing from a handful

of applications (section 5.1) to nearly all applications.

without subrelease due to physical memory contiguity limita-

tions. Increasing to 100% would significantly improve appli-

cation performance.

6 Strategies used in building TEMERAIRE

It is difficult to predict the best approach for a complex sys-

tem a priori. Iteratively designing and improving a system

is a commonly used technique. Military pilots coined the

term “OODA (Observe, Orient, Decide, Act) loop” [13] to

measure a particular sense of reaction time: seeing incom-

ing data, analyzing it, making choices, and acting on those

choices (producing new data and continuing the loop). Shorter

OODA loops are a tremendous tactical advantage to pilots

and accelerate our productivity as well. Optimizing our own

OODA loop–how quickly we could develop insight into a

design choice, evaluate its effectiveness, and iterate towards

better choices–was a crucial step in building TEMERAIRE.

While our final evaluation was driven by execution on

our production servers, this was both too disruptive and too

risky to test intermediate ideas; however, malloc microbench-

marks are also not particularly interesting at the page level.

To address these challenges, we generated traces to drive the

development of TCMALLOC in two ways.

6.1 “Empirical” distribution sampling

Our production fleet implements a fleet wide profiler [35].

Among the data collected by this profiler are fleet-wide sam-

ples of malloc tagged with request size and other useful prop-

erties. We collect a sample of currently-live data in our heap

and calls to malloc. From these samples we can infer the

empirical distribution of size both for live objects and mal-

loc calls. Our empirical driver generates calls to malloc and

free as a Poisson process10 that replicates these distributions,

while also targeting an arbitrary (average) heap size. That

target size can be changed over simulated time, reproducing

factors such as diurnal cycles, transient usage, or high startup

costs. We have made this driver and its inputs available on

Github (see Section 9).

Despite the name “empirical driver,” this remains a highly

unrealistic workload: every allocation (of a given size) is

equally likely to be freed at any timestep, and there is no cor-

relation between the sizes of consecutive allocation. Neither

does it reproduce per-thread or per-CPU dynamics. Never-

theless, the empirical driver is a fast, efficient way to place

malloc under an extremely challenging load that successfully

replicates many macro characteristics of real work.

6.2 Heap tracing

Tracing every call to malloc without the instrumentation

overhead perturbing the workload itself is extremely difficult,

even infeasible over long timescales. Typical applications

can make millions of calls to malloc per second. Even if

tracing was accomplished non-disruptively, replaying these

traces back accurately into a memory allocator in real time or

faster is similarly intractable: it’s difficult to force the right

combinations of threads to allocate, access, and free the right

buffers on the right CPU at the right (relative) time.

Fortunately, tracing the pageheap is considerably easier. It

is a single-threaded allocator, only invoked by a small fraction

of requests. Playback is also simple–our abstractions allow

directly instantiating and manipulating our pageheap repre-

sentation, rather than going through malloc() itself. Traces

taken from both real binaries and, surprisingly, the empirical

driver itself, played a major role in developing TEMERAIRE.

TEMERAIRE’s components serve a request for K pages

with memory at address [p, p+K), but never read or write

that memory range. We built this for unit testing–allowing

the test of corner cases such as 64 GiB of allocations without

actually needing 64 GiB of memory–but this is also crucial

to accelerating simulations. What might take hours with the

empirical driver can be played back in minutes.

10Little’s law tells us that the average number of live objects L is equal to

the product of the arrival rate λ and average lifetime W . To replicate a given

distribution of live/allocation object sizes where pa of live objects have size

a, we set Wa =
c·pa

λa
. (c is a scaling parameter that determines the total heap

size.)
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6.3 Telemetry

Beyond producing numbers motivating and evaluating our

work, our fleetwide profiler is itself a powerful tool for de-

signing allocators. It reveals patterns of allocation we can use

to derive heuristics, it allows validation of hypotheses about

typical (or even possible) behavior, it helps identify which pat-

terns we can safely ignore as unimportant and which we must

optimize. Besides being used in obvious ways–such as tuning

cache sizes to fit typical use or determining thresholds for

“small” allocations based on the CDF of allocations–querying

the profiler was our first step whenever we were unsure of

useful facts. We gained confidence that our approach to filling

slack (see section 4.5) worked on diverse workloads by query-

ing the profiler for ratios of page allocation sizes. Providing

large scale telemetry that can be consumed by data analysis

tools makes it easy to test and eliminate hypotheses. Such

"tiny experiments" [8] lead to better designs.

This reflects a cultivated mindset in identifying new teleme-

try. Our first question for any new project is “What metrics

should we add to our fleetwide profiler?” We continually

expose more of the allocator’s internal state and derived statis-

tics, such as cache hit rates. While we can form some hypothe-

ses using traditional loadtests, this technique helps validate

their generality.

6.4 Experiment framework

We have also developed an experiment framework allowing us

to A/B test implementations or tuning choices across our fleet

at scale. We can enable or disable experiment groups across

a small percentage of all our machines, without requiring

product teams running services on those machines to take any

action. A/B testing is not a new approach, but enabling it at

the scale of our WSC is a powerful development tool.

As discussed above, our A/B experiment for TEMERAIRE

demonstrated improved hugepage coverage, even for jobs

that never released memory. This is an example of an effect–

against neighboring, collocated services–that might go unno-

ticed during the test of an individual service.

We’ve observed two noteworthy advantages to A/B experi-

mentation:

• Reduced cost and uncertainty associated with major be-

havioral changes. Small 1% experiments can uncover

latent problems well before we roll new defaults, at far

less cost [10, Appendix B].

• Reduced likelihood of overfitting to easily tested work-

loads. Tuning for production-realistic loadtests, while

great for the applications they represent, can result in

non-ideal results for other workloads. Instead, we can be

confident our optimization is good on average for every-

one, and detect (and fix) applications that see problems.

Experiments allow us to evaluate changes on diverse work-

loads. Kanev, et. al. [24] proposed prefetching the next object

i+1 when malloc is returning object i from its freelists. Ef-

fective prefetches need to be timely [28]. Too early and data

can be evicted from the cache before use. Too late and the pro-

gram waits. In this case, prefetching object i when returning

it, turns out to be too late: User code will write to the object

within a few cycles, far sooner than the prefetch’s access to

main memory can complete. Prefetching object i+ 1 gives

time for the object to be loaded into the cache by the time

the next allocation occurs. Independent of the experiments

to develop TEMERAIRE, we added this next object prefetch

for TCMALLOC usage in our WSC despite the contrarian

evidence that it appears to slowdown microbenchmarks and

increases apparent malloc cost. We were able to still identify

this benefit thanks to the introspective techniques described

here, allowing us to prove that application performance was

improved at scale in our WSC; both unlocking important per-

formance gains and proving the generality of these macro

approaches.

7 Future Work

Peak vs. average. A job quickly oscillating between peak

and trough demand cannot be usefully binpacked against its

average. Even if the allocator could instantaneously return

unused memory, job schedulers could not make use of it be-

fore it was required again. Thus transient overhead is not a

practical opportunity [43]. This guides us to measure how

overhead changes over time, which can motivate slower re-

lease rates [31] or application of compaction techniques (such

as Mesh [34]).

Intermediate caches / exposed free spans. TCMALLOC’s

design of stacked caches makes for direct optimization and is

highly scalable, but hides useful cross-layer information. A

good example comes from Bigtable at Google [14]. Cached

ranges are 8 KiB malloc’d segments (i.e. one TCMALLOC

page) to avoid fragmentation. Meaning, most freed buffers

won’t make it past the local cache or central freelist; only

when a full span’s worth is simultaneously freed (and some-

how pushed out of TCMALLOC’s local cache) do these freed

buffers get returned to the pageheap. If every alloc/free of

these chunks were visible to the pageheap, we’d be able to re-

duce fragmentation–we’d have a much more precise estimate

of available space within each hugepage. Of course, if every

malloc(8192)/free went to the pageheap, we would also

eliminate all scalability! There must be a middle ground. Can

we expose the contents of frontline caches to the pageheap

and reduce fragmentation?

Upfront costs / amortization / prediction. The fact we can-

not anticipate what Delete() calls will come in the future

is the hardest part of building a hugepage-friendly algorithm.

We try to generate empty hugepages through heuristics and

hope: we aim to have mostly-empty things stay that way and

hope that the final allocations will quickly get freed. But some

allocations are likely immortal–common data structures that
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are used throughout the program’s run, or frequently used

pages that will bounce in and out of local caches.

We can improve allocation decisions when we know–

immortal or not–they will be hot and see frequent access.

Ensuring these allocations are placed onto hugepages pro-

vides larger marginal performance benefit. TLB misses occur

on access, so it may be preferable to save memory rather than

improve access latency to colder allocations.

Far memory cooperation “Far memory” [27] allows us to

move data to slower, but less expensive memory, reducing

DRAM costs. Clustering rarely accessed allocations can make

far memory more effective. More overhead can be afforded on

those decisions since they can’t happen very often. Avenues

like machine learning [30] or profile directed optimization [15,

37] show promise for identifying these allocations.

Userspace-Kernel Cooperation TEMERAIRE places mem-

ory in a layout designed to be compatible with kernel huge-

page policy (Section 2), but this is only an implicit cooper-

ation. Kernel APIs which prioritize the allocation of huge-

pages within an address space or across processes would en-

able proactive management of which regions were hugepage-

backed, versus the current best-effort reactive implementation.

In developing TEMERAIRE, we considered but did not de-

ploy an interface to request a memory region be immediately

repopulated with hugepages. TEMERAIRE primarily tries to

avoid breaking up hugepages altogether as the existing THP

machinery is slow to reassemble them (Section 4.6). Being

able to initiate on-demand repopulation would allow an ap-

plication to resume placing allocations in that address space

range without a performance gap.

A common problem today is that the first applications to

execute on a machine are able to claim the majority of huge-

pages, even if higher priority applications are subsequently

assigned. We ultimately imagine that such a management

system might execute as an independent user daemon, coop-

erating with individual applications. Kernel APIs could allow

hugepages to be more intelligently allocated against a more

detailed gradient of priority, benefit, and value.

8 Related work

Some work has optimized malloc for cache efficiency of

user-level applications. To minimize L1 conflicts, Dice [19]

proposed jittering allocation sizes. Similarly, a cache-index-

aware allocator [2] reduces conflict misses by changing rela-

tive placement of objects inside pages. mimalloc [29] tries to

give users objects from the same page, increasing the locality.

Addressing this at the kernel level alone would face the

same fragmentation challenges and be more difficult to handle

because we have less control over application memory usage.

The kernel can back the memory region with a hugepage,

but if the application does not densely allocate from that

hugepage, memory is wasted by fragmentation. Prior work

has examined the kernel side of this problem: Kwon et. al. [26]

proposed managing memory contiguity as a resource at the

kernel level. Panwar et. al. [32] observed memory bloat from

using the Linux’s transparent hugepage implementation, due

to insufficient userspace level packing.

Optimization of TLB usage in general has been discussed

extensively; Basu [7] suggested resurrecting segments to

avoid it entirely, addressing TLB usage at the architectural

level. CoLT [33] proposed variable-size hugepages to mini-

mize the impact of fragmentation. Illuminator [5] improves

page decisions in the kernel to reduce physical memory frag-

mentation. Ingens [26] attempts to fairly distribute a lim-

ited supply of kernel-level hugepages and HawkEye [32]

manages kernel allocation of hugepages to control memory

bloat. Kernel-based solutions can be defeated by hugepage-

oblivious user allocators that return partial hugepages to the

OS and fail to densely pack allocations onto hugepages.

At the malloc level, SuperMalloc [25] considers huge-

pages, but only for very large allocations. MallocPool [22]

uses similar variable-sized TLBs as CoLT [33] but does not

attempt to used fixed-size hugepages. LLAMA [30] studies

a possible solution using lifetime predictions, but solutions

with practical costs remain open problems.

9 Conclusion

In warehouse scale computers, TLB lookup penalties are one

of the most significant compute costs facing large applica-

tions. TEMERAIRE optimizes the whole WSC by changing

the memory allocator to make hugepage-conscious place-

ment decisions while minimizing fragmentation. Application

case studies of key workloads from Google’s WSCs show

RPS/CPU increased by 7.7% and RAM usage decreased by

2.4%. Experiments at fleet scale and longitudinal data during

the rollout at Google showed a 6% reduction in cycles spent

in TLB misses, and 26% reduction in memory wasted due to

fragmentation. Since the memory system is the biggest bot-

tleneck in WSC applications, there are further opportunities

to accelerate application performance by improving how the

allocator organizes memory and interacts with the OS.
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